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Abstract—The focus of research in this paper is to investige
whether a random network whose degree sequence bktvertices
is the same as the degree sequence of the verticea real-world
network would exhibit values for other analysis matics similar to
those of the real-world network. We use the well-kown
Configuration Model to generate a random network onthe basis
of the degree sequence of the vertices in a real-s network
wherein the degree sequence need not be PoissorestyThe
extent of similarity between the vertices of the madom network
and real-world network with respect to a particular metric is
evaluated in the form of the correlation coefficiet of the values
of the vertices for the metric. We involve a totabf 24 real-world
networks in this study, with the spectral radius rdio for node
degree (measure of variation in node degree) rangjynfrom 1.04
to 3.0 (i.e., from random networks to scale-free meorks). We
consider a suite of seven node-level metrics andrée network-
level metrics for our analysis and identify the meics for which
the degree sequence would be just sufficient to genate random
networks that have a very strong correlation (corréation
coefficient of 0.8 or above) with that of the vertes in the
corresponding real-world networks.

Index Terms—Configuration model, degree sequence,
correlation, random network, real-world network.

I. INTRODUCTION

ANDOM networks are a class of complex networks in

which there could be link between any two nodeth@

network. The Erdos-Renyi (ER) model [1] is a comiyon

used theoretical model for generating random nedsvofhe
ER model-based random networks are characteristic
exhibiting a Poisson-style [2] degree sequence shahthe
degree of any vertex is typically very close to theerage
degree of the vertices in the network (i.e., theéa¥®n in

node degree is typically low). However, the degsequence
of most of the real-world networks rarely followsPaisson-
style distribution; there usually exists an appabl? amount
of variation in node degree [3] and there couldo atse
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preferential attachment with selected nodes rattien
arbitrary attachment [4JFigure 1 shows the degree sequence
of the well-known real-world networks witN nodes and.
edges and the corresponding ER model-based random
networks generated with a probability of link valwd
2L/{N(N-1)} [5]. Due to the inherent differences in thaura

of the degree sequence, the values for several-lewdk
metrics and network-level metrics exhibited by a ERdel-
based random network with a certain number of nates
edges are likely to be independent (correlatiorffmient is
close to 0) to that of the metric values exhibiteda real-
world network with the same number of nodes anagsdg].
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Fig. 1. Degree Sequence of Real-World NetworksthrdErdos-Renyi (ER)
Model-based Random Networks with the Same NumbBloofes and Edges.
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In this research, we explore whether a random mitwo
whose degree sequence matches to that of a rell-wor o configuration Model [6] is one of the well-know

network could exhibit similar values for severatical node-

level and network-level metrics as that of the -weatld

network. In this pursuit, we chose to use the \etwn

Configuration Model [6] that takes as input the rmeg
sequence of the vertices in any known network arctes a
random network with a similar degree sequence. &s lme
seen in Section 5 of this paper, the correlatioaffadent

between the degrees of the vertices in the reaidwamtwork

and the corresponding random network (generatat ubie

Configuration Model) is 0.99 or above. We use aeswif

seven node-level metrics and three network-levefioseto

evaluate the similarity of each of the real-worldtwork

graphs and the corresponding Configuration ModekHa
random network graphs.

The node-level metrics analyzed are: Degree Cémiral
Eigenvector Centrality [7], Betweenness Centraliig],
Closeness Centrality [9], Local Clustering Coeéidi [10],
Communicability [11] and Maximal Clique Size [12fhe
network-level metrics analyzed are: Spectral Ra&ato for
Node Degree [3], Assortativity Index [13] and Algeic
Connectivity [5]. We use a total of 24 real-worlétwork
graphs (with different levels of variation in nodegree) for
this study. We run the appropriate algorithms teedeine the
individual node-level and network-level metrics bath the
real-world graphs and the corresponding randomigrayith
identical degree sequence. We identify the levefs
correlation based on the correlation coefficientluga
observed for each node-level metric in each ofréad-world
network graphs and their corresponding Configurakitodel-
based random network graphs as well as based on
percentage relative difference between the valeesefch
network-level metric for the two graphs.

The rest of the paper is organized as follows: énti®n 2,
we review the Configuration Model for generatingidam
networks and present a pseudo code for the impletiem of
the same. In Section 3, we introduce the node-larel
network-level metrics evaluated in this paper anefly
describe the appropriate procedures to determimmd @
them. Section 4 reviews the Spearman's rank-baweelation
measure [14] used in the analysis of the real-wodtivorks.
Section 5 introduces the real-world networks stddie this
paper and analyzes the results for the levels o&tion for
the node-level metrics and network-level metrictaoted on

the real-world networks and the corresponding ramdo

networks generated using the Configuration Modelebaon
the degree sequence of the real-world networkstidde®
discusses related work on degree preserving rarzddiomn of
real-world networks. Section 7 concludes the paped
outlines plans for future work. Throughout the papee use
the terms 'node' and 'vertex', 'link’ and 'edgetwork’ and
‘graph’ interchangeably. They mean the same.
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models for generating random networks. Its unique

characteristic is to take the degree sequence afivan
network as input and generate a random networkhhsitthe
same degree sequence as that of the input netioekdegree
sequence input to the model need not be Poisstm-sthe
typical pattern of degree sequence of vertices andom
networks generated according to the well-known Eienyi
(ER) model [1]. Thus, the Configuration Model coblel used
to generate random networks whose degree sequente c
correspond to any network of analytical interestthis paper,
we use the Configuration Model to generate randetwarks
whose degree sequence matches to that of real-wetlebrks
and we further evaluate the values of the node-lmedrics
and network-level metrics on both these networke &ve
interested in exploring whether a random networkoseh
degree sequence resembles to that of a real-wetidonk
exhibits similar values for other critical noded¢vand
network-level metrics.

We simulate the generation of a random network utite
Configuration Model as follows. Lé¥ andL be respectively
the total number of nodes and edges in a chosd+wozkl
network. LetD be the set of degrees of the vertices (one entry
per vertex) in the real-world network. We set ufisaLs of
vertices - the number of entries for the ID of ater in this
list is the degree of the vertex in the input BetAfter the list
Qs is constructed, we shuffle the entries in the Wge do the
shuffling from the end of the list. In each itecatiof shuffling,
the ID of a vertex in a particular entry in thet let index
i (JLg>i> 2)is swapped with the ID of a vertex in a randpml
#Mdsen entry at indgx(j <i). We now generate the adjacency
matrix Acnt (each entry is initialized to zero) for the
configured graph as follows. We consider the vetizxfrom
the end of the shuffled lidts For each vertexID at indexu
(Ld = u > 2) considered, we attempt to pair it with a vertex
viD at indexv (v < u) such thatcn[ulD][VID] = 0 andulD is
not the same adD as well as make sure the entry at ingdex
has not been already paired with another vertexkebp track
of the latter, we set the entries of the shuffietils to —1 if
the entry is already considered either asild@hor aviD. If a
pair ID, viD) meets the above criteria, we set the entries
Acord[UID][VID] = 1 andAconf[UID][VID] = 1. We proceed the
iterations until the index equals 1; by this time, all entries in
the shuffled lisLs should have been set to —1.

The above implementation procedure for the Conéition
model does not generate any self-loop or dupliedtge, as we
make sure we are not pairing a vertex with a palgrclD at
an indexu to a vertex with the same ID at another indeas
well as we keep track of the edges that have béeady
configured across all the iterations. To test wleta pair
(ulD, vID) already have an edge between them, we have to
just check the entries fanlD or viID in Acni. Thus, each

http://dx.doi.org/10.17562/PB-53-1
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Input: Degree sequence D of the Vertices; Number of Nodes, N

Output: Adjacency Matrix of the Configured Graph A,,,{1...N][1...N]

Auxiliary Variables: List Lg; Total Entries

Initialization: A.,,{ulD, vID] =0, where 1 <uID <N and 1 <vID =N, Total Entries =0
Begin Generate Graph-Configuration Model

1 forl =ulD<Ndo

2 Ls[Total Entries + 1 ... D[uID]] = ulD

3 Total Entries = Total Entries + D[ulD]

4  end for

5 for (i=Toral Entries; i>1;i=1i-1) do

6 Generate a random index j € {i-1...1}

7 Swap(Ls{i]. Ls[j])

8 end for

9  for (u = Total Entries; u > 1; u=u-1) do

10 ulD = Lgfu]

11 if (uID !=-1) then

12 Generate a random index v € {u-1...1} and find a vID = Lg[v]
such that uID '=vID and Ls[viD] != -1 and A, {uID][vID] =0

13 Ls[uID]=-1

14 Lg[viD] =-1

15 AgpfuID][VID] = 1

16 AeordvID|[uID] =1

17 end if

18 end for

return A.,,-
End Generate Graph-Configuration Model

Fig. 2. Pseudo Code for the Implementation ofGbafiguration Model to Generate Random Graph adngrth a given Degree sequence.

iteration (lines 9-17) is likely to take at mostND(@ttempts result, it is not clear whether several other ntadel metrics
before a link ¢ID, vID) is configured. The total number of (ike the centrality measures, clustering coeffitje
iterations involving lines 5-8 and lines 9-17 i thum of the communicability, etc) and network-level metricskéliedge
degrees of the vertices in the chosen real-worldiar&. Note assortativity, algebraic connectivity) would be Hzame for the
that the sum of the degrees of the vertices inaplgis equal two graphs. This is the motivation for the researehducted

to 2L/N whereL is the number of links and is the number of in the rest of the paper.

nodes. Hence, the overall time-complexity of
implementation of the Configuration Model described
Figure 2 is O x 2L/N) = O().

Figure 3 presents an example to illustrate the rgeioe of
a random graph that has the same degree sequetitat a$
an input graph. The example walks through the sepi®f
iterations illustrating the execution of the pseudae given
in Figure 2.

We show the contents of the lidts at the time of
initialization (before and after shuffling) as wedks during
each iteration (before and after the configuratiban edge).

Whenever a vertex pair is picked up for configurimg
edge, we replace their entries with —1. We alsavssample
scenarios wherein we reject the choice effaif it is same as

the

I1l. NODE-LEVEL METRICS ANDNETWORK-LEVEL METRICS

Our objective in this paper is to identify the ndeeel
metrics and network-level metrics for which the meg
sequence would be sufficient to observe a veryngtro
correlation between a chosen real-world networlplgrand its
corresponding configuration model generated randetwork
graph. In this pursuit, we study the following nddeel
metrics  (eigenvector centrality, closeness cemyrali
betweenness centrality, local clustering coeffitien
communicability and maximal clique size) and netwavel
metrics (spectral radius ratio for node degree, eedg
assortativity and algebraic connectivity).

that of theulD (shown with & in iterations 3 and 6) as well 5 Eigenvector Centrality

as show a sample scenario wherein we reject theeld a

viD (shown with aX in iteration 5) to avoid adding a

duplicate edge for the paiulD, vIiD). The final configured
graph has exactly 8 edges and degree sequencatas the
input graph. However, the edges in the input grdphnot
match to that of the edges in the final configugeaph. As a

http://dx.doi.org/10.17562/PB-53-1 7

The eigenvector centrality (EVC) of a vertex is aasure
of the degree of the vertex as well as the degrfe@so
neighbors. The EVC of the vertices in a graph igioled by
computing the principal eigenvector of the adjagemmatrix
(A) of the graph. In this paper, we use the Poweadien
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Input Graph
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,2,2,3,3)

D={2

F-Y
o

Initial
Lg={1,1,2,2,2,2,3,3,4,4,5,5,5,6, 6,6}
After Shuffling
Lg=1{6,3,6,2,4,2,5,2,1,6,5,4,3,1,5,2}

Iteration 1

OWS
ONO

®
®

Edge Configured: 2-4

Lg=16.3,6,2,4,2,5,2,1,6,5,4,3,1, 5|2}

Before configuration

Lg=1{6,3,6,2,-1,2,5,2,1,6,5,4,3,1,5, -1}
After configuration

lteration 2

OB ONO
ONO=0,

Edge Configured: 5-6

Lg=1{6,3,6,2-1,2,5,2,1,6,5,4,3,1| 5, -1}

Before configuration

Lg=16,3,-1,2,1,2521,6,5,4,3,1,-1,-1}
After configuration

Iteration 3

O ©
ONO=0)

Edge Configured: 1-2

Ls=16,3,-1,2,-1,2,5,2,1,6,5,4,3]1,-1,-1}

Before configuration

Lg=1{6,3,-1,-1,-1,2,5,2,1,6,5,4,3,1, -1, -1}

Iteration 4

Edge Configured: 3-2

Lg=16,3,1,-1,-1,2,5,2,1,6,5,4 3,1, -1, -1}

Before configuration

Ls=16,3,1,-1,-1,-1,5,2,1,6,5,4,1, 1,1, -1}

Iteration 5

Edge Configured: 4-6

A
Lg=16.3,-1,-1,-1,-1,5,2 1,6,54, 1, 1, 1, -1}

Before configuration

Lg=1{1,3,1,1,-1,-1,52,1,6,5-1,-1,-1,-1, -1}

After configuration After configuration After configuration
Toralion s Tteration 7 lteration 8 Final Configured Graph

Edge Configured: 5-3

1.3,1,1,.1,-1,5.2,1,8,5,-1,-1,-1,1, -1}

Before configuration

Lg=

Lg={1,-1,-1,1,-1,-1,521,6,-1,-1, 1, 1,1,-1}

OO
oflc®c

Edge Configured: 6-2

Lg={1,-1,-1,-1,1,-1,5 2,1 6,-1,-1,-1, 1,1, -1}

Before configuration

Lg={1,-1,1,-1,41,-1,51,1,-1,-1,-1,1,41,1, -1}

OOw®O
o’oz

Edge Configured: 1-5

Lg={1,-1,-1,-1,-1,-1,5 -1f1,-1,-1,-1,1,-1, 1, -1}

Before configuration

Lg={1,-1,11,41,1,1,-1,1,1,1,-1,1, 1, 1,1, -1}

After configuration

After configuration

After configuration

Fig. 3. Example Execution of the Implementationhef Configuration Model to Generate Random Gragom@ling to a given Degree sequence.

algorithm [15] to determine the principal eigenweftVC of
the vertices. This algorithm is briefly explainesifallows.

We start with a unit-column vector ofall Xs=[1111...
1] as the estimated principal eigenvector of tha@pbrwhere
the number of 1s is the number of vertices in tlepky. In the
(i+1)" iteration, the principal eigenvectd.. = AX / ||AXi]|
where ||...|]| is the normalized value of the prodeector
obtained by multiplying the adjacency matrix and the
column vectoiX;.

We continue the iterations until the normalizedueabf the
product vector (as indicated above) does not chhegend a
certain level of precision for subsequent iteraioifhere
exists an entry for each of the vertices in thengpal
eigenvector and the values in these entries carnesfo the
EVC of the vertices.

Polibits, vol. 53, 2016, pp. 5-21

Figure 4 illustrates an example to compute therrigetor
centrality of the vertices in a graph using the Beiteration
algorithm. We stop when the normalized value (ire th
example, it is 2.85) of the product of the adjagematrix and
the principal eigenvector converges and does naeingh
beyond the second decimal. Vertex 2 has the highe€
followed by vertex 6. We notice that though theethrertices
1, 3 and 4 have the same degree, they differ iir E&C
values: Both the neighbors of Vertex 3 are vertigits higher
EVC - as a result, the EVC of vertex 3 is relatMeigher than
that of vertices 1 and 4. Vertex 1 has a higher BW&n
vertex 4 (vertices 1 and 4 are also connected ¢h ether)
because vertex 1 is connected to a vertex wittghehiEVC
(vertex 2) while vertex 4 is connected to a verpexrtex 5)
with a relatively lower EVC.

http://dx.doi.org/10.17562/PB-53-1
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Iteration 1 Iteration 2
123456 123456
1[0 10 10 0] [ 2 029571410 1 0 1 0 0] 0205 0.885 0311
2(1 0101 1| |1f [4] 9% [{{2]1 0 1 01 1]] 0580 1474 0518
alo1 000 1] |1 =[2] 21229 |{[3]o 1 000 1||o0295 |=]|1032]=]0363
afto0001 0f |1 2 0295 (1401 0 0 01 of| 0208 0.737 0.259
50101011 3 0442 f115fp 1 0 1 0 1] 0442 1.327 0.467
6lo 1101 0] [ 3 0442 fllefo 1 1 0 1 0f| 0442 1327 0.467
Normalized Normalized
Value =6.78 Value =2.84
(D—2—) O—C2—® ™
1 0.293
2 0.536
‘ ‘ 3 0.363
4 0.249
O O OO GO
6 0.472
lteration 3 Iteration 4
123456 123456
101 010 0]f0311 0.778 0273711110 1 0 1 0 0]0273 0.836 0.293
2110101 1]|0318 1.607 0.564 2(1 0101 1|| 0584 1528 0536
3101 0 00 1]]0363|=]0985(=| 0346 3[0 1000 1||0346 | =[1037 | =] 0363
411 0 0 0 1 0| 0259 0.778 0273 |[|4]1 00 01 0] 0273 0.709 0.249
5[0 1010 1| 0467 1.244 0436 |[|5]0 1 0 10 1|| 0436 1.309 0.459
6l0 11 01 0J| 0467 1348 0473 |||6l0 1 1 0 1 0]] 0473 1.346 0.472
Normalized Normalized
Value = 2.85 Value =2.85

Fig. 4. Example to lllustrate the Execution of Bmwer-Iteration Algorithm to Determine the Eigectee Centrality of the Vertices in a Graph.

B. Closeness Centrality

The closeness centrality (CIC) [9] of a vertexhis inverse
of the sum of the shortest path distances (numbérops)
from the vertex to the rest of the vertices in gnaph. The
CIC of a vertex is determined by running the BrbaBirst
Search (BFS) algorithm [16] on the vertex and deiieing a
shortest path tree rooted at the vertex. One can #asily
determine the sum of the number of hops from théexeo
the other vertices in the shortest path tree amdctbseness
centrality of the vertex is the inverse of this sufigure 5
illustrates an example to compute the closenessatien of
the vertices in a graph. We show the shortest ppeéfs rooted
at each vertex and compute the number of hops fhemoot
to the rest of the vertices in these trees to amivthe distance
matrix, contributing to the computation of the apess
centrality.

C. Betweenness Centrality

The betweenness centrality (BWC) [8] of a vertexais
measure of the fraction of the shortest paths bvemy two
vertices that go through the particular vertex, @t over all
pairs of vertices. The number of hops for a veftexn the
root of a shortest path tree indicates the levehefvertex on
the tree. The number of shortest paths, dengtgdfrom a

vertex| to a vertex at levell (I > 0) is the sum of the number

of shortest paths frofnto each of the neighbors &f(in the

rooted af. For any vertex, the number of shortest paths from

vertexj to vertexk that go through, denotedspi(i), is the
maximum of the number of shortest paths from vejtéa
vertex i and the number of shortest paths from veiteto
vertexi. Quantitatively, the BWC of a vertéxs defined as

Pyl
S

BWC()= 3

ki

Figure 6 shows an example illustrating the computadf the
BWC of the vertices in a graph.

D. Local Clustering Coefficient

The local clustering coefficient (LCC) [10] of anex in a
graph is a measure of the probability that anymeighbors of
the vertex are connected. Quantitatively, the ladastering
coefficient of a vertex is the ratio of the actnamber of links
between the neighbors of the vertex divided bynfaimum
possible number of links between the neighbordiefviertex.
For a vertexi with degreek;, if there are a total of links
connecting the neighbors pfthen the clustering coefficient of
iis

| .
ki(k -1)/2

Figure 7 shows an example of computing the loaadteking

original graph) that are at levell in the shortest path tree coefficient of the vertices of a graph.

http://dx.doi.org/10.17562/PB-53-1 9
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Fig. 5. Example to lllustrate the Computationta# Closeness Centrality of the Vertices.
o Vertex Neighbors # Links connecting Max. possible Local
Vertax the Neighbors #Links connecting  Clustering
ID the Neighbors Coefficient
1 T 20 1 2,4 0 2(1)2=1 01 =0.0
2 | 110 2 1,3,56 2 4(3)2=6 2/6 = 0.33
5 |s0 3 2,6 1 2(1)2=1 1M=1.0
4 |60 4 1,5 0 2(1)2=1 0 =0.0
5 |40 5 2,4,6 1 3(2)2=3 1/3=0.33
6 |60 6 2,3,5 2 3(2)2=3 2/3 = 0.67
7 10.0
8 60 Fig. 7. Example to lllustrate the Computation o (Clustering Coefficient
Betweenness of the Vertices.
Centrality
betweeness for node: 1 ((betweeness for node: 5
S =
23— s ir €2,6> ——>1 / icabili
Pair <8.35 —31 7 3 ||Pain <8765 ——-31 ¥ 1 E. Communicability
Pair (3.8 —>1 ~» 2 Pair (8,7> —2>1 ~ 2 . - .
betweeness for node: 2 ||Pair <6,.8> ——->1 ~ 1 The communicability (COMM) [11] of a vertex is the
Pair (4,1 -——-31 / 2 Pair (7.8 —=>1 ~ 2 .
Pair ¢5.1) —>1 / 1 ||betweeness for node: 6 weighted sum of the number of walks of lendthsl, 2, 3, ...
Pair (8,1) ——21 /1 Pair (5,3 —2>1 7 1 . . .
Pair (8.3) ——>2 / 2 ||Pair ¢5.4> —->1 - 2 from that vertex to each of the other verticeshm graph, with
Pair (1.4) —21 ~ 2 Pair (3,5 —21 7 1 . . N
Pair ¢5.4) —1 /2 |[Pair (4.5 —>1 /2 the weight being 1. A walk from vertexr to s involves a
S4) —31 s Pair (7.5) —>1 ~/ 1 : . :
;:;: ansy — v 1 ;ﬁii 617 7 1 sequence of intermediate vertices that may or nuayappear
.5) —=>1 / ir (8,7) ——->1 ; ;
;:%: @D 172 Pain <7085 —31 7 3 more than once. That is, a walk could involve cycl€he
Pair <3.85 32 » 3 ||pofuesgess for pedel ? communicability of a vertex captures the ease wittich a
Sl i { G ¢ A Pair <5.3> —>1 4 1 vertex can disseminate information to the resthef vertices
Eﬁ;ﬁ’g%ﬁ?’; f?fﬁ";’g ’ gii: gg:i; :I:g j% through various walks (the shortest paths are girere
Qe (6715 —— : ‘4> -3 7 : "
Pair (711> —31 7 1 ;:g Qlsy 71 weights  though). Though the definition of the
- —, » ———— / . e
;:i: figg ___;i ;{ ;:1: 252; ___:),} ;% communlc.abmty of a vgrtex could be represented
air - — . -
betueeniss for node: 4 ;;;; G 3 0 mathematically as in equation (1), we use the dofsem
®35 tor - &% : o . -
ggig @3 3173 }.?:;:"'(’E"iﬁ For node: 8 equation (?) to. guantitatively dletermlne the comicaiility
air » — . —
Pair 3.8 <31 7 3 ;:;: @8 3101 of tIEe v;elrtlceshlrl;a graph [11}9\][,5_ represdent,fl the rt:umfber of
air - - i - — Vs
e G —3%3 |[Bdo 2 —4/2 walks of lengt ] etween twq verticesands. Qtet at for a
Pair €2.7) ——-31 + 1 ||Pair (1.5) ——>1 /1 graph ofn vertices (whereV/ is the set of verticesy| = n),
Pagr 8.2 —»n » 2 Pair (2,5 —2>1 7 1 . .
Pair ¢3.8) ——=>1 / 2 ||Pair (4.5) ——->1 ~ 2 there aren eigenvalues (denoted 3wherej = 1, 2, ...n) and
Pair (7.8 —31 / 2 [|Pair <2.6> —>1 ~ 2

Fig. 6. Example to lllustrate the Computation ¢ Betweenness Centrality
of the Vertices.

Polibits, vol. 53, 2016, pp. 5-21

the corresponding eigenvectors (denoted;agherej = 1, 2,
., N). ¢i(r) and ¢;(s) denotes the values for verticeands in
the eigenvector associated with eigenvaju®/e compute the
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o o o Vertex Communicability
1 12.257
2 22.303
‘ 3 14.390
0.0‘9 v
5 18.434
6 19.050
Vertex IDs
Eigenvalue 1 2 3 4 5 6
-2.1584 -0.439 0.512 -0.298 0.435 -0.500 0.133
-1.2718 -0.311 0.378 0.303 0.016 0.290 -0.764 Eigen
-0.6611 0.163 0.453 -0.641 -0.561 0.207 -0.029 Ve%tors
0.1830 -0.596 -0.279 -0.306 0.171 0.627 0.224
1.0554 -0.500 0.106 0.432 -0.634 -0.169 0.349
2.8529 0.282 0.548 0.358 0.256 0448 0475

Fig. 8. Example to lllustrate the Computation lé Clustering Coefficient
of the Vertices.

eigenvalues and eigenvectors of the adjacency xnafria
graph using the JAMA package [17].

o Al .
C(r)= sD;r)g(“) 1)
cn= Y Y4,08,9e" @
VA1) 2

F. Maximal Clique Size

A clique is a subset of the vertices of a graphhstmat
there exists an edge between any two verticesisrstt. Each
vertex in a graph is part of at least one cliqeewen an edge
could be considered a clique of size 2. We referth®
maximal clique for a vertex as the largest sizqudithat the
vertex is part of and call the size of the corresiiog clique
as the maximal clique size [12]. We refer to theximam
cligue size of the entire graph as the largesthef maximal
cligue size (MCS) values of the vertices [18]. Aserved in
the example shown in Figure 9, one or more vertjeedices
4, 5, 6, 7) could be part of a maximum clique sizhile for
the rest of the vertices (vertices 1, 2 and 3), nieximal
clique size could be less than maximum clique si¥e. use
the extended version of an exact algorithm by Battenan et
al [18] to determine the maximal clique size focleaertex.
The algorithm takes a branch and bound approach
exploring all possible candidate cliques that @esecould be
part of, but searching through only viable candidsg¢ts of
vertices whose agglomeration has scope of beinggaecof
size larger than the currently known clique fousgart of the
search.

Figure 8 presents the communicability of the vedidor
the same example graph (of six vertices) usedgnres 4, 5
and 7. The figure also lists the six eigenvalued #me
corresponding eigenvectors that are used in thailedions of
the communicability of the vertices (according tpuation 2).
We observe vertex 2, followed by vertex 6, to hthelargest
values for communicability. In general, verticesving a
higher degree and part of a closely-knit commufisrtices

http://dx.doi.org/10.17562/PB-53-1 11

Maximal Size Clique for Vertices
Vertex ID Maximal Size Clique
{1, 3}: Size -2
{2,3,4}: Size-3

{2, 3,4} Size-3
{4.5.6,7}: Size-4
{4,5,6,7}: Size-4
{4,5,6,7}: Size-4
{4,5,6,7}: Size-4

Maximum Clique = {4, 5, 6, 7}

~N o LR

Fig. 9. Example to lllustrate the Maximal SizedDle of the Vertices.

OO aOX
O i,
(a)—5)>—(6) 4.(G)=2.85

Fig. 10. Example to lllustrate the Relationshipwieen Spectral Radius and
Node Degree.

Spectral Radius
Ratio for

Node Degree
=285/2.67=1.07

2, 3, 5 and 6 would have formed a clique had the®n an
edge 3-5). Notice that between vertices 5 and & (bbwhich
have degree 3), vertex 6 has a slightly larger comoability,
attributed to the connection of vertex 6 to verBethat is in
turn connected to vertex 2 (whereas vertex 5 iseoted to
vertex 4 that is not connected to vertex 2, butemd
connected to a low-degree vertex, vertex 1). Likewi
between vertices 1, 3 and 4 (all of which have deg2),
vertex 3 has the highest communicability as itderected to
vertices 2 and 6 - both of which have a high compability.

G. Spectral Radius Ratio for Node Degree

The spectral radius of a gragh denotedis(G), is the
principal eigenvalue (largest eigenvalue) of thgaeehcy
matrix of the graph. Imin, kag @and kmax are the minimum,
average and maximum node degrees, gI< Kayg < A5(G)
< kmax [19]. As one can see from this relationship, thecsral
radius could be construed as a measure of thetioarim the
degree of the vertices in a graph. In [3], the sof spectral
radius ratio for node degree was proposed to etaltie
variation in node degree on a uniform scale, witltbe need
folr explicitly computing the variance/standard dgian of the
vertices in the graph. The spectral radius rationfide degree
is the ratio of the spectral radius of the grapti e average
degree of the vertices in the gragh(G)/kag. According to
the above formulation, the spectral radius ratio fode
degree values are always 1.0 or above; the fattieevalue is
from 1.0, the larger the variation in node degreerg the
vertices of the graph. Figure 10 presents an exangl
illustrate the relationshifmn < kayg < A9(G) < kmax and the
spectral radius ratio for node degree. As thioreicloser to
1.0, we could construe that the variation in noegrde is very
less; we can see 50% (three out of six) of theicasthave
degree 2 and one-third (two out of six) of the iees have
degree 3, leading to an average degree of 2.67.

Polibits, vol. 53, 2016, pp. 5-21
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H. Edge Assortativity

The assortativity of the edges in a graph is a oreasf the
similarity of the end vertices of the edges basecmy notion
of node weights [13]. In this research, we use rielgree as
the measure of node weight. Quantitatively, edgerdativity
is essentially the correlation coefficient of thede weights of
the end vertices. If the correlation coefficientisse to 1.0, -
1.0 and 0.0 respectively, we could say the endoesrtof the
edges are respectively maximally similar, maximdlifferent
and independent to each other based on the nofiode
weights considered. Figure 11 presents an example
calculate edge assortativity in a graph, whereaitls of the
vertices constituting an edge are considered asdared pair

(i, j) such thati <j. We observe the correlation coefficient

(edge assortativity) to be close to 0.0, indicatihgt the
pairing of the vertices that constitute the eddethe graph is
independent of the degrees of the end verticestitatirg
these edges. ER model-based Random graphs [1]ieghib
edge assortativity close to 0 indicating the aaytrpairing of
the vertices to constitute the edges.

(D—(2r—3) e
‘ Assortativity

% (Xi - X)(¥i- )
i=1

7 N
T (Xi-X)” Z(Fi-T)
i=1 i=1

Edge Vertex Weights - - - - - -
X Y Xi-X) (Yi-Y) (Xi-X)*2 (Yi-Y)*2 (Xi-X)(Yi-Y)
1-2 2 4 -0.88 1.12 07744  1.2544 -0.9856
1-4 2 2 -0.88 -0.88 07744 0.7744 0.7744
2-3 4 2 1.12 -0.88 12544  0.7744 -0.9856
2-5 4 3 1.12 0.12 1.2544  0.0144 1.2544
2-6 4 3 1.12 0.12 1.2544  0.0144 0.1344
3-6 2 3 -0.88 0.12 07744  0.0144 -0.1056
4-5 2 3 -0.88 0.12 07744  0.0144 -0.1056
5-6 3 3 0.12 0.12 0.0144  0.0144 0.0144
Average 2.88 2.88 Sum 6.8752  2.8752 -0.0048
X Y

Edge Assortativity = -0.000248

Fig. 11. Example to lllustrate the Calculation afigé Assortativity as a
Correlation Coefficient of the Node Weights of thed Vertices.

I. Algebraic Connectivity

The algebraic connectivity of a graph is a quatinita
measure of the connectivity of the graph capturthg
vulnerability of a graph for disconnection as adfion of the
number of vertices in the graph as well as the ltapoof the
graph [20]. The algebraic connectivity of a graptbounded
above by the traditional connectivity of the gragkfined as
the minimum number of vertices that need to be redao
disconnect the graph into two or more componenty.[2
However, the traditional connectivity measure (aeger
corresponding to the minimum number of vertices b
removed for disconnection) cannot capture the ivelat
strength of the graph with respect to node removads two
graphs having the same value of traditional conviggtthe

Polibits, vol. 53, 2016, pp. 5-21

algebraic connectivity could be still different [2The larger
the value of the algebraic connectivity, the stemipe graph
— only the removal of certain nodes could disconhrtbe
graph (and not the removal of any node).

Quantitatively, for a connected graph, the algebrai

connectivity is measured to be the second smaligsnvalue
of the Laplacian MatrixL() of a graph [22]. In addition, for a
connected graph, the smallest eigenvalue of thdatam
Matrix of the graph is always 0. In general, thenber of
zeros among the eigenvalues of the Laplacian Maifixa
graph indicates the number of connected comporetse
graph [23]. The entries in the Laplacian Matrixaofraph are
defined as follows [23]:

L(i,j) = degred ifi =]

=-1 far£ j and edgei(]) exists
=0 far£ | and edgei(j) does not exist
o o o Laplacian Matrix  Eigenvalues
1 2 3 4 5 6 0
1240400
‘ 2 1440141 1.108
o o 3042004 2.295
4 400 210 3.0
Algebraic Connectivity: 1.108 z g : _: -; _:1‘ ; 4.317
Traditional Connectivity: 2 Graph 1 5.278
o o o Laplacian Matrix  Eigenvalues
1 2 3 4 5 6 0
1240400
‘ 2 444114 1.382
o o 3042004 2.382
4 440240 3618
Algebraic Connectivity: 1.389 g g :: _!,: -; j -; 4618
Traditional Connectivity: 2 Graph 2 5.999

Fig. 12. Example to lllustrate the DeterminationAd§ebraic Connectivity
and its Use a Measure of Evaluation of the Relditrengths of Two Graphs
with the Same Traditional Connectivity.

Figure 12 presents examples to determine the Liaplac

Matrices of two graphs and compute the sequence of

eigenvalues for the two matrices. There is only aeeo
among the eigenvalues of the Laplacian matricelsot the
graphs, indicating that both the graphs are coedeand all
the vertices form a single connected componentplGais
relatively stronger than Graph-1 due to the presewsic an
additional edge 2-4 in the former.

Though both the graphs have a traditional conniégiof 2
(both the graphs get disconnected with the remofvaértices
2 and 5 in each of them), the removal of any twadises from
the graph is relatively more likely to lead to aatinnection in
Graph-1 compared to Graph-2. One could notice that
removal of vertices 1 and 5 could disconnect vedtérom the
rest of the vertices in Graph-1; on the other haimelremoval
of vertices 1 and 5 would not disconnect verterofnfthe rest
of the vertices in Graph-2.

http://dx.doi.org/10.17562/PB-53-1
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IV. SPEARMAN'S RANK-BASED CORRELATION MEASURE

We resort to a rank-based correlation coefficigats in
this paper as we want to explore the level of sirty
between the ranking of the vertices (with respech tnode-
level metric)
corresponding degree-preserved random network graph
this pursuit, we choose to use the Spearman's brasge
correlation measure (SCC). SCC is a measure ofviirthe
relationship between two datasets (variables) eaadsessed
using a monotonic function [14]. To compute the S&®@wo
datasets (sayh andC), we convert the raw scorédg and Ci
for a vertexi to ranksa andc and use formula (3) shown
below, whered;

assigning the rank values from lrtdor a graph oh vertices
with vertex IDs that are also assumed to range ftdmn. To

obtain the rank for a vertex based on the list afigs for a
node-level metric, we first sort the values (ineagting order).
If there is any tie, we break the tie in favor o tvertex with a
lower ID; we will thus be able to arrive at a tdiva, but

unique, rank value for each vertex with respedht metric.

We determine a final ranking of the vertices aofe$: For

vertices with unique value of the node-level mettie final

ranking is the same as the tentative ranking. eotioes with

an identical value for the node-level metric, thelf ranking

is assigned to be the average of their tentatinkimgs. Figure
13 illustrates the computation of the tentative final ranking

of the vertices based on their BWC values in theagraph
and the configuration model-based random networkplyr
generated in Figure 3 as well as illustrates thepdgation of
the Spearman's rank-based correlation coefficient.

62“) d?

i=1

n(n®-1)

SCC(AC) =1- 3)

In Figure 13, we observe ties among vertices wagpect
to BWC in both the actual graph and the correspandi
configured graph. The tentative ranking is obtaineg
breaking the ties in favor of vertices with lowdsl In the
case of the actual graph, we observe both verficasd 6 to
have an identical BWC value of 0.83 each and tegitative
rankings are respectively 3 and 4 (ties for temgatiankings
are broken in favor of vertices with lower IDs);ettiinal
ranking (3.5) for both these vertices is thus therage of 3
and 4. A similar scenario could be observed forcitfigured
graph: vertices 1 and 3 have an identical BWC valu@.33
each and their tentative rankings are respecti®eind 3; the
final ranking (2.5) for both these vertices is thius average of
2 and 3. The Spearman's rank-based correlatiorficdeat
with respect to BWC for the actual graph and cantfgl
graph in Figure 13 is observed to be 0.87, indicaa very
strong positive correlation. A ranking of the vees with

http://dx.doi.org/10.17562/PB-53-1

in a real-world network graph and the

a - ¢ is the difference between the ranks of
vertex i in the two datasets. We follow the convention of

respect to BWC in the actual graph is: 3, 4, 1i®,(6 and 2;
whereas the ranking of the vertices with respe@&WC in the
configured graph is: 4, 1-3 (tie), 6, 5 and 2.

PG
(O—(—&
Actual Graph
Vertex ID BWC

Oy Ow®

Rrezs

Configured Graph
Vertex ID BWC

1 0.83 1 0.33
2 3.17 2 3.50
3 0.00 3 0.33
4 0.50 4 0.00
5 217 5 1.50
6 0.83 6 1.33
BWC in ) - BWC in ) Final Rank
Graph [A] ' "1l Graph[C] ) G | (di):ai-¢
1 0.83 3 35 0.33 2 25 1 1
2 3.17 6 6 3.50 6 6 0 0
3 0.00 1 1 0.33 3 25 -1.5 225
4 0.50 2 2 0.00 1 1 1 1
5 217 5 5 1.50 5 5 0 0
[S] 0.83 4 35 1.33 4 4 -05 0.25

Sum 45

Spearmman's Rank Correlation Coefficient = 1 - (6*4.5)/(6*(62-1)) = 0.87

Fig. 13. Example to lllustrate the Computationted Spearman's Rank-based
Correlation Coefficient with respect to BWC on tletual Graph and
Configured Graph of Figure 3.

The correlation coefficient values obtained forth# node-
level metrics range from -1 to 1. Correlation cméfint values
closer to 1 for a node-level metric indicate thderitical
degree sequence for the real-world network graph the
configuration model based random network graplufficient
to generate an identical ranking of the verticeghe two
graphs with respect to the metric. Correlation ficieht
values closer to -1 for a node-level metric indicahat
identical degree sequence between the real-wortd/onke
graph and the configuration model based random or&tw
graph is sufficient to generate a ranking of theiees in the
real-world network graph that is the reversal & thnking of
the vertices in the corresponding configuration etdzhsed
random network graph (i.e., a highly ranked verteith
respect to the particular node-level metric in thal-world
network graph is ranked much low with respect te same
metric in the corresponding random network grapth @ne-
versa). Correlation coefficient values closer tmm@icate no
correlation (i.e., an identical degree sequenceealis not
sufficient to generate an identical ranking of Wegtices with
respect to the node-level metric in the real-wanketwork
graph and the corresponding random network graphg.
will adopt the ranges (rounded to two decimals)ppsed by
Evans [23] to indicate the various levels of catiein, shown
in Table 1. The color code to be used for the verievels of
correlation is also shown in this table.

Polibits, vol. 53, 2016, pp. 5-21
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TABLE |
RANGE OF CORRELATION COEFFICIENTVALUES AND THE CORRESPONDING
LEVELS OFCORRELATION

Range of Correlation

Coefficient Values Level of Correlation

0.80 to 1.00 Very Strong Positive
0.60to 0.79 Strong Positive
0.40 to 0.59 Moderate Positive
0.20 to 0.39 Weak Positive
0.01 to 0.19 Very Weak Positive
0.00 Neutral
—0.19 to —0.01 Very Weak Negative

—0.39 to —0.20 Weak Negative

—0.59 to —0.40 Moderate Negative

—1.00 to —0.80

Very Strong Negative

V. REAL-WORLD NETWORKS

We analyze a total of 24 real-world networks witffiedent
levels of variation in node degree. The spectrdiusaratio for

()

(6)

node degreel{(k)) for these networks varies from 1.04 to(7)

3.0, with the type of networks ranging from randoetworks
to scale-free networks [4]. All networks are modelas
undirected networks. A brief description of the r2&l-world
networks (a three-character abbreviation for eatthese
networks is indicated in the parenthesis), in therdasing
order of their spectral radius ratio for node degres as
follows:

(1) Macaque Dominance Network (MDN) [24]: This is a

(8)

network of 62 adult female Japanese macaques

(monkeys; vertices)

in a colony, known as the

“Arashiyama B Group”, recorded during the non-mgtin 9)

season from April to early October 1976. There texas

edge between two vertices if the one of the two
corresponding macaques exhibited dominance over the

(10) World Trade Metal Network (WTM) [33]: This is a

other macaque.

(2)
network of 58 residents (vertices) in a fraternitl a
West Virginia college; there exists an edge betwaen
vertices if the corresponding residents were seea i
conversation at least once during a five day olagemw
period.

(3) Hypertext 2009 Network (HTN) [26]: This is a netdkor
of the face-to-face contacts of 113 attendeesiemit of

the ACM Hypertext 2009 conference held in TuriaJyt

College Fraternity Network (CFN) [25]: This is a

in a two-seated aircraft. There exists an edge dxtw
two vertices if at least one of the two correspagdi
pilots has indicated the other pilot as his/herferred
partner with whom s/he likes to fly during the tiaig
schedules.

Sawmill Strike Communication Network (SSC) [28]:
This is a network of 24 employees (vertices) imarsill

who planned a strike against the new compensation
package proposed by their management. There efists
edge between any two vertices if the corresponding
employees mutually admitted (to an outside const)lta
discussing about the strike with a frequency oé¢hor
more (on a 5-point scale).

Primary School Contact Network (PSN) [29]: Thisais
network of children and teachers (vertices) useth@
study published by an article in BMC Infectious
Diseases, 2014. There exists an edge between two
vertices if the corresponding persons were in arfta

at least 20 seconds during the observation period.

Mexican Political Elite Network (MPN) [30]: This ia
network of 35 Mexican presidents and their close
collaborators (vertices); there exists an edge &éetviwo
vertices if the corresponding two people have tiext
could be either political, kinship, friendship oudiness
ties.

8198-S6€T NSSI

Residence Hall Friendship Network (RHF) [31]: Ths
a network of 217 residents (vertices) living aesidence
hall located on the Australian National University
campus. There exists an edge between two verfitles i
corresponding residents are friends of each other.

UK Faculty Friendship Network (UKF) [32]: This is a
network of 81 faculty (vertices) at a UK university
There exists an edge between two vertices if the
corresponding faculty are friends of each other.

network of 80 countries (vertices) that are invalva
trading miscellaneous metals during the period from
1965 to 1980. There exists an edge between twigsrt

if one of the two corresponding countries imported
miscellaneous metals from the other country.

(11) Jazz Band Network (JBN) [34]: This is a networklé8

from June 29 to July 1, 2009. There exists an edge
between two vertices if the corresponding confezenc

(12) Karate Network (KAN) [35]: This is a network of 34

visitors had face-to-face contact that was active dt
least 20 seconds.

4)
network of 48 cadet pilots (vertices) at an US Arfiy
Forces flying school in 1943 and the cadets wexi@ed

Polibits, vol. 53, 2016, pp. 5-21

Flying Teams Cadet Network (FTC) [27]: This is a

Jazz bands (vertices) that recorded between thes yea
1912 and 1940; there exists an edge between two
vertices if the corresponding bands had sharecast |
one musician in any of their recordings during this
period.

members (nodes) of a Karate Club at a US univensity
the 1970s; there is an edge between two nodesif th
corresponding members were seen interacting with ea
other during the observation period.

http://dx.doi.org/10.17562/PB-53-1
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(13) Dutch Literature 1976 Network (DLN) [36]: This is a There is an edge between two vertices if one ofloe
network of 35 Dutch literary authors and critics papers has cited the other paper as a reference.

\(/veer:itéze;s)iflr;nleQZ)ffi.tg eh;reh :dxﬁzdaen ae ?Sggrze;r\:\;ea t 2) Citation Graph Drawing Net\{vork (GDN) [44]: This @
literature work of the author corresponding to ttker network of 3.11 papers (vertices) th_at were pubdsine
vertex. the Proceedings of the Graph Drawing (GD) confezenc
from 1994 to 2000 and cited in the papers published
(14) Senator Press Release Network (SPN) [37]: This is a the GD'2001 conference. There is an edge between tw
network of 92 US senators (vertices) during thaguer vertices if one of the two corresponding papersditasl
from 2007 to 2010. There exists an edge between two the other paper as a reference.

vertices if the corresponding senators had isstiéehat . .
one ioi P g (23) Anna Karenina Network (AKN) [41]: This a network of
joint press release. ) X .
138 characters (vertices) in the noveina Karenina;
(15) ModMath Network (MMN) [38]: This is a network of 38 there exists an edge between two vertices if the
school superintendents (vertices) in Allegheny Gpun corresponding characters have appeared togethat in
Pennsylvania, USA during the 1950s and early 1960s. least one scene in the novel.

There exists an edge between two vertices if &t leae . -

of the two corresponding superintendents has itglica (24) Erdos Collaboration Network (ERN) [45]: .Th's IS a

the other person as a friend in a research survey netvvprk of 472 e}uthorg (nodes) who have enhercdye

conducted to see which superintendents (who are in published an article W'th Paul Erdos or througfhanm
of collaborators leading to Paul Erdos. There isdge

office for at least a year) are more influential to b des if th di hors b
effectively spread around some modern Math methods etween two nodes it the corresponaing authors bave
authored at least one publication.

among the school systems in the county.

8198-S6€T NSSI

(16) C. Elegans Neural Network (ENN) [39]: This is a We generate 100 instances of the configuration ihode
network of 297 neurons (vertices) in the neurahwoek  °ased random network graphs for each of the reddwo
of the hermaphrodit€aenorhabditis Elegans; there is an network graphs. We compute the following seven Fesel
edge between two vertices if the correspondingoreur Metrics on each of the real-world network graphd &me
interact with each other (in the form of chemicaForresponding 100 instances of the random netwoaplts
synapses, gap junctions, and neuromuscular jusjtion generated according to the Configuration model:

(17) Word Adjacency Network (WAN) [40]: This is a (i) Degree Centrality,
network of 112 words (adjectives and nouns, repitese (i) Eigenvector Centrality,
as vertices) in the novel David Copperfield by @&&r (i) Closeness Centrality,
Dickens; there exists an edge between two veriidbs (iv) Betweenness Centrality,
corresponding words appeared adjacent to each ather (v) Clustering Coefficient,

least once in the novel. (vi) Communicability and

(18) Les Miserables Network (LMN) [41]: This is a netkor (vii) Maximal Clique Size.

of 77 characters (nodes) in the novel Les Misesble F h | d network h foe
there exists an edge between two nodes if the or €ach real-world network, we average the valoes

corresponding characters appeared together inaat le€ch of the above node-level metrics obtained ffer 100
one of the chapters in the novel. instances of the random network graphs with idahtiegree
) o sequence. For each node-level metric, we then rditerthe

(19) Copperfield Network (CFN) [41]: This is a network 0 gpearman’s rank-based correlation coefficient betwehe
87 characters in the novel David Copperfield by @ 5,65 incurred for the metric in each of the 2al-world
Dickens; th_ere exists an edge between two veri_icthe network graphs and the average values for the anetri
correspond_lng characters appeared together inast Iecomputed based on the 100 instances of the comeam
one scene in the novel. : .

configuration model-based random network graphs.

(20) Graph and Digraph Glossary Network (GLN) [42]: This Table 2 lists the correlation coefficient valuesasted for
is a network of 72 terms (vertices) that appearethé the seven node-level metrics for each real-worltvaek
glossary prepared by Bill Cherowitzo on Graph angraph and the corresponding configuration modeéthas
Digraph; there appeared an edge between two veifice instances of the random network graphs with an ticein
one of the two corresponding terms were used t88Xp gdegree sequence. As expected, the correlation icieetf
the meaning of the other term. values for the degree centrality are either 0.99 1d0,

(21) Centrality Literature Network (CLN) [43]: This is a vindicating identical degree sequence betweenwibegtaphs.
network of 129 papers (vertices) published on tigct The Communicability metric exhibits a very strongsjive
of centrality in complex networks from 1948 to 1979correlation for all the 24 network graphs. Withpest to three
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TABLE Il
CORRELATION COEFFICIENTVALUES FOR THENODE-LEVEL METRICS BETWEEN THEREAL-WORLD NETWORK GRAPHS
AND THE CORRESPONDINGANSTANCES OFCONFIGURATION MODEL-BASED RANDOM NETWORK GRAPHS

Correlation Coefficient between Real-World Netw@taphs and the

# Network # nodes Ag”(k) Corresponding Configuration model-based Random biét@raphs
DegC EVC CICc BWC LCC Comm. MCS
1 MDN 62 1.04 1.00 0.99 0.99 0.91 0.11 0.99 0.58
2 CFN 58 1.11 1.00 0.99 0.99 0.79 0.29 0.99 0.93
3 HTN 113 1.21 1.00 0.99 0.99 0.90 0.54 0.99 0.85
4 FTC 48 1.21 1.00 0.79 0.82 0.77 0.31 0.82 0.38
5 SSC 24 1.22 0.99 0.67 0.68 0.86 0.24 0.83 0.22
6 PSN 238 1.22 1.00 0.98 0.95 0.83 0.11 0.98 0.42
7 MPN 35 1.23 1.00 0.86 0.83 0.90 0.08 0.87 0.46
8 RHF 217 1.27 1.00 0.87 0.88 0.89 0.00 0.87 0.36
9 UKF 81 1.35 1.00 0.93 0.90 0.86 0.10 0.93 0.67
10 WTM 80 1.38 0.99 0.98 0.98 0.97 0.55 0.98 0.72
11 JBN 198 1.45 1.00 0.90 0.90 0.72 0.30 0.90 0.75
12 KAN 34 1.47 0.99 0.88 0.73 0.87 0.10 0.89 0.61
13 DLN 35 1.49 1.00 0.89 0.87 0.71 0.66 0.90 0.56
14 SPN 92 1.57 1.00 0.96 0.95 0.86 0.31 0.96 0.72
15 MMN 38 1.59 0.99 0.81 1.00 0.82 0.75 0.87 0.80
16 ENN 297 1.68 1.00 0.86 0.72 0.95 0.63 0.86 0.62
17 WAN 112 1.73 1.00 0.93 0.84 0.95 0.67 0.93 0.66
18 LMN 77 1.82 1.00 0.84 0.67 0.84 0.37 0.85 0.81
19 CFN 87 1.83 0.99 0.95 0.64 0.97 0.40 0.95 0.81
20 GLN 72 2.01 1.00 0.79 0.61 0.92 0.65 0.81 0.64
21 CLN 129 2.03 1.00 0.96 0.98 0.91 0.62 0.96 0.86
22 GDN 311 2.24 1.00 0.79 0.88 0.79 0.81 0.81 0.73
23 AKN 138 2.48 1.00 0.95 0.72 0.94 0.33 0.95 0.85
24 ERN 472 3.00 1.00 0.89 0.92 0.78 0.71 0.89 0.75

centrality metrics (EVC, CIC, BWC), we observe &oBY-
very strong positive correlation for all the 24wetk graphs,
with the EVC exhibiting very strong positive coagbn for

20 of the 24 real-world networks and the CIC and W percentage chances of obtaining a very strong ipesit

metrics exhibiting very strong positive correlatifom 17 and
18 of the 24 real-world networks respectively. Thaximal
cligue size (MCS) metric exhibits strong-very stgyquositive
correlation for 17 of the 24 real-world networkeify strongly
positive correlation for 7 real-world networks asttongly
positive correlation for 10 real-world networks)hel local
clustering coefficient (LCC) is the only node-lewaétric for
which we observe a poor correlation between théwedd
network graphs and the corresponding random netgiahs
with identical degree sequence. The level of cati@h is
very weak to at most moderate for 14 of the 24-weald
networks and very strongly positive for just onal+eorld
network.

We summarize the above observations on the bagtseof
percentage chances of finding a real-world netvgodph with
a very strong positive correlation with its corresging
configuration model-based random network graph h(veih
identical degree sequence) as follows: While ther 100%
chance (24 out of 24 networks) for a very strongbgitive
correlation in the case of communicability; for thieree
centrality metrics: the percentage chances of ebwpea very
strongly positive correlation are respectively 8820 out of

Polibits, vol. 53, 2016, pp. 5-21

24 networks) for EVC, 75% (18 out of 24 networks) BWC
and 71% (17 out of 24 networks) for CIC. In the ecasd
maximal clique size and local clustering coeffitjethe

correlation are respectively 29% and 4%.

With respect to the impact of the spectral radatsorfor
node degree on the correlation levels observedhmode-
level metrics (see Figure 14), we observe the tatiom levels
for communicability and the centrality metrics toe b
independent of the spectral radius ratio for nodgrele. The
correlation coefficient values for communicabilignd the
centrality metrics (EVC, CIC and BWC) are consiliehigh
(0.6 or above) for all the 24 real-world networkapins,
irrespective of the values for the spectral radai® for node
degree. In the case of both local clustering coieffit and
maximal clique size, we observe the correlationellevto
increase with increase in the spectral radius rdfonode
degree (i.e., as the real-world networks are irsinggy scale-
free, we observe the correlation levels for thesermetrics to
increase with that of the configuration model-basaddom
network graphs with identical degree sequence).

Table 3 lists the values for the three network{lewetrics
(spectral radius ratio for node degree, degreeebasige
assortativity and algebraic connectivity) for thealrworld
network graphs and the corresponding configuratiadel-
based random network graphs with identical degeggence.
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The value for a network-level metric reported foe tandom
network graph corresponding to a real-world netwgndph is
the average of the values for the metric evaluated100
instances of the random network graphs for thdquéar real-
world network graph. In Table 3, we have coloregl dblls (in
yellow) for which a graph (real-world network graph the
configuration model-based random network graphyisaan
equal or relatively larger value for the networkede metric.
Figure 15 illustrates the distribution of the abotreee
network-level metrics for both the real-world netiwgraphs
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the 100 corresponding instances of the configunatimdel-
based random network graphs with identical degegeence.

From Figure 14, except of a couple of real-worldmek
graphs, we observe the data points for the speetdals ratio
for node degree to lie closer to the diagonal lindjcating
both the real-world network graphs and their cqoesling
configuration model-based random network graphsurinc
comparable values for this metric, with the randoetwork
graphs consistently incurring slightly lower valuies most
cases.

and the corresponding random network graphs. Fah ea \yjiin respect to the degree-based edge assortatiity

network-level metric, we evaluate the proximity tbe data
points to the diagonal line. The more closer aeed#ta points
to the diagonal line, the more closer are the \walioe the
particular network-level metric for both the reabid
network graph and the corresponding random netgyragh.

With respect to the spectral radius ratio for nodgree,
the general trend of the results is that for mbent20 of the
24 real-world network graphs, the spectral radiasorfor
node degree is observed to be just marginally grehan the
average value of the spectral radius ratio for ndelgree of

http://dx.doi.org/10.17562/PB-53-1 17

observe the configuration model-based
graphs to incur negative values for the degreeebasige
assortativity for all the 24 real-world network ghs analyzed
(even though the edge assortativity values werétipagor
1/3rd of the real-world network graphs). Thus,
configuration model-based random network graphshaglely
likely to be dissortative even though their corsting real-
world network graphs are assortative. On the okfaerd, for
real-world network graphs with negative valuestfar degree-
based edge assortativity, we observe the edgetatsgity of
the corresponding configuration model-based randetwork

Polibits, vol. 53, 2016, pp. 5-21
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TABLE Ill
COMPARISON OF THEVALUES FOR THENETWORK-LEVEL METRICS REAL-WORLD NETWORK GRAPHS AND
THE CONFIGURATION MODEL-BASED RANDOM NETWORK GRAPHS WITHIDENTICAL DEGREESEQUENCE

Spectral Radius Ratio Degree-based Edge Algebraic
for Node Degree Assortativity Connectivity
# Network - - -
Real- Config- Real- Config- Real- Config-

World Random  World Random  World Random
1 MDN 1.04 1.03 -0.07 -0.05 1.67 1.66
2 CFN 1.11 1.10 -0.12 -0.07 0.58 0.58
3 HTN 1.21 1.20 -0.12 -0.10 1.00 0.99
4 FTC 1.21 1.18 -0.04 -0.05 0.68 0.87
5 SSC 1.22 1.20 —-0.03 -0.12 0.15 0.44
6 PSN 1.22 1.18 0.22 -0.02 0.53 0.78
7 MPN 1.23 1.23 -0.17  -0.07 1.24 1.57
8 RHF 1.27 1.22 0.10 -0.02 1.71 1.88
9 UKF 1.35 1.30 0.00 —-0.08 1.33 1.79
10 WTM 1.38 1.35 -0.39 -0.23 0.40 0.37
11 JBN 1.45 1.38 0.02 —-0.06 0.57 0.93
12 KAN 1.47 1.55 -0.48 -0.18 0.47 0.56
13 DLN 1.49 1.42 0.07 -0.10 0.27 0.50
14 SPN 1.57 151 0.02 -0.08 0.64 0.84
15 MMN 1.59 1.51 0.04 -0.11 0.45 0.70
16 ENN 1.68 1.71 -0.16 -0.08 0.85 0.81
17 WAN 1.73 1.72 -0.13 -0.11 0.70 0.50
18 LMN 1.82 1.77 -0.16 -0.10 0.21 0.44
19 CFN 1.83 1.77 -0.26 -0.20 0.98 0.70
20 GLN 2.01 1.95 -0.16 -0.10 0.25 0.25
21 CLN 2.03 2.00 -0.20 -0.16 0.73 0.76
22 GDN 2.24 2.01 0.12 -0.02 0.12 0.29
23 AKN 2.48 2.42 -0.35 -0.28 0.33 0.42
24 ERN 3.00 2.50 0.18 -0.03 0.05 0.27

graphs to be relatively larger (i.e., farther adrayn -1). That level metrics for the two graphs. For certain sbogworks,
is, for dissortative real-world network graphs, thenetwork-level metrics such as the global clustedaogfficient
corresponding configuration model-based random otw and the average path length were observed to sercio that
graphs are likely to be relatively less dissor@atiwith respect of the equivalent random networks and much differfen
to connectivity, we claim the configuration modelsed others. The difference in the values for the nekwevel
random network graphs are more likely to exhiblatieely —metrics is attributed to the sociological structarel influence
higher values for algebraic connectivity comparedtlieir among nodes not being captured in the random nkéweren
corresponding real-world network graphs (as is pleskfor though they are modeled to have an identical desggaence

16 of the 24 real-world network graphs). to that of the social networks [48]. The authors [49]
conclude that global network-level metrics canroelpected
VI. RELATED WORK to be even closely reproduced in random networkpltga

e‘generated with local constraints (such as the @egreserving
randomization). To corroborate this statement, eegr
preserved randomized versions of the Internet eatlekel of

S . e ASs (AS - Autonomous Systems) are observed to adeeer

network graph is just an artifact of the graph‘aerent number ofk-shells [50]. Ak-shell is the largest sub graph of a

structural properties or properties that are uni the . o
nodes MoﬂtepCarIo-base?j rrr:ethods [47] were ea?:;eed to graph such that the degree of every vertex isast kewithin
' the sub graph [51]. The distribution of tkeshells has been

generate random network graphs with identical (Egreobserved to be dependent on the connectivity ohtudes in
sequence as that of the real-world networks. Howethese

. S the network and hence the number leghells has been
methods were found to require a significant numioér erceived to be a network-level metric [50]
iterations (significantly larger than the numberedfes in the P '
real-world graphs) as well as are prone to intradycelf- Random networks generated from the traditional Eileh
loops and multi-edges. The work in [48] formed Hasis for have been observed to incur lower values for theallo
modeling real-world social networks as random nekwo clustering coefficient (proportional to the prodapiof a link
graphs and evaluating the node-level metrics artdiark- between any two nodes in the ER model) [5]; theetation

Degree preserving randomization [46] has been wid
considered a technique of assessing whether tohes/ébr the
node-level metrics and network-level metrics fareal-world
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Fig. 15. Distribution of the Values for the Netwerkvel Metrics for Real-
World Network Graphs and the Configuration Modesé@d Random
Network Graphs with Identical Degree sequence.

coefficient analysis studies in this paper alsacat# that the
local clustering coefficient of the configurationodel-based
random network graphs do not correlate well wittsthof the
corresponding real-world network graphs with anntasl
degree sequence. In [52], the authors proposednampaph
models whose local clustering coefficient is agédaas those
observed for real-world networks as well as gereeagbower-
law degree pattern [4] that could be controllechgstertain
operating parameters.

In another related study [53], degree-preservediaan

effectively control real-world networks. In a reddtstudy, it
was observed that the degree sequence of a rell-wo
network was alone sufficient to generate a randetwaork
whose distribution for the control centrality [5&]a node was
identical to that of the real-world network. The ntol
centrality of a node [55] in a directed weightedwuek graph

is a quantitative measure of the ability of a singbde to
control the entire network.

Even though several such studies have been contoote
degree-preserving randomization of real-world nekscand
analysis of the resulting random networks, no cetecr
information is available on the impact of the idealt degree
sequence on the centrality metrics (as well ather node-
level and network-level metrics considered in {hégper such
as communicability, maximal clique size, degreecblasdge
assortativity, algebraic connectivity and spectaius ratio
for node degree) for the real-world social netwoaksl the
equivalent degree-preserved random networks. We hav
resort to a correlation-based study as the didtabiprofiles
for a node-level metric in the real-world netwonkagh and
the corresponding degree-preserved random netwaghgs
not sufficient to study the similarity in the rangi of the
vertices in the two graphs with respect to the imefro the
best of our knowledge, ours is the first such study
comprehensively evaluate the similarity in the ragkof the
vertices between the real-world network graphs dnel
corresponding degree-preserved random network grafith
respect to the centrality metrics and maximal digize as
well as to use the Spearman's rank-based cormelateasure
for correlation study in complex network analysis.

VII. CONCLUSIONS ANDFUTURE WORK

The results from Table 2 indicate that the rankafighe
vertices in a real-world network graph with respéxtthe
centrality metrics and communicability is more likéo be the
same as the ranking of the vertices in a randomarktgraph
(generated according to the configuration modelhwéin
identical degree sequence) as a very strongly ipesit
correlation (correlation coefficient values of @B above) is
observed for a majority of the real-world netwoeksalyzed.
On the other hand, we observe that an identicalregeg
sequence is not sufficient to increase the chaotebtaining
an identical ranking of the vertices in a real-worietwork
graph and its corresponding degree-preserved ramébnork

networks of a certain number of nodes and edges wedraph with respect to maximal clique size and latastering

observed to contain more feed forward loops (FRkkgn
compared to the ER-random networks of the same auwib

coefficient. Thus, the maximal clique size and ladastering
coefficient are node-level metrics that depend mmmethe

nodes and edges; but the number of FFLs in theedegrnetwork structure rather than on the degree seguenc

preserved random networks has been observed to
significantly lower than the corresponding
biological networks. Degree preserving randomizatigas
successfully applied in [54] to determine that wusg and

beThe results from Table 3 indicate that the spectrdius

realddor ratio for node degree is likely to be more for alweorld

network graph vis-a-vis a random network graph wati
identical degree sequence. On the other hand, serad that

8198-S6£T NSSI

modularity do not the number of driver nodes needed tall the degree-preserved random network graphs rgtte
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according to the configuration model are dissoréati
irrespective of the nature of assortativity of teresponding
real-world network graphs; nevertheless, the ledl
dissortativity is relatively less for degree-preser random
network graphs generated for real-world networlas Hie also
dissortative. We observe that a random networklgiamore
likely to exhibit higher values for algebraic couotiety
compared to the real-world network graph with whidmas an
identical degree sequence. As part of future wask plan to
run the community detection algorithms on the apnfation

model generated random network graphs and compare {22!

modularity of the communities with those detectedthe
corresponding real-world network graphs with anntdsl
degree sequence.
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