
 

   

Abstract—The focus of research in this paper is to investigate 
whether a random network whose degree sequence of the vertices 
is the same as the degree sequence of the vertices in a real-world 
network would exhibit values for other analysis metrics similar to 
those of the real-world network. We use the well-known 
Configuration Model to generate a random network on the basis 
of the degree sequence of the vertices in a real-world network 
wherein the degree sequence need not be Poisson-style. The 
extent of similarity between the vertices of the random network 
and real-world network with respect to a particular metric is 
evaluated in the form of the correlation coefficient of the values 
of the vertices for the metric. We involve a total of 24 real-world 
networks in this study, with the spectral radius ratio for node 
degree (measure of variation in node degree) ranging from 1.04 
to 3.0 (i.e., from random networks to scale-free networks). We 
consider a suite of seven node-level metrics and three network-
level metrics for our analysis and identify the metrics for which 
the degree sequence would be just sufficient to generate random 
networks that have a very strong correlation (correlation 
coefficient of 0.8 or above) with that of the vertices in the 
corresponding real-world networks. 
 

Index Terms—Configuration model, degree sequence, 
correlation, random network, real-world network.  
 

I. INTRODUCTION 

ANDOM networks are a class of complex networks in 
which there could be link between any two nodes in the 

network. The Erdos-Renyi (ER) model [1] is a commonly 
used theoretical model for generating random networks. The 
ER model-based random networks are characteristic of 
exhibiting a Poisson-style [2] degree sequence such that the 
degree of any vertex is typically very close to the average 
degree of the vertices in the network (i.e., the variation in 
node degree is typically low). However, the degree sequence 
of most of the real-world networks rarely follows a Poisson-
style distribution; there usually exists an appreciable amount 
of variation in node degree [3] and there could also be 
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preferential attachment with selected nodes rather than 
arbitrary attachment [4]. Figure 1 shows the degree sequence 
of the well-known real-world networks with N nodes and L 
edges and the corresponding ER model-based random 
networks generated with a probability of link value of 
2L/{ N(N–1)} [5]. Due to the inherent differences in the nature 
of the degree sequence, the values for several node-level 
metrics and network-level metrics exhibited by a ER model-
based random network with a certain number of nodes and 
edges are likely to be independent (correlation coefficient is 
close to 0) to that of the metric values exhibited by a real-
world network with the same number of nodes and edges [5]. 

 
Karate Net. (34 nodes, 78 edges) 

 
Word Adj. Net. (112 nodes, 425 edges) 

 

 
Cit. Net. (311 nodes, 611 edges) 

 
Airport Net. (332 nodes, 2126 edges) 

Fig. 1.  Degree Sequence of Real-World Networks and the Erdos-Renyi (ER) 
Model-based Random Networks with the Same Number of Nodes and Edges. 
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In this research, we explore whether a random network 
whose degree sequence matches to that of a real-world 
network could exhibit similar values for several critical node-
level and network-level metrics as that of the real-world 
network. In this pursuit, we chose to use the well-known 
Configuration Model [6] that takes as input the degree 
sequence of the vertices in any known network and generates a 
random network with a similar degree sequence. As can be 
seen in Section 5 of this paper, the correlation coefficient 
between the degrees of the vertices in the real-world network 
and the corresponding random network (generated using the 
Configuration Model) is 0.99 or above. We use a suite of 
seven node-level metrics and three network-level metrics to 
evaluate the similarity of each of the real-world network 
graphs and the corresponding Configuration Model-based 
random network graphs.  

The node-level metrics analyzed are: Degree Centrality, 
Eigenvector Centrality [7], Betweenness Centrality [8], 
Closeness Centrality [9], Local Clustering Coefficient [10], 
Communicability [11] and Maximal Clique Size [12]; the 
network-level metrics analyzed are: Spectral Radius Ratio for 
Node Degree [3], Assortativity Index [13] and Algebraic 
Connectivity [5]. We use a total of 24 real-world network 
graphs (with different levels of variation in node degree) for 
this study. We run the appropriate algorithms to determine the 
individual node-level and network-level metrics on both the 
real-world graphs and the corresponding random graphs with 
identical degree sequence. We identify the levels of 
correlation based on the correlation coefficient values 
observed for each node-level metric in each of the real-world 
network graphs and their corresponding Configuration Model-
based random network graphs as well as based on the 
percentage relative difference between the values for each 
network-level metric for the two graphs.  

The rest of the paper is organized as follows: In Section 2, 
we review the Configuration Model for generating random 
networks and present a pseudo code for the implementation of 
the same. In Section 3, we introduce the node-level and 
network-level metrics evaluated in this paper and briefly 
describe the appropriate procedures to determine each of 
them. Section 4 reviews the Spearman's rank-based correlation 
measure [14] used in the analysis of the real-world networks. 
Section 5 introduces the real-world networks studied in this 
paper and analyzes the results for the levels of correlation for 
the node-level metrics and network-level metrics obtained on 
the real-world networks and the corresponding random 
networks generated using the Configuration Model based on 
the degree sequence of the real-world networks. Section 6 
discusses related work on degree preserving randomization of 
real-world networks. Section 7 concludes the paper and 
outlines plans for future work. Throughout the paper, we use 
the terms 'node' and 'vertex', 'link' and 'edge', 'network' and 
'graph' interchangeably. They mean the same.  

II.  CONFIGURATION MODEL 

The Configuration Model [6] is one of the well-known 
models for generating random networks. Its unique 
characteristic is to take the degree sequence of a given 
network as input and generate a random network that has the 
same degree sequence as that of the input network. The degree 
sequence input to the model need not be Poisson-style - the 
typical pattern of degree sequence of vertices in random 
networks generated according to the well-known Erdos-Renyi 
(ER) model [1]. Thus, the Configuration Model could be used 
to generate random networks whose degree sequence could 
correspond to any network of analytical interest. In this paper, 
we use the Configuration Model to generate random networks 
whose degree sequence matches to that of real-world networks 
and we further evaluate the values of the node-level metrics 
and network-level metrics on both these networks. We are 
interested in exploring whether a random network whose 
degree sequence resembles to that of a real-world network 
exhibits similar values for other critical node-level and 
network-level metrics. 

We simulate the generation of a random network under the 
Configuration Model as follows. Let N and L be respectively 
the total number of nodes and edges in a chosen real-world 
network. Let D be the set of degrees of the vertices (one entry 
per vertex) in the real-world network. We set up a list LS of 
vertices - the number of entries for the ID of a vertex in this 
list is the degree of the vertex in the input set D. After the list 
LS is constructed, we shuffle the entries in the list. We do the 
shuffling from the end of the list. In each iteration of shuffling, 
the ID of a vertex in a particular entry in the list at index 
i (|LS| ≥ i ≥ 2) is swapped with the ID of a vertex in a randomly 
chosen entry at index j (j < i). We now generate the adjacency 
matrix Aconf (each entry is initialized to zero) for the 
configured graph as follows. We consider the vertex IDs from 
the end of the shuffled list LS. For each vertex uID at index u 
(|LS| ≥ u ≥ 2) considered, we attempt to pair it with a vertex 
vID at index v (v < u) such that Aconf[uID][vID] = 0 and uID is 
not the same as vID as well as make sure the entry at index v 
has not been already paired with another vertex. To keep track 
of the latter, we set the entries of the shuffled list LS to –1 if 
the entry is already considered either as an uID or a vID. If a 
pair (uID, vID) meets the above criteria, we set the entries 
Aconf[uID][vID] = 1 and Aconf[uID][vID] = 1. We proceed the 
iterations until the index u equals 1; by this time, all entries in 
the shuffled list LS should have been set to –1. 

The above implementation procedure for the Configuration 
model does not generate any self-loop or duplicate edge, as we 
make sure we are not pairing a vertex with a particular ID at 
an index u to a vertex with the same ID at another index v as 
well as we keep track of the edges that have been already 
configured across all the iterations. To test whether a pair 
(uID, vID) already have an edge between them, we have to 
just check the entries for uID or vID in Aconf. Thus, each 
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iteration (lines 9–17) is likely to take at most O(N) attempts 
before a link (uID, vID) is configured. The total number of 
iterations involving lines 5-8 and lines 9-17 is the sum of the 
degrees of the vertices in the chosen real-world network. Note 
that the sum of the degrees of the vertices in a graph is equal 
to 2L/N where L is the number of links and N is the number of 
nodes. Hence, the overall time-complexity of the 
implementation of the Configuration Model described in 
Figure 2 is O(N × 2L/N) = O(L).  

Figure 3 presents an example to illustrate the generation of 
a random graph that has the same degree sequence as that of 
an input graph. The example walks through the sequence of 
iterations illustrating the execution of the pseudo code given 
in Figure 2.  

We show the contents of the list LS at the time of 
initialization (before and after shuffling) as well as during 
each iteration (before and after the configuration of an edge). 

Whenever a vertex pair is picked up for configuring an 
edge, we replace their entries with –1. We also show sample 
scenarios wherein we reject the choice of a vID if it is same as 
that of the uID (shown with a  in iterations 3 and 6) as well 
as show a sample scenario wherein we reject the choice of a 
vID (shown with a  in iteration 5) to avoid adding a 
duplicate edge for the pair (uID, vID). The final configured 
graph has exactly 8 edges and degree sequence as that of the 
input graph. However, the edges in the input graph do not 
match to that of the edges in the final configured graph. As a 

result, it is not clear whether several other node-level metrics 
(like the centrality measures, clustering coefficient, 
communicability, etc) and network-level metrics (like edge 
assortativity, algebraic connectivity) would be the same for the 
two graphs. This is the motivation for the research conducted 
in the rest of the paper. 

III.  NODE-LEVEL METRICS AND NETWORK-LEVEL METRICS 

Our objective in this paper is to identify the node-level 
metrics and network-level metrics for which the degree 
sequence would be sufficient to observe a very strong 
correlation between a chosen real-world network graph and its 
corresponding configuration model generated random network 
graph. In this pursuit, we study the following node-level 
metrics (eigenvector centrality, closeness centrality, 
betweenness centrality, local clustering coefficient, 
communicability and maximal clique size) and network-level 
metrics (spectral radius ratio for node degree, edge 
assortativity and algebraic connectivity).  

A. Eigenvector Centrality 

The eigenvector centrality (EVC) of a vertex is a measure 
of the degree of the vertex as well as the degree of its 
neighbors. The EVC of the vertices in a graph is obtained by 
computing the principal eigenvector of the adjacency matrix 
(A) of the graph. In this paper, we use the Power-Iteration 

 

Fig. 2.  Pseudo Code for the Implementation of the Configuration Model to Generate Random Graph according to a given Degree sequence. 
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algorithm [15] to determine the principal eigenvector/EVC of 
the vertices. This algorithm is briefly explained as follows.  

We start with a unit-column vector of all 1s X0 = [1 1 1 1 ... 
1] as the estimated principal eigenvector of the graph where 
the number of 1s is the number of vertices in the graph. In the 
(i+1)th iteration, the principal eigenvector Xi+1 = AXi / ||AXi|| 
where ||...|| is the normalized value of the product vector 
obtained by multiplying the adjacency matrix A and the 
column vector Xi. 

We continue the iterations until the normalized value of the 
product vector (as indicated above) does not change beyond a 
certain level of precision for subsequent iterations. There 
exists an entry for each of the vertices in the principal 
eigenvector and the values in these entries correspond to the 
EVC of the vertices.  

Figure 4 illustrates an example to compute the eigenvector 
centrality of the vertices in a graph using the Power-iteration 
algorithm. We stop when the normalized value (in the 
example, it is 2.85) of the product of the adjacency matrix and 
the principal eigenvector converges and does not change 
beyond the second decimal. Vertex 2 has the highest EVC 
followed by vertex 6. We notice that though the three vertices 
1, 3 and 4 have the same degree, they differ in their EVC 
values: Both the neighbors of Vertex 3 are vertices with higher 
EVC - as a result, the EVC of vertex 3 is relatively higher than 
that of vertices 1 and 4. Vertex 1 has a higher EVC than 
vertex 4 (vertices 1 and 4 are also connected to each other) 
because vertex 1 is connected to a vertex with a higher EVC 
(vertex 2) while vertex 4 is connected to a vertex (vertex 5) 
with a relatively lower EVC. 

     

     

     
Fig. 3.  Example Execution of the Implementation of the Configuration Model to Generate Random Graph according to a given Degree sequence. 
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B. Closeness Centrality 

The closeness centrality (ClC) [9] of a vertex is the inverse 
of the sum of the shortest path distances (number of hops) 
from the vertex to the rest of the vertices in the graph. The 
ClC of a vertex is determined by running the Breadth First 
Search (BFS) algorithm [16] on the vertex and determining a 
shortest path tree rooted at the vertex. One can then easily 
determine the sum of the number of hops from the vertex to 
the other vertices in the shortest path tree and the closeness 
centrality of the vertex is the inverse of this sum. Figure 5 
illustrates an example to compute the closeness centrality of 
the vertices in a graph. We show the shortest path trees rooted 
at each vertex and compute the number of hops from the root 
to the rest of the vertices in these trees to arrive at the distance 
matrix, contributing to the computation of the closeness 
centrality. 

C. Betweenness Centrality 

The betweenness centrality (BWC) [8] of a vertex is a 
measure of the fraction of the shortest paths between any two 
vertices that go through the particular vertex, summed over all 
pairs of vertices. The number of hops for a vertex from the 
root of a shortest path tree indicates the level of the vertex on 
the tree. The number of shortest paths, denoted spjk, from a 
vertex j to a vertex k at level l (l > 0) is the sum of the number 
of shortest paths from j to each of the neighbors of k (in the 
original graph) that are at level l-1 in the shortest path tree 

rooted at j. For any vertex i, the number of shortest paths from 
vertex j to vertex k that go through i, denoted spjk(i), is the 
maximum of the number of shortest paths from vertex j to 
vertex i and the number of shortest paths from vertex k to 
vertex i. Quantitatively, the BWC of a vertex i is defined as 

∑
≠≠

=
ikj jk

jk

sp

isp
iBWC

)(
)( . 

Figure 6 shows an example illustrating the computation of the 
BWC of the vertices in a graph. 

D. Local Clustering Coefficient 

The local clustering coefficient (LCC) [10] of a vertex in a 
graph is a measure of the probability that any two neighbors of 
the vertex are connected. Quantitatively, the local clustering 
coefficient of a vertex is the ratio of the actual number of links 
between the neighbors of the vertex divided by the maximum 
possible number of links between the neighbors of the vertex. 
For a vertex i with degree ki, if there are a total of l links 
connecting the neighbors of i, then the clustering coefficient of 
i is 

2/)1( −ii kk

l . 

Figure 7 shows an example of computing the local clustering 
coefficient of the vertices of a graph. 

  
 

  
Fig. 4.  Example to Illustrate the Execution of the Power-Iteration Algorithm to Determine the Eigenvector Centrality of the Vertices in a Graph. 
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Fig. 6.  Example to Illustrate the Computation of the Betweenness Centrality 
of the Vertices. 

 

 

Fig. 7.  Example to Illustrate the Computation of the Clustering Coefficient 
of the Vertices. 

E. Communicability 

The communicability (COMM) [11] of a vertex is the 
weighted sum of the number of walks of lengths l = 1, 2, 3, ... 
from that vertex to each of the other vertices in the graph, with 
the weight being 1/l!. A walk from vertex r to s involves a 
sequence of intermediate vertices that may or may not appear 
more than once. That is, a walk could involve cycles. The 
communicability of a vertex captures the ease with which a 
vertex can disseminate information to the rest of the vertices 
through various walks (the shortest paths are given more 
weights though). Though the definition of the 
communicability of a vertex could be represented 
mathematically as in equation (1), we use the closed form 
equation (2) to quantitatively determine the communicability 
of the vertices in a graph [11]. (Al)rs represents the number of 
walks of length l between two vertices r and s. Note that for a 
graph of n vertices (where V is the set of vertices, |V| = n), 
there are n eigenvalues (denoted as �j where j = 1, 2, ..., n) and 
the corresponding eigenvectors (denoted as �j, where j = 1, 2, 
..., n). �j(r) and  �j(s) denotes the values for vertices r and s in 
the eigenvector associated with eigenvalue �j. We compute the 

   

  

Fig. 5.  Example to Illustrate the Computation of the Closeness Centrality of the Vertices. 

10Polibits, vol. 53, 2016, pp. 5–21 http://dx.doi.org/10.17562/PB-53-1

Natarajan Meghanathan
IS

S
N

 2395-8618



 

eigenvalues and eigenvectors of the adjacency matrix of a 
graph using the JAMA package [17].  
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F. Maximal Clique Size 

A clique is a subset of the vertices of a graph such that 
there exists an edge between any two vertices in this set. Each 
vertex in a graph is part of at least one clique, as even an edge 
could be considered a clique of size 2. We refer to the 
maximal clique for a vertex as the largest size clique that the 
vertex is part of and call the size of the corresponding clique 
as the maximal clique size [12]. We refer to the maximum 
clique size of the entire graph as the largest of the maximal 
clique size (MCS) values of the vertices [18]. As observed in 
the example shown in Figure 9, one or more vertices (vertices 
4, 5, 6, 7) could be part of a maximum clique size, while for 
the rest of the vertices (vertices 1, 2 and 3), the maximal 
clique size could be less than maximum clique size. We use 
the extended version of an exact algorithm by Pattabiraman et 
al [18] to determine the maximal clique size for each vertex. 
The algorithm takes a branch and bound approach of 
exploring all possible candidate cliques that a vertex could be 
part of, but searching through only viable candidate sets of 
vertices whose agglomeration has scope of being a clique of 
size larger than the currently known clique found as part of the 
search. 

Figure 8 presents the communicability of the vertices for 
the same example graph (of six vertices) used in Figures 4, 5 
and 7. The figure also lists the six eigenvalues and the 
corresponding eigenvectors that are used in the calculations of 
the communicability of the vertices (according to equation 2). 
We observe vertex 2, followed by vertex 6, to have the largest 
values for communicability. In general, vertices having a 
higher degree and part of a closely-knit community (vertices 

2, 3, 5 and 6 would have formed a clique had there been an 
edge 3-5). Notice that between vertices 5 and 6 (both of which 
have degree 3), vertex 6 has a slightly larger communicability, 
attributed to the connection of vertex 6 to vertex 3 that is in 
turn connected to vertex 2 (whereas vertex 5 is connected to 
vertex 4 that is not connected to vertex 2, but instead 
connected to a low-degree vertex, vertex 1). Likewise, 
between vertices 1, 3 and 4 (all of which have degree 2), 
vertex 3 has the highest communicability as it is connected to 
vertices 2 and 6 - both of which have a high communicability. 

G. Spectral Radius Ratio for Node Degree 

The spectral radius of a graph G, denoted �sp(G), is the 
principal eigenvalue (largest eigenvalue) of the adjacency 
matrix of the graph. If kmin, kavg and kmax are the minimum, 
average and maximum node degrees, then kmin ≤ kavg ≤ �sp(G) 
≤ kmax [19]. As one can see from this relationship, the spectral 
radius could be construed as a measure of the variation in the 
degree of the vertices in a graph. In [3], the notion of spectral 
radius ratio for node degree was proposed to evaluate the 
variation in node degree on a uniform scale, without the need 
for explicitly computing the variance/standard deviation of the 
vertices in the graph. The spectral radius ratio for node degree 
is the ratio of the spectral radius of the graph and the average 
degree of the vertices in the graph: �sp(G)/kavg. According to 
the above formulation, the spectral radius ratio for node 
degree values are always 1.0 or above; the farther the value is 
from 1.0, the larger the variation in node degree among the 
vertices of the graph. Figure 10 presents an example to 
illustrate the relationship kmin ≤ kavg ≤ �sp(G) ≤ kmax and the 
spectral radius ratio for node degree. As this ratio is closer to 
1.0, we could construe that the variation in node degree is very 
less; we can see 50% (three out of six) of the vertices have 
degree 2 and one-third (two out of six) of the vertices have 
degree 3, leading to an average degree of 2.67. 

 

Fig. 8.  Example to Illustrate the Computation of the Clustering Coefficient 
of the Vertices. 

 

Fig. 9.  Example to Illustrate the Maximal Size Clique of the Vertices. 

 

Fig. 10.  Example to Illustrate the Relationship between Spectral Radius and 
Node Degree. 
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H. Edge Assortativity 

The assortativity of the edges in a graph is a measure of the 
similarity of the end vertices of the edges based on any notion 
of node weights [13]. In this research, we use node degree as 
the measure of node weight. Quantitatively, edge assortativity 
is essentially the correlation coefficient of the node weights of 
the end vertices. If the correlation coefficient is close to 1.0, -
1.0 and 0.0 respectively, we could say the end vertices of the 
edges are respectively maximally similar, maximally different 
and independent to each other based on the notion of node 
weights considered. Figure 11 presents an example to 
calculate edge assortativity in a graph, wherein the ids of the 
vertices constituting an edge are considered as an ordered pair 
(i, j) such that i < j. We observe the correlation coefficient 
(edge assortativity) to be close to 0.0, indicating that the 
pairing of the vertices that constitute the edges of the graph is 
independent of the degrees of the end vertices constituting 
these edges. ER model-based Random graphs [1] exhibit an 
edge assortativity close to 0 indicating the arbitrary pairing of 
the vertices to constitute the edges. 

 

Fig. 11. Example to Illustrate the Calculation of Edge Assortativity as a 
Correlation Coefficient of the Node Weights of the End Vertices. 

I. Algebraic Connectivity 

The algebraic connectivity of a graph is a quantitative 
measure of the connectivity of the graph capturing the 
vulnerability of a graph for disconnection as a function of the 
number of vertices in the graph as well as the topology of the 
graph [20]. The algebraic connectivity of a graph is bounded 
above by the traditional connectivity of the graph, defined as 
the minimum number of vertices that need to be removed to 
disconnect the graph into two or more components [21]. 
However, the traditional connectivity measure (an integer 
corresponding to the minimum number of vertices to be 
removed for disconnection) cannot capture the relative 
strength of the graph with respect to node removals. For two 
graphs having the same value of traditional connectivity, the 

algebraic connectivity could be still different [21]. The larger 
the value of the algebraic connectivity, the stronger the graph 
– only the removal of certain nodes could disconnect the 
graph (and not the removal of any node). 

Quantitatively, for a connected graph, the algebraic 
connectivity is measured to be the second smallest eigenvalue 
of the Laplacian Matrix (L) of a graph [22]. In addition, for a 
connected graph, the smallest eigenvalue of the Laplacian 
Matrix of the graph is always 0. In general, the number of 
zeros among the eigenvalues of the Laplacian Matrix of a 
graph indicates the number of connected components of the 
graph [23]. The entries in the Laplacian Matrix of a graph are 
defined as follows [23]: 

 L(i, j) = degree(i)     if i = j 
             = -1               for i ≠ j and edge (i, j) exists 
           = 0                for i ≠ j and edge (i, j) does not exist 

 

Fig. 12. Example to Illustrate the Determination of Algebraic Connectivity 
and its Use a Measure of Evaluation of the Relative Strengths of Two Graphs 
with the Same Traditional Connectivity. 

Figure 12 presents examples to determine the Laplacian 
Matrices of two graphs and compute the sequence of 
eigenvalues for the two matrices. There is only one zero 
among the eigenvalues of the Laplacian matrices of both the 
graphs, indicating that both the graphs are connected and all 
the vertices form a single connected component. Graph-2 is 
relatively stronger than Graph-1 due to the presence of an 
additional edge 2-4 in the former. 

Though both the graphs have a traditional connectivity of 2 
(both the graphs get disconnected with the removal of vertices 
2 and 5 in each of them), the removal of any two vertices from 
the graph is relatively more likely to lead to a disconnection in 
Graph-1 compared to Graph-2. One could notice that the 
removal of vertices 1 and 5 could disconnect vertex 4 from the 
rest of the vertices in Graph-1; on the other hand, the removal 
of vertices 1 and 5 would not disconnect vertex 4 from the rest 
of the vertices in Graph-2. 
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IV.  SPEARMAN'S RANK-BASED CORRELATION MEASURE 

We resort to a rank-based correlation coefficient study in 
this paper as we want to explore the level of similarity 
between the ranking of the vertices (with respect to a node-
level metric) in a real-world network graph and the 
corresponding degree-preserved random network graph. In 
this pursuit, we choose to use the Spearman's rank-based 
correlation measure (SCC). SCC is a measure of how well the 
relationship between two datasets (variables) can be assessed 
using a monotonic function [14]. To compute the SCC of two 
datasets (say, A and C), we convert the raw scores Ai and Ci 
for a vertex i to ranks ai and ci and use formula (3) shown 
below, where di = ai - ci is the difference between the ranks of 
vertex i in the two datasets. We follow the convention of 
assigning the rank values from 1 to n for a graph of n vertices 
with vertex IDs that are also assumed to range from 1 to n. To 
obtain the rank for a vertex based on the list of values for a 
node-level metric, we first sort the values (in ascending order). 
If there is any tie, we break the tie in favor of the vertex with a 
lower ID; we will thus be able to arrive at a tentative, but 
unique, rank value for each vertex with respect to the metric. 
We determine a final ranking of the vertices as follows: For 
vertices with unique value of the node-level metric, the final 
ranking is the same as the tentative ranking. For vertices with 
an identical value for the node-level metric, the final ranking 
is assigned to be the average of their tentative rankings. Figure 
13 illustrates the computation of the tentative and final ranking 
of the vertices based on their BWC values in the actual graph 
and the configuration model-based random network graph 
generated in Figure 3 as well as illustrates the computation of 
the Spearman's rank-based correlation coefficient. 
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In Figure 13, we observe ties among vertices with respect 
to BWC in both the actual graph and the corresponding 
configured graph. The tentative ranking is obtained by 
breaking the ties in favor of vertices with lower IDs. In the 
case of the actual graph, we observe both vertices 1 and 6 to 
have an identical BWC value of 0.83 each and their tentative 
rankings are respectively 3 and 4 (ties for tentative rankings 
are broken in favor of vertices with lower IDs); the final 
ranking (3.5) for both these vertices is thus the average of 3 
and 4. A similar scenario could be observed for the configured 
graph: vertices 1 and 3 have an identical BWC value of 0.33 
each and their tentative rankings are respectively 2 and 3; the 
final ranking (2.5) for both these vertices is thus the average of 
2 and 3. The Spearman's rank-based correlation coefficient 
with respect to BWC for the actual graph and configured 
graph in Figure 13 is observed to be 0.87, indicating a very 
strong positive correlation. A ranking of the vertices with 

respect to BWC in the actual graph is: 3, 4, 1-6 (tie), 5 and 2; 
whereas the ranking of the vertices with respect to BWC in the 
configured graph is: 4, 1-3 (tie), 6, 5 and 2. 

 
 

 

Fig. 13. Example to Illustrate the Computation of the Spearman's Rank-based 
Correlation Coefficient with respect to BWC on the Actual Graph and 
Configured Graph of Figure 3. 

 

The correlation coefficient values obtained for all the node-
level metrics range from -1 to 1. Correlation coefficient values 
closer to 1 for a node-level metric indicate that identical 
degree sequence for the real-world network graph and the 
configuration model based random network graph is sufficient 
to generate an identical ranking of the vertices in the two 
graphs with respect to the metric. Correlation coefficient 
values closer to -1 for a node-level metric indicate that 
identical degree sequence between the real-world network 
graph and the configuration model based random network 
graph is sufficient to generate a ranking of the vertices in the 
real-world network graph that is the reversal of the ranking of 
the vertices in the corresponding configuration model-based 
random network graph (i.e., a highly ranked vertex with 
respect to the particular node-level metric in the real-world 
network graph is ranked much low with respect to the same 
metric in the corresponding random network graph and vice-
versa).  Correlation coefficient values closer to 0 indicate no 
correlation (i.e., an identical degree sequence alone is not 
sufficient to generate an identical ranking of the vertices with 
respect to the node-level metric in the real-world network 
graph and the corresponding random network graphs). We 
will adopt the ranges (rounded to two decimals) proposed by 
Evans [23] to indicate the various levels of correlation, shown 
in Table 1. The color code to be used for the various levels of 
correlation is also shown in this table.  
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V. REAL-WORLD NETWORKS 

We analyze a total of 24 real-world networks with different 
levels of variation in node degree. The spectral radius ratio for 
node degree (�sp(k)) for these networks varies from 1.04 to 
3.0, with the type of networks ranging from random networks 
to scale-free networks [4]. All networks are modeled as 
undirected networks. A brief description of the 24 real-world 
networks (a three-character abbreviation for each of these 
networks is indicated in the parenthesis), in the increasing 
order of their spectral radius ratio for node degree, is as 
follows: 

(1) Macaque Dominance Network (MDN) [24]: This is a 
network of 62 adult female Japanese macaques 
(monkeys; vertices) in a colony, known as the 
“Arashiyama B Group”, recorded during the non-mating 
season from April to early October 1976. There exists an 
edge between two vertices if the one of the two 
corresponding macaques exhibited dominance over the 
other macaque.  

(2) College Fraternity Network (CFN) [25]: This is a 
network of 58 residents (vertices) in a fraternity at a 
West Virginia college; there exists an edge between two 
vertices if the corresponding residents were seen in a 
conversation at least once during a five day observation 
period. 

(3) Hypertext 2009 Network (HTN) [26]: This is a network 
of the face-to-face contacts of 113 attendees (vertices) of 
the ACM Hypertext 2009 conference held in Turin, Italy 
from June 29 to July 1, 2009. There exists an edge 
between two vertices if the corresponding conference 
visitors had face-to-face contact that was active for at 
least 20 seconds. 

(4) Flying Teams Cadet Network (FTC) [27]: This is a 
network of 48 cadet pilots (vertices) at an US Army Air 
Forces flying school in 1943 and the cadets were trained 

in a two-seated aircraft. There exists an edge between 
two vertices if at least one of the two corresponding 
pilots has indicated the other pilot as his/her preferred 
partner with whom s/he likes to fly during the training 
schedules. 

(5) Sawmill Strike Communication Network (SSC) [28]: 
This is a network of 24 employees (vertices) in a sawmill 
who planned a strike against the new compensation 
package proposed by their management. There exists an 
edge between any two vertices if the corresponding 
employees mutually admitted (to an outside consultant) 
discussing about the strike with a frequency of three or 
more (on a 5-point scale). 

(6) Primary School Contact Network (PSN) [29]: This is a 
network of children and teachers (vertices) used in the 
study published by an article in BMC Infectious 
Diseases, 2014. There exists an edge between two 
vertices if the corresponding persons were in contact for 
at least 20 seconds during the observation period. 

(7) Mexican Political Elite Network (MPN) [30]: This is a 
network of 35 Mexican presidents and their close 
collaborators (vertices); there exists an edge between two 
vertices if the corresponding two people have ties that 
could be either political, kinship, friendship or business 
ties. 

(8) Residence Hall Friendship Network (RHF) [31]: This is 
a network of 217 residents (vertices) living at a residence 
hall located on the Australian National University 
campus. There exists an edge between two vertices if the 
corresponding residents are friends of each other. 

(9) UK Faculty Friendship Network (UKF) [32]: This is a 
network of 81 faculty (vertices) at a UK university. 
There exists an edge between two vertices if the 
corresponding faculty are friends of each other. 

(10) World Trade Metal Network (WTM) [33]: This is a 
network of 80 countries (vertices) that are involved in 
trading miscellaneous metals during the period from 
1965 to 1980. There exists an edge between two vertices 
if one of the two corresponding countries imported 
miscellaneous metals from the other country. 

(11) Jazz Band Network (JBN) [34]: This is a network of 198 
Jazz bands (vertices) that recorded between the years 
1912 and 1940; there exists an edge between two 
vertices if the corresponding bands had shared at least 
one musician in any of their recordings during this 
period. 

(12) Karate Network (KAN) [35]: This is a network of 34 
members (nodes) of a Karate Club at a US university in 
the 1970s; there is an edge between two nodes if the 
corresponding members were seen interacting with each 
other during the observation period. 

TABLE I 
RANGE OF CORRELATION COEFFICIENT VALUES AND THE CORRESPONDING 

LEVELS OF CORRELATION 

Range of Correlation 
Coefficient Values 

Level of Correlation 

0.80 to 1.00 Very Strong Positive 
0.60 to 0.79 Strong Positive 
0.40 to 0.59 Moderate Positive 
0.20 to 0.39 Weak Positive 
0.01 to 0.19 Very Weak Positive 

0.00 Neutral 
–0.19 to –0.01 Very Weak Negative 
–0.39 to –0.20 Weak Negative 
–0.59 to –0.40 Moderate Negative 
–0.79 to –0.60 Strong Negative 
–1.00 to –0.80 Very Strong Negative 
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(13) Dutch Literature 1976 Network (DLN) [36]: This is a 
network of 35 Dutch literary authors and critics 
(vertices) in 1976. There exists an edge between two 
vertices if one of them had made a judgment on the 
literature work of the author corresponding to the other 
vertex.  

(14) Senator Press Release Network (SPN) [37]: This is a 
network of 92 US senators (vertices) during the period 
from 2007 to 2010. There exists an edge between two 
vertices if the corresponding senators had issued at least 
one joint press release. 

(15) ModMath Network (MMN) [38]: This is a network of 38 
school superintendents (vertices) in Allegheny County, 
Pennsylvania, USA during the 1950s and early 1960s. 
There exists an edge between two vertices if at least one 
of the two corresponding superintendents has indicated 
the other person as a friend in a research survey 
conducted to see which superintendents (who are in 
office for at least a year) are more influential to 
effectively spread around some modern Math methods 
among the school systems in the county.  

(16) C. Elegans Neural Network (ENN) [39]: This is a 
network of 297 neurons (vertices) in the neural network 
of the hermaphrodite Caenorhabditis Elegans; there is an 
edge between two vertices if the corresponding neurons 
interact with each other (in the form of chemical 
synapses, gap junctions, and neuromuscular junctions). 

(17) Word Adjacency Network (WAN) [40]: This is a 
network of 112 words (adjectives and nouns, represented 
as vertices) in the novel David Copperfield by Charles 
Dickens; there exists an edge between two vertices if the 
corresponding words appeared adjacent to each other at 
least once in the novel. 

(18) Les Miserables Network (LMN) [41]: This is a network 
of 77 characters (nodes) in the novel Les Miserables; 
there exists an edge between two nodes if the 
corresponding characters appeared together in at least 
one of the chapters in the novel.  

(19) Copperfield Network (CFN) [41]: This is a network of 
87 characters in the novel David Copperfield by Charles 
Dickens; there exists an edge between two vertices if the 
corresponding characters appeared together in at least 
one scene in the novel. 

(20) Graph and Digraph Glossary Network (GLN) [42]: This 
is a network of 72 terms (vertices) that appeared in the 
glossary prepared by Bill Cherowitzo on Graph and 
Digraph; there appeared an edge between two vertices if 
one of the two corresponding terms were used to explain 
the meaning of the other term.  

(21) Centrality Literature Network (CLN) [43]: This is a 
network of 129 papers (vertices) published on the topic 
of centrality in complex networks from 1948 to 1979. 

There is an edge between two vertices if one of the two 
papers has cited the other paper as a reference.   

(22) Citation Graph Drawing Network (GDN) [44]: This is a 
network of 311 papers (vertices) that were published in 
the Proceedings of the Graph Drawing (GD) conferences 
from 1994 to 2000 and cited in the papers published in 
the GD'2001 conference. There is an edge between two 
vertices if one of the two corresponding papers has cited 
the other paper as a reference.   

(23) Anna Karenina Network (AKN) [41]: This a network of 
138 characters (vertices) in the novel Anna Karenina; 
there exists an edge between two vertices if the 
corresponding characters have appeared together in at 
least one scene in the novel. 

(24) Erdos Collaboration Network (ERN) [45]: This is a 
network of 472 authors (nodes) who have either directly 
published an article with Paul Erdos or through a chain 
of collaborators leading to Paul Erdos. There is an edge 
between two nodes if the corresponding authors have co-
authored at least one publication. 

We generate 100 instances of the configuration model-
based random network graphs for each of the real-world 
network graphs. We compute the following seven node-level 
metrics on each of the real-world network graphs and the 
corresponding 100 instances of the random network graphs 
generated according to the Configuration model: 

(i) Degree Centrality, 
(ii)  Eigenvector Centrality, 
(iii)  Closeness Centrality, 
(iv) Betweenness Centrality, 
(v) Clustering Coefficient, 
(vi) Communicability and 
(vii)  Maximal Clique Size. 

For each real-world network, we average the values for 
each of the above node-level metrics obtained for the 100 
instances of the random network graphs with identical degree 
sequence. For each node-level metric, we then determine the 
Spearman’s rank-based correlation coefficient between the 
values incurred for the metric in each of the 24 real-world 
network graphs and the average values for the metric 
computed based on the 100 instances of the corresponding 
configuration model-based random network graphs.  

Table 2 lists the correlation coefficient values obtained for 
the seven node-level metrics for each real-world network 
graph and the corresponding configuration model-based 
instances of the random network graphs with an identical 
degree sequence. As expected, the correlation coefficient 
values for the degree centrality are either 0.99 or 1.0, 
vindicating identical degree sequence between the two graphs. 
The Communicability metric exhibits a very strong positive 
correlation for all the 24 network graphs. With respect to three 
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centrality metrics (EVC, ClC, BWC), we observe a strong-
very strong positive correlation for all the 24 network graphs, 
with the EVC exhibiting very strong positive correlation for 
20 of the 24 real-world networks and the ClC and BWC 
metrics exhibiting very strong positive correlation for 17 and 
18 of the 24 real-world networks respectively. The maximal 
clique size (MCS) metric exhibits strong-very strong positive 
correlation for 17 of the 24 real-world networks (very strongly 
positive correlation for 7 real-world networks and strongly 
positive correlation for 10 real-world networks). The local 
clustering coefficient (LCC) is the only node-level metric for 
which we observe a poor correlation between the real-world 
network graphs and the corresponding random network graphs 
with identical degree sequence. The level of correlation is 
very weak to at most moderate for 14 of the 24 real-world 
networks and very strongly positive for just one real-world 
network.  

We summarize the above observations on the basis of the 
percentage chances of finding a real-world network graph with 
a very strong positive correlation with its corresponding 
configuration model-based random network graph (with an 
identical degree sequence) as follows: While there is a 100% 
chance (24 out of 24 networks) for a very strongly positive 
correlation in the case of communicability; for the three 
centrality metrics: the percentage chances of observing a very 
strongly positive correlation are respectively 83% (20 out of 

24 networks) for EVC, 75% (18 out of 24 networks) for BWC 
and 71% (17 out of 24 networks) for ClC. In the case of 
maximal clique size and local clustering coefficient, the 
percentage chances of obtaining a very strong positive 
correlation are respectively 29% and 4%. 

With respect to the impact of the spectral radius ratio for 
node degree on the correlation levels observed for the node-
level metrics (see Figure 14), we observe the correlation levels 
for communicability and the centrality metrics to be 
independent of the spectral radius ratio for node degree. The 
correlation coefficient values for communicability and the 
centrality metrics (EVC, ClC and BWC) are consistently high 
(0.6 or above) for all the 24 real-world network graphs, 
irrespective of the values for the spectral radius ratio for node 
degree. In the case of both local clustering coefficient and 
maximal clique size, we observe the correlation levels to 
increase with increase in the spectral radius ratio for node 
degree (i.e., as the real-world networks are increasingly scale-
free, we observe the correlation levels for these two metrics to 
increase with that of the configuration model-based random 
network graphs with identical degree sequence). 

Table 3 lists the values for the three network-level metrics 
(spectral radius ratio for node degree, degree-based edge 
assortativity and algebraic connectivity) for the real-world 
network graphs and the corresponding configuration model-
based random network graphs with identical degree sequence. 

TABLE II 
CORRELATION COEFFICIENT VALUES FOR THE NODE-LEVEL METRICS BETWEEN THE REAL-WORLD NETWORK GRAPHS  

AND THE CORRESPONDING INSTANCES OF CONFIGURATION MODEL-BASED RANDOM NETWORK GRAPHS 

# Network # nodes )(kRW
spλ  

Correlation Coefficient between Real-World Network Graphs and the 
Corresponding Configuration model-based Random Network Graphs 

DegC EVC ClC BWC LCC Comm. MCS 
1 MDN 62 1.04 1.00 0.99 0.99 0.91 0.11 0.99 0.58 
2 CFN 58 1.11 1.00 0.99 0.99 0.79 0.29 0.99 0.93 
3 HTN 113 1.21 1.00 0.99 0.99 0.90 0.54 0.99 0.85 
4 FTC 48 1.21 1.00 0.79 0.82 0.77 0.31 0.82 0.38 
5 SSC 24 1.22 0.99 0.67 0.68 0.86 0.24 0.83 0.22 
6 PSN 238 1.22 1.00 0.98 0.95 0.83 0.11 0.98 0.42 
7 MPN 35 1.23 1.00 0.86 0.83 0.90 0.08 0.87 0.46 
8 RHF 217 1.27 1.00 0.87 0.88 0.89 0.00 0.87 0.36 
9 UKF 81 1.35 1.00 0.93 0.90 0.86 0.10 0.93 0.67 
10 WTM 80 1.38 0.99 0.98 0.98 0.97 0.55 0.98 0.72 
11 JBN 198 1.45 1.00 0.90 0.90 0.72 0.30 0.90 0.75 
12 KAN 34 1.47 0.99 0.88 0.73 0.87 0.10 0.89 0.61 
13 DLN 35 1.49 1.00 0.89 0.87 0.71 0.66 0.90 0.56 
14 SPN 92 1.57 1.00 0.96 0.95 0.86 0.31 0.96 0.72 
15 MMN 38 1.59 0.99 0.81 1.00 0.82 0.75 0.87 0.80 
16 ENN 297 1.68 1.00 0.86 0.72 0.95 0.63 0.86 0.62 
17 WAN 112 1.73 1.00 0.93 0.84 0.95 0.67 0.93 0.66 
18 LMN 77 1.82 1.00 0.84 0.67 0.84 0.37 0.85 0.81 
19 CFN 87 1.83 0.99 0.95 0.64 0.97 0.40 0.95 0.81 
20 GLN 72 2.01 1.00 0.79 0.61 0.92 0.65 0.81 0.64 
21 CLN 129 2.03 1.00 0.96 0.98 0.91 0.62 0.96 0.86 
22 GDN 311 2.24 1.00 0.79 0.88 0.79 0.81 0.81 0.73 
23 AKN 138 2.48 1.00 0.95 0.72 0.94 0.33 0.95 0.85 
24 ERN 472 3.00 1.00 0.89 0.92 0.78 0.71 0.89 0.75 
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The value for a network-level metric reported for the random 
network graph corresponding to a real-world network graph is 
the average of the values for the metric evaluated on 100 
instances of the random network graphs for the particular real-
world network graph. In Table 3, we have colored the cells (in 
yellow) for which a graph (real-world network graph or the 
configuration model-based random network graph) incurs an 
equal or relatively larger value for the network-level metric. 
Figure 15 illustrates the distribution of the above three 
network-level metrics for both the real-world network graphs 
and the corresponding random network graphs. For each 
network-level metric, we evaluate the proximity of the data 
points to the diagonal line. The more closer are the data points 
to the diagonal line, the more closer are the values for the 
particular network-level metric for both the real-world 
network graph and the corresponding random network graph.  

With respect to the spectral radius ratio for node degree, 
the general trend of the results is that for more than 20 of the 
24 real-world network graphs, the spectral radius ratio for 
node degree is observed to be just marginally greater than the 
average value of the spectral radius ratio for node degree of 

the 100 corresponding instances of the configuration model-
based random network graphs with identical degree sequence.  

From Figure 14, except of a couple of real-world network 
graphs, we observe the data points for the spectral radius ratio 
for node degree to lie closer to the diagonal line, indicating 
both the real-world network graphs and their corresponding 
configuration model-based random network graphs incur 
comparable values for this metric, with the random network 
graphs consistently incurring slightly lower values for most 
cases. 

With respect to the degree-based edge assortativity, we 
observe the configuration model-based random network 
graphs to incur negative values for the degree-based edge 
assortativity for all the 24 real-world network graphs analyzed 
(even though the edge assortativity values were positive for 
1/3rd of the real-world network graphs). Thus, the 
configuration model-based random network graphs are highly 
likely to be dissortative even though their corresponding real-
world network graphs are assortative. On the other hand, for 
real-world network graphs with negative values for the degree-
based edge assortativity, we observe the edge assortativity of 
the corresponding configuration model-based random network 

       
             Eigenvector Centrality                                                                          Closeness Centrality 

       
             Betweenness Centrality                                                                Communicability 

       
             Local Clustering Coefficient                                                            Maximal Clique Size  

Fig. 14. Example to Illustrate the Computation of the Spearman's Rank-based Correlation Coefficient with respect to BWC on the Actual Graph and 
Configured Graph of Figure 3. 
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graphs to be relatively larger (i.e., farther away from -1). That 
is, for dissortative real-world network graphs, the 
corresponding configuration model-based random network 
graphs are likely to be relatively less dissortative. With respect 
to connectivity, we claim the configuration model-based 
random network graphs are more likely to exhibit relatively 
higher values for algebraic connectivity compared to their 
corresponding real-world network graphs (as is observed for 
16 of the 24 real-world network graphs).  

VI.  RELATED WORK 

Degree preserving randomization [46] has been widely 
considered a technique of assessing whether the values for the 
node-level metrics and network-level metrics for a real-world 
network graph is just an artifact of the graph's inherent 
structural properties or properties that are unique for the 
nodes. Monte Carlo-based methods [47] were earlier used to 
generate random network graphs with identical degree 
sequence as that of the real-world networks. However, these 
methods were found to require a significant number of 
iterations (significantly larger than the number of edges in the 
real-world graphs) as well as are prone to introducing self-
loops and multi-edges. The work in [48] formed the basis for 
modeling real-world social networks as random network 
graphs and evaluating the node-level metrics and network-

level metrics for the two graphs. For certain social networks, 
network-level metrics such as the global clustering coefficient 
and the average path length were observed to be closer to that 
of the equivalent random networks and much different for 
others. The difference in the values for the network-level 
metrics is attributed to the sociological structure and influence 
among nodes not being captured in the random networks even 
though they are modeled to have an identical degree sequence 
to that of the social networks [48]. The authors in [49] 
conclude that global network-level metrics cannot be expected 
to be even closely reproduced in random network graphs 
generated with local constraints (such as the degree-preserving 
randomization). To corroborate this statement, degree-
preserved randomized versions of the Internet at the level of 
ASs (AS - Autonomous Systems) are observed to have a fewer 
number of k-shells [50]. A k-shell is the largest sub graph of a 
graph such that the degree of every vertex is at least k within 
the sub graph [51]. The distribution of the k-shells has been 
observed to be dependent on the connectivity of the nodes in 
the network and hence the number of k-shells has been 
perceived to be a network-level metric [50]. 

Random networks generated from the traditional ER model 
have been observed to incur lower values for the local 
clustering coefficient (proportional to the probability of a link 
between any two nodes in the ER model) [5]; the correlation 

TABLE III 
COMPARISON OF THE VALUES FOR THE NETWORK-LEVEL METRICS: REAL-WORLD NETWORK GRAPHS AND 

THE CONFIGURATION MODEL-BASED RANDOM NETWORK GRAPHS WITH IDENTICAL DEGREE SEQUENCE 

# Network 

Spectral Radius Ratio 
for Node Degree 

Degree-based Edge 
Assortativity 

Algebraic 
Connectivity 

Real-
World 

Config-
Random 

Real-
World 

Config-
Random 

Real-
World 

Config-
Random 

1 MDN 1.04 1.03 –0.07 –0.05 1.67 1.66 
2 CFN 1.11 1.10 –0.12 –0.07 0.58 0.58 
3 HTN 1.21 1.20 –0.12 –0.10 1.00 0.99 
4 FTC 1.21 1.18 –0.04 –0.05 0.68 0.87 
5 SSC 1.22 1.20 –0.03 –0.12 0.15 0.44 
6 PSN 1.22 1.18 0.22 –0.02 0.53 0.78 
7 MPN 1.23 1.23 –0.17 –0.07 1.24 1.57 
8 RHF 1.27 1.22 0.10 –0.02 1.71 1.88 
9 UKF 1.35 1.30 0.00 –0.08 1.33 1.79 
10 WTM 1.38 1.35 –0.39 –0.23 0.40 0.37 
11 JBN 1.45 1.38 0.02 –0.06 0.57 0.93 
12 KAN 1.47 1.55 –0.48 –0.18 0.47 0.56 
13 DLN 1.49 1.42 0.07 –0.10 0.27 0.50 
14 SPN 1.57 1.51 0.02 –0.08 0.64 0.84 
15 MMN 1.59 1.51 0.04 –0.11 0.45 0.70 
16 ENN 1.68 1.71 –0.16 –0.08 0.85 0.81 
17 WAN 1.73 1.72 –0.13 –0.11 0.70 0.50 
18 LMN 1.82 1.77 –0.16 –0.10 0.21 0.44 
19 CFN 1.83 1.77 –0.26 –0.20 0.98 0.70 
20 GLN 2.01 1.95 –0.16 –0.10 0.25 0.25 
21 CLN 2.03 2.00 –0.20 –0.16 0.73 0.76 
22 GDN 2.24 2.01 0.12 –0.02 0.12 0.29 
23 AKN 2.48 2.42 –0.35 –0.28 0.33 0.42 
24 ERN 3.00 2.50 0.18 –0.03 0.05 0.27 
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coefficient analysis studies in this paper also indicate that the 
local clustering coefficient of the configuration model-based 
random network graphs do not correlate well with those of the 
corresponding real-world network graphs with an identical 
degree sequence. In [52], the authors proposed random graph 
models whose local clustering coefficient is as large as those 
observed for real-world networks as well as generate a power-
law degree pattern [4] that could be controlled using certain 
operating parameters.  

In another related study [53], degree-preserved random 
networks of a certain number of nodes and edges were 
observed to contain more feed forward loops (FFLs) when 
compared to the ER-random networks of the same number of 
nodes and edges; but the number of FFLs in the degree-
preserved random networks has been observed to be 
significantly lower than the corresponding real-world 
biological networks. Degree preserving randomization was 
successfully applied in [54] to determine that clustering and 
modularity do not impact the number of driver nodes needed to 

effectively control real-world networks. In a related study, it 
was observed that the degree sequence of a real-world 
network was alone sufficient to generate a random network 
whose distribution for the control centrality [55] of a node was 
identical to that of the real-world network. The control 
centrality of a node [55] in a directed weighted network graph 
is a quantitative measure of the ability of a single node to 
control the entire network.  

Even though several such studies have been conducted on 
degree-preserving randomization of real-world networks and 
analysis of the resulting random networks, no concrete 
information is available on the impact of the identical degree 
sequence on the centrality metrics (as well as the other node-
level and network-level metrics considered in this paper such 
as communicability, maximal clique size, degree-based edge 
assortativity, algebraic connectivity and spectral radius ratio 
for node degree) for the real-world social networks and the 
equivalent degree-preserved random networks. We have to 
resort to a correlation-based study as the distribution profiles 
for a node-level metric in the real-world network graph and 
the corresponding degree-preserved random network graph is 
not sufficient to study the similarity in the ranking of the 
vertices in the two graphs with respect to the metric. To the 
best of our knowledge, ours is the first such study to 
comprehensively evaluate the similarity in the ranking of the 
vertices between the real-world network graphs and the 
corresponding degree-preserved random network graphs with 
respect to the centrality metrics and maximal clique size as 
well as to use the Spearman's rank-based correlation measure 
for correlation study in complex network analysis. 

VII.  CONCLUSIONS AND FUTURE WORK 

The results from Table 2 indicate that the ranking of the 
vertices in a real-world network graph with respect to the 
centrality metrics and communicability is more likely to be the 
same as the ranking of the vertices in a random network graph 
(generated according to the configuration model with an 
identical degree sequence) as a very strongly positive 
correlation (correlation coefficient values of 0.8 or above) is 
observed for a majority of the real-world networks analyzed. 
On the other hand, we observe that an identical degree 
sequence is not sufficient to increase the chances of obtaining 
an identical ranking of the vertices in a real-world network 
graph and its corresponding degree-preserved random network 
graph with respect to maximal clique size and local clustering 
coefficient. Thus, the maximal clique size and local clustering 
coefficient are node-level metrics that depend more on the 
network structure rather than on the degree sequence.  

The results from Table 3 indicate that the spectral radius 
ratio for node degree is likely to be more for a real-world 
network graph vis-a-vis a random network graph with an 
identical degree sequence. On the other hand, we observe that 
all the degree-preserved random network graphs generated 

 
Spectral Radius Ratio for Node Degree 

 
Degree-based Edge Assortativity 

 
Algebraic Connectivity 

Fig. 15. Distribution of the Values for the Network-Level Metrics for Real-
World Network Graphs and the Configuration Model-based Random 
Network Graphs with Identical Degree sequence. 
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according to the configuration model are dissortative 
irrespective of the nature of assortativity of the corresponding 
real-world network graphs; nevertheless, the level of 
dissortativity is relatively less for degree-preserved random 
network graphs generated for real-world networks that are also 
dissortative. We observe that a random network graph is more 
likely to exhibit higher values for algebraic connectivity 
compared to the real-world network graph with which it has an 
identical degree sequence. As part of future work, we plan to 
run the community detection algorithms on the configuration 
model generated random network graphs and compare the 
modularity of the communities with those detected in the 
corresponding real-world network graphs with an identical 
degree sequence. 
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