
 

 

 

Abstract—For qualitative spatial reasoning, there are various 

dimensions of objects. A considerable amount of effort has been 

devoted to 2D representation and analysis of spatial relations. 

Here we present an exposition for 3D objects. There are three 

types of binary relations between pairs of objects: topological 

connectivity, cardinal directions, and distance relations. The 

combinations of these relations can provide additional useful 

knowledge. The spatial databases include data and the spatial 

relations to facilitate end-user spatial querying, it also is 

important to associate natural language with these relations. 

Some work has been done in this regard for line-region and 

region-region topological relations in 2D, and very recent work 

has initiated the association between natural language, topology, 

and metrics for 3D objects. However, prior efforts have lacked 

rigorous analysis, expressive power, and completeness of the 

associated metrics. Herein we present a detailed study of new 

metrics required to bridge the gap between topological 

connectivity and size information for integrating reasoning in 

spatial databases. The complete set of metrics that we present 

should be useful for a variety of applications dealing with 3D 

objects including regions with vague boundaries.  

Keywords—Region connection calculus, metrics, spatial 

reasoning, qualitative reasoning. 

I. INTRODUCTION 

PATIAL relation theory is the foundation for using spatial 

databases effectively. In qualitative spatial reasoning, 

there are various types of object dimensions. A considerable 

amount of effort has been devoted to 2D. Here we present 

exposition for 3D objects. There are three types of binary 

relations between pairs of objects. The combinations of these 

relations can provide additional useful knowledge required for 

some applications. The spatial databases include data and the 

spatial relations to facilitate end-user spatial querying and 

retrieving and analyzing spatial knowledge quickly. 

Qualitative spatial reasoning is intrinsically useful even when 
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spatial information is imprecise or incomplete. The reasons 

are: (1) precise information may not be available or may not 

even be required, (2) detailed parameters may not be 

necessary before proceeding to decision making, and (3) 

complex decisions sometimes must be made in a relatively 

short period of time.  

However, qualitative reasoning can result in ambiguous 

solutions due to incomplete or imprecise quantitative 

information. In RCC8 [1], [2], the regions have a well-defined 

interior, boundary, and exterior. The RCC8 relations are 

bivalent with true and false crisp values. Mathematically 

defined and computer drawn objects are crisp and well 

defined, whereas hand-drawn regions tend to have a vague 

boundary [3]. When regions are vague, the relations between 

regions can be vague also. That results in the possible values 

for relations being true, false, or even ‘maybe.’ RCC8 

assumes that regions are crisp; hence the relations are crisp. 

While topology is sufficient to determine the spatial 

connectivity relations, it lacks the capability to determine the 

degree (or extent) of connectivity or separation of such 

relations.  

For example, in Fig. 1, for two objects A and B, the RCC8 

disjoint relation, DC(A,B), evaluates to true, yet it does not 

provide any information about the degree of separation; we do 

not know how close the two objects are — are they almost 

touching or are they far apart? The usefulness of metrics lies 

in providing such additional information, which can be useful 

in some applications. 

 
(a)           (b) 

 

Fig. 1. Two examples of disjoint objects.  RCC8 determines that A and B are 

disjoint, yet it does not tell if they are almost touching or far apart. That is, it 

does not quantify the degree of disjointness. 
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For another example, in Fig. 2, for two objects A and B, 

the RCC8 proper overlap relation, PO(A,B), evaluates to true, 

yet it does not provide any information about the degree of 

connectivity; we do not know how much is the overlap—are 

the objects barely overlapping or are they are almost equal? 

 
(a) (b) 

 

Fig. 2. Two examples of proper overlap.  RCC8 determines that there is an 

overlap between A and B, but it does not quantify the proper overlap. In (a) 

the objects are barely overlapping, and in (b) they are almost equal. 

Similarly in Fig. 2, a metric can determine which object is 

larger or if they are equal independent of location. Metrics are 

quantitative, whereas topology is qualitative; both together 

can supplement each other in terms of spatial knowledge. The 

metric refinements provide for quality of connectivity of each 

relation. The goal of this exposition is to bridge the gap 

between topology and size via metrics.  

The paper is organized as follows. Section II provides a 

brief mathematical background relevant to subsequent 

discussions in the paper. Section III explains the motivation 

for metrics. Section IV discusses the development of our 

metrics, as well as the association between size and topology. 

Section V explains the association between connectivity, size, 

and metrics. Section VI gives the conclusion and future 

directions. 

II. BACKGROUND 

A. Spatial Relations in General 

Historically, there are two approaches to topological 

region connection calculus, one is based on first order 

logic [1], and the second is based on the 9-intersection 

model [2]. Both of these approaches assume that regions are 

in 2D and the regions are crisp, and that relation membership 

values are true and false only. For qualitative distances, 

metrics were used in 1D to differentiate relative terms of 

proximity like very close, close, far, and very far [4]. To 

refine natural language ontology and topological 

relationships, metrics were introduced for line-region and 

region-region connectivity in 2D [5]. These approaches lack 

expressing the strength of relation, and the combination of the 

connectivity and size information. Recently more attention 

has been directed to these issues for vague regions in 2D [6] 

and for natural language ontology in 3D [7]. However, prior 

work has been deficient in rigorous analysis, expressive 

power, and completeness of the metrics. The complete set of 

metrics presented herein differs from the previous approaches 

in its completeness and enhanced expressiveness. 

B. Mathematical Preliminaries 

R3 denotes the three-dimensional space endowed with a 

distance metric. Here the mathematical notions of subset, 

proper subset, equal sets, empty set (), union, intersection, 

universal complement, and relative complement are the same 

as those typically defined in set theory. The notions of 

neighborhood, open set, closed set, limit point, boundary, 

interior, exterior, and closure of sets are as in point-set 

topology. The interior, boundary, and exterior of any region 

are disjoint, and their union is the universe.  

A set is connected if it cannot be represented as the union 

of disjoint open sets. For any non-empty bounded set A, we 

use symbols Ac, Ai, Ab, and Ae to represent the universal 

complement, interior (Int(A)), boundary (Bnd(A)), and 

exterior (Ext(A)) of a set A, respectively. Two regions A and 

B are equal if Ai == Bi, Ab == Bb, and Ae == Be are true. For 

our discussion, we assume that every region A is a non-empty, 

bounded, regular closed, connected set without holes; 

specifically, Ab is a closed curve in 2D, and a closed surface 

in 3D.  A spatial region A is closed if it contains the interior 

and boundary, and is denoted by A.  Thus the regions are 

regular closed sets, meaning closure of the interior of a region 

is itself, A =Ai. For spatial regions, we use weak 

connectivity: two regions A and B are connected if A 

 B ≠ .  

C. Metric Spaces and Spatial Metrics 

Topologically a metric m on a metric space satisfies three 

properties: (1) m(A, A) = 0, identity; (2) m(A, B) = m(B, A), 

symmetry; and (3) m(A, B) ≤ m(A, C) + m(C, B), triangle 

inequality. Furthermore a metric is translation invariant if 

m(A,B) = m(A + t, B + t) where A + t is the translation of 

object A by t. Most of the time, the metric represents the 

Euclidean distance between a pair of objects. For spatial 

objects a qualitative metric does not necessarily follow this 

rule. 

We will define metrics for topological relations that 

capture the semantic knowledge about the relation between a 

pair of objects. These metrics overcome the limitations of 

topological spatial relations.  For example, to measure the part 

of A split by B (i.e., the part common to A and B), the metric 

is defined by m(A, B) = volume(AB)/volume(A).  As such, 

for this metric m, (1) m(A, A) = 1, not zero, anti-identity; (2) 

m(A, B) is not necessarily equal to m(B, A), anti-symmetric; 

and (3) m does not satisfy the triangle inequality, anti-

triangle inequality.  For our purpose this metric provides very 

useful information to determine the quality of topological 

connectivity relations (see Section V).  
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D. Region Connection Calculus Spatial Relations 

Much of the foundational research on qualitative spatial 

reasoning concerns a region connection calculus (RCC) that 

describes 2D regions (i.e., topological space) by their possible 

relations to each other. RCC8 can be formalized by using first 

order logic [1] or using the 9-intersection model [2]. 

Conceptually, for any two regions, there are three 

possibilities: (1) One object is outside the other; this results in 

the RCC8 relation DC (disconnected) or EC (externally 

connected). (2) One object overlaps the other across 

boundaries; this corresponds to the RCC8 relation PO (proper 

overlap). (3) One object is inside the other; this results in 

topological relation EQ (equal) or PP (proper part). To make 

the relations jointly exhaustive and pairwise distinct (JEPD), 

there is a converse relation denoted by PPc (proper part 

converse), PPc(A,B)  PP(B,A). For completeness, RCC8 

decomposes proper part into two relations: TPP (tangential 

proper part) and NTPP (non-tangential Proper part). Similarly 

for PPc, RCC8 defines TPPc and NTPPc.  The RCC8 

relations are pictorially described in Fig. 3. 

 

Fig. 3.  RCC8 Relations in 2D. 

Each of the RCC8 relations can be uniquely described by 

using a 9-Intersection framework. This is a comprehensive 

way to look at the relation between two regions. Table 1 

depicts the 9-Intersection matrix between two regions A and 

B, where Int represents the region’s interior, Bnd denotes the 

boundary, and Ext represents the exterior. The predicate 

IntInt(A,B) is a binary relation that represents the intersection 

between the interiors of region A and region B; the value of 

this function is either true (non-empty) or false (empty) for 

that intersection. Similarly, there are other predicates for the 

intersection of A’s interior, exterior, or boundary with those 

of B.  

For two non-empty bounded regions, A and B, the 

intersection of their exteriors is always non-empty; it adds 

nothing to the discrimination and knowledge discovery about 

regions. In our prior work [7], we have consistently replaced 

the 9-Intersection 3  3 matrix with the 8-Intersection to 

define the spatial relations. The values of the 8-Intersection 

for the RCC8 relations are given below in Table 2.  

TABLE 1. 

9-INTERSECTION 3  3 MATRIX AND REDUCED 4-INTERSECTION 2  2 

MATRIX (SHADED) FOR CALCULATING RCC8 RELATIONS 

 

From careful analysis of Table 2, we see that the IntInt and 

BndBnd columns have the most useful information in the 

sense that they are sufficient to partition the RCC8 relations 

into three classes: {DC, EC}, {NTTP, NTTPc}, and {PO, EQ, 

TPP, TPPc}. 

TABLE 2. 

THE VALUES OF THE 8-INTERSECTION VECTORS AND 4-INTERSECTION 

VECTORS (SHADED) THAT ARE REQUIRED TO DISTINGUISH RCC8 RELATIONS 

 

Further analysis of Table 2 indicates that only 4-

intersections are sufficient for classification of topological 

relations [11].  This table can be interpreted and formulated in 

terms of rules for system integration. These rules are 

displayed for visualization in the form of a decision tree in 

Fig. 4. 

 

Fig. 4. Tree for classifying the topological relations, (T/F) represents whether 

or not the objects intersect. 

Originally, region connection calculus was designed for 

2D [1], [2]; later it was extended to 3D [8], [6]. In [5], metrics 

were used for associating line-region and region-region 

connectivity in 2D to natural language. The metrics were 

adapted from [5] for qualitative study of the dependency 
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between metrics and topological relations, and between 

metrics and natural-language terms; conclusions then were 

drawn for association between several natural-language terms 

and the topological connectivity RCC8 terms [7].  However, 

the 2D metrics were adopted and adapted to 3D objects 

without any regard for viability or completeness. Herein we 

introduce new metrics and describe a complete set of metrics 

to explore the degree of association between them in terms of 

strength of connectivity and relative size information.  

III. MOTIVATION FOR METRICS 

In qualitative spatial reasoning, there are three distinct 

properties for reasoning about spatial objects: connection, 

dimension, and direction. Reasoning over combinations of 

these properties can provide additional useful knowledge. The 

prior efforts [5] have lacked rigorous analysis, expressive 

power, and completeness of the associated metrics. Revision 

of the metrics is required before we can begin to bridge the 

gap between topological connectivity and size information for 

automated spatial reasoning.  

We start with following example for motivation to study 

the degree (or extent) of spatial relations.  This example 

centers around one metric and one pair of objects; see Fig. 5 

for concept illustration. Consider the volume of interior of an 

object A split by the volume of interior of an object B; let this 

be denoted by metric, IVsIV(A,B). The definition of metric 

considers one object, the first parameter, as the reference 

object and the other object, the second parameter, as the 

target object.  The target object is the object that performs the 

splitting action on the reference object.  This metric calculates 

how much of reference object A is part of the target object B. 

Since sizes of objects can vary in units of measurement, it is 

more reasonable to compare qualitative or relative sizes for 

objects. Recall from section II.B that Ai represents the interior 

of A. We define the relative (i.e., normalized) part of A 

common in B by the equation,   

 

With this metric, let us see in what ways, the connectivity 

and size information are useful in spatial reasoning.  

(1) RCC8 topological relation: Suppose that for objects A 

and B in Fig. 5, we have IVsIV(B,A) = 1.  This implies B is a 

proper part of A, PP(B,A), which is an RCC8 qualitative 

connectivity relation.  Without the metric, in general, this 

relation is computed by using the 9-intersection model 

involving various pairwise intersections before arriving at this 

conclusion [2], [10]. The metric provides this information 

much more quickly and efficiently. 

(2) Size relations: In Fig. 5, suppose IVsIV(A,B) = 0.1, 

which implies that 10% of A is part of B and part of B is 10% 

of A. From step (1), IVsIV(B,A) = 1, which means all of B is 

a part of A. With both the metrics, we conclude that B is equal 

to 10% of A, and that B is part of A.  Therefore, B is much 

smaller than A for the size relation (i.e., A is much bigger 

than B).  In general, if IVsIV(A,B) < IVsIV(B,A), then A is 

larger than B in size (i.e., or B is smaller than A in size). Thus 

the metric is a useful tool for qualitative size comparison of 

pairs of objects. 

 

Fig. 5.  Object B is a proper part of A, B is much smaller than A in size, and 

B is in the northeast relative to A.  

(3) Cardinal direction relations: We will concentrate on 

steps (1) and (2) in this paper. The grid is generated by grid 

lines for A and B, where the minimum-bounding rectangle is 

composed of horizontal and vertical gridlines. The detailed 

discussion of directions metrics is beyond the scope of this 

exposition; the reader may consult [9], [10].  The direction 

metric in [9], [10] determines that B is in the northeast of part 

of A. With this directional knowledge, it means that in 

addition to B being a tangential proper part of A, TPP(B,A), 

tangency is in the northeast direction.  

Thus we see that B is a proper part of A, and B is much 

smaller than A, i.e. B is simply 10% of A.  Moreover, B is a 

tangential proper of A and is located in the northeast part 

of A.  

For an example of the need and usefulness of the metrics, 

see Section V. Later we will discuss how these metrics 

measure the degree of connectivity (as shown at the end in 

Fig. 12), and strengthen the topological classification tree, see 

Fig. 4. 

IV. INTRODUCTION TO METRICS 

With relative movement of objects, their spatial relation 

change over time.  Spatial relations can be used to detect such 

changes. Shift, erosion and dilation are the most common 

changes that take place in geographical regions with those 

changes occurring in a continuous pattern. Quantitative 

metrics are defined to determine the extent of temporal 

IVsIV(A, B) =
volume(Ai ÇBi )

volume(Ai )
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connectivity of the topological relations between pairs of 

objects in 3D. The metrics are normalized so that the metric 

values are constrained to [0, 1]. The metrics also facilitate 

determining the topological relations between objects. As seen 

in Fig. 5, a metric can be used to derive the qualitative size of 

the overlap. The overlap relation, PO (A,B), is symmetric, but 

the overlap metric IVsIV (A,B) is anti-symmetric. The metric 

values are also sensitive to the location of the objects in 

addition to topological connectivity, see Fig. 2 and 3.  

For the purposes of precisely defining the metrics herein, 

we will need two additional topological concepts in addition 

to the traditional interior, boundary, and exterior parts of an 

object (or region). The classical crisp boundary of an object A 

is denoted by Ab, see Fig 6(a); for fuzzy regions, the boundary 

interior neighborhood (Bin) is denoted by Abi, see Fig. 6(b),  

and the boundary exterior neighborhood (Bex) is denoted by 

Abe, see Fig. 6(c). We give the complete details of these 

concepts in Section IV.B; an application can selectively use 

the kind of boundary information available. The exterior and 

interior boundary neighborhoods even may be combined into 

one fuzzy/thick boundary which is denoted by Abt, defined as 

Abt  AbiAbe, see Fig. 7.  

 
       (a) Object          (b) Boundary interior    (c) Boundary exterior 

       boundary                 neighborhood                neighborhood 

Fig. 6. (a) A 3D object, (b) the interior neighborhood of the boundary of the 

object, and (c) the exterior neighborhood of the boundary of the object. 

Based on these five region parameters, the 9-Intersection 

table expands to a 25-Intersection table; see Table 3. For 9-

intersection, there are 29=512 possible combinations out of 

which only eight are physically realizable; see Fig. 3.  

Similarly out of 225 possible combinations derivable from the 

five region parameters, only a few are physically possible. 

The possible relations using metrics are as crisp as for 

bivalent 9-intersection values, see Section V.  

A. Volume Considerations 

For 3D regions, the volume of a region is a positive quantity, 

as is the volume enclosed by a cube or a sphere.  The classical 

crisp boundary of a 3D object is 2D, and the volume of a 2D 

region in a plane or space is zero. Topological relations are 

predicates that represent the existence of a relation between 

two objects; metrics measure the strength of the relation or 

degree of connectivity. 

Recall from Section III, the metric IVsIV(A,B) can be 

used to determine the extent of the overlap AB relative to A, 

whereas the metric IVsIV(B,A) determines the extent of 

overlap AB relative to B. For ease and consistency, the 

metrics are always normalized with respect to the first 

parameter, of the metric function. The metric IVsIV(A,B) is 

anti-symmetric. It represents the amount of overlap relative to 

first argument of the metric.  

 

Fig. 7. The space relative to object A is partitioned into 5 parts: interior 

(dark), Ai; interior-neighborhood (light dark inside the boundary), Abi; 

boundary, Ab; exterior neighborhood (light dark outside the boundary), Abe; 

and exterior (all outside), Ae 

For practical applications, the first parameter is never the 

exterior volume of an object, because the exterior of a 

bounded object is unbounded with infinite volume. Also it is 

observed that since volume(A) = volume(ABi) + 

volume(ABe), then IVsIV(A,Be) = 1- IVsIV(A,Bi).    

B. Boundary Considerations 

The boundary neighborhood is the region within some small 

positive radius of the boundary.  This is useful for regions 

with a vague boundary. There are two types of 

neighborhoods, the boundary interior neighborhood, Abi,  and 

the boundary exterior neighborhood, Abe; see Fig. 6. By 

combining the two, we can create a thick boundary for vague 

regions; see Fig. 7. 

Several metrics are designed for cases where the boundary 

is vague; these are discussed in Sections IV.F.1 and IV.F.2. 

To compensate for an accurate crisp boundary, an application-

dependent small neighborhood is used to account for the 

thickness of the boundary. For the 3D object shown in Fig. 

6(a), let the boundary interior neighborhood of Ab of some 

radius r>0, be denoted by Abi or NIr(Ab), i.e.,  Abi  NIr(Ab) 

(Fig. 6(b)), and let the boundary exterior neighborhood of Ab 

of some radius r>0, be denoted by Abe or NEr(Ab), i.e.,  Abe  

NEr(Ab); see Fig. 6(c). The smaller the value of r, the less the 

ambiguity in the object boundary. Fig. 7 depicts how these 

terms apply to space partitioning.  We denote the qualitative 

interior neighborhood by IA and exterior neighborhood by 
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EA without specific reference to r, as IA Abi and EA Abe 

in the equations that follow in this paper.   

Many times in geographical information system (GIS) 

applications the region’s exact boundary is not available. Thus 

the problem in spatial domains becomes that of how to 

identify and represent these objects. In such analyses, the 

external connectedness would be resolved by using a metric 

that considers the boundary exterior neighborhoods, BexsBex, 

and examining whether the value BexsBex (A,B) < min (r1,r2) 

(instead of BsB (A,B)=0, which only considers the crisp 

boundaries) where the objects have boundary exterior r1- and 

r2-neighborhoods for thick boundaries of objects. For 

definitions of these metrics see Sections IV.F.1 and IV.F.2.   

In fact, some applications may need only one r-

neighborhood (the combination of r1-interior and r2-exterior 

neighborhood along a vague boundary), while others may 

need two separate neighborhoods as in [5]. The value of r = 

min(r1,r2) is specified by the application. For some 

applications (e.g. numerical calculations) it is approximately 

one percent of the sum of the radii of two spheres. Intuitively, 

r accounts for the minimum thickness of the boundary for the 

vague region. In other applications, in order for the metrics to 

be useful, the radial distance r is chosen to be equal to 

distance of boundary of object A from the boundary of the 

object B, i.e. rab = dist(Ab, Bb) = min{dist(x,y): x  Ab and 

y  Bb}. 

C. Intersections in General 

All the metrics and topological relations involve 

intersections (see Table 3) between a pair of objects. An 

intersection between a pair of objects may be interior to 

interior (i.e., 3D), or boundary to boundary (neighborhood), 

which may be turn out to be 2D, or 1D or even 0D. Metrics 

measure the quantitative values for topological relations. The 

intersection of 3D objects may remain 3D, as in the case of 

PO(A,B).  If the intersection such as AiBi exists, then we 

can calculate the volume of the 3D intersection AiBi, which 

is practical. But if the boundary is 2D, the volume of the 

boundary is zero, which does not provide any useful 

information. The intersection between two 3D objects may 

also be 3D, 2D, 1D, or even 0D, see Fig. 8. Since intersection 

is a significant component of topological relations, we can 

extract useful information from intersections of lower 

dimensional components also.  We can calculate the area of a 

2D object (e.g., ABb may be a 2D surface), and surface area 

can provide essential information for relations EC(A,B), 

TPP(A,B), and TPPc(A,B). For example, if two cubes touch 

face to face, they intersect in a surface; the volume of 

intersection will be zero, but surface area will be positive, 

which can still provide a measure of how close the objects are 

to each other.  So we will need metrics that accommodate 2D 

surface area also. Sometimes intersection is a curve or a line 

segment, in which case we can analyze the strength of the 

relation from the length of the segment. Consequently, we 

also need metrics that handle the length of edge intersection. 

For a single point intersection (degenerate line segment), the 

volume of a point is zero, as are the area and length of a single 

point, see Fig. 8. 

 

Fig. 8.  The intersection two 3D objects can be a point 0D, a line segment 1D, 

surface area 2D, or volume 3D. 

D.  Space Partitioning 

Usually, each object divides the 3D space into three parts: 

interior, boundary and exterior.  In reality, it is five parts, see 

Fig. 7.  The interior and exterior of the object are 3D parts of 

space, and the boundary of the object is 2D. The intersection 

between two 3D objects can be 3D, or a 2D surface, or a 1D 

curve, or a line segment, or even 0D (i.e., a point).  In many 

geographical applications, regions may not have a well-

defined boundary.  For example, the shoreline boundary of a 

lake is not fixed. If the lake is surrounded with a road, the 

road can serve as the boundary for practical purposes.  We 

need to compensate for the blur in the boundary. 

Consequently we utilize two additional topological regions: 

Boundary inner neighborhood (Bin) and Boundary exterior 

neighborhood (Bex). They can be used to measure how close 

the objects are from boundary to boundary. The thick 

boundary becomes a 3D object rather than a 2D object, so the 

volume calculation for boundary becomes meaningful. For 

non-intersecting objects, it can be used to account for the 

distance between them, and for the tangential proper part 

relation between objects A and B, NTPP(A, B), it can 

measure how close the inner object A is from the object inner 

boundary Bbi. Thus the terms Boundary interior neighborhood 

(Bin) and Boundary exterior neighborhood (Bex) for an object 

A account for the fuzziness, Abt  AbiAbe, in the boundary 

description or the thickness of the boundary; see Fig. 6 and 

Fig. 7.  

E.  25-Intersection 

To keep full generality available to the end-user, an object 

space can be defined in terms of five parts: interior, boundary, 

exterior, boundary interior neighborhood, and boundary 

exterior neighborhood. As descriptive as we can be for 
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symbols to be close to natural language: we use Int(A) for Ai 

the interior of A, Ext(A) for Ae the exterior of A, Bnd(A) for 

Ab the boundary of A, Bin(A) for Abi the boundary interior 

neighborhood A, and Bex(A) for Abe the boundary exterior 

neighborhood of the boundary of A. This will lead to a 25-

intersection table where the boundary can be a crisp boundary 

Ab, or a thick boundary Abt AbiAbe; see Table 3 for all 25 

combinations of intersections. 

TABLE 3 

25-INTERSECTION TABLE. 

 

Now Bnd(A) represents the crisp boundary of A, if any, 

whereas Bin(A) and Bex(A) account for the crisp 

representations of the vague boundary. There are 225 possible 

25-intersection vectors in all.  However, all the vectors are not 

physically realizable.  For example, all entries in any row in 

Table 3 cannot be true simultaneously, and all entries in any 

column in Table 3 cannot be true simultaneously.  Another 

use of the metrics is to see, for the proper part relation 

between A and B, PP(A,B), how far the inner object A is from 

the inner boundary neighborhood of the enclosing object, Bbi. 

A commonly used predicate for determining weak 

connectivity between crisp regions is boundary-boundary 

intersection, AbBb.  We must be mindful that space now is 

portioned into five parts instead of three parts. It is clear that 

Ai, Ae are open sets, and Ab is a closed set. For spatial 

reasoning, when Abi and Abe are used, they are semi-open, 

semi-closed sets — open towards Ab and closed towards the 

inside of Abi and the outside of Abe.   

F.  Developing Spatial Metrics 

Here we complete the development of the remaining 

metrics; an application may selectively use the metrics 

applicable to the problem at hand. If IVsIV(A,B)=0 and 

BexsIV(A,B)=0, it means that A,B are at least r = dab 

(distance between the exterior neighborhood of A and the 

boundary of B).  Conventionally, a 4-intersection [10] 

(BndBnd, IntBnd, BndInt, IntInt) is sufficient to represent 

crisp 3D data. Some applications may represent Bex and Bin 

separately [5], while fuzzy logic applications may need to 

combine Bex and Bin into Bnd [6].  For all 25 intersections 

(see Table 3) the metrics are defined by normalizing the 

intersections. There are 25 possible pairwise intersections to 

be considered in the metrics. For one pair of objects, consider 

the eight distinct versions {(A,B), (A,Be), (Ae,B), (Ae,Be), 

(B,A), (B,Ae), (Be,A), (Be,Ae)} as input arguments for which a 

metric value may be computed.  That is, the domain for each 

metric consists of eight distinct pairs corresponding to each 

input pair of objects A and B.  Since metrics are normalized, 

some metrics may not be realizable; for example, IVsIV 

cannot be defined for the combinations {(Ae,B), (Ae,Be), 

(Be,A), (Be,Ae)} because the corresponding metrics involve 

infinity. In fact, five of the metrics are impossible (not 

realizable); see Table 4. Here we will identify the possible 

(reasonable) 20 metrics. 

TABLE 4 

Complete list of metrics corresponding to 25 intersections in table 1. 20 

metrics are viable and 5 metrics are not possible. 

 

Since the metrics are anti-symmetric, the converse metrics 

can be defined by switching arguments A and B (e.g., the 

converse of IVsIV(A,B) is IVsIV(B,A)). To make the list of 

metrics exhaustive, we can append suffix c to the name to 

indicate the converse metric when needed. Table 2 lists 

directly possible and impossible metrics, which are further 

developed in detail in Sections IV.F.1 and IV.F.2. 

Next we will define 20 viable metrics and show their 

connection with the RCC8 topological relations and size 

relations on 3D objects only. First we look at the two metrics 

together: IVsIV(A,B) and IVsEV(A,B) which measure how 

much space one object shares with the other object. We have 

already defined interior volume split by interior volume, 

IVsIV(A,B), earlier in the motivation discussion, Section III. 

F.1. Volume Metrics: segmentation of interior of reference 

object by the interior and exterior of target object 

Recall, interior volume splitting (IVsIV) measures the 

scaled (normalized) part of reference object that is split by the 

interior of the target object. It calculates how much of A is 

part of B.  The crisp boundary of a 3D object is 2D. Here 

boundary does not matter, as the volume of the boundary is 

zero. Exterior volume splitting (IVsEV) describes the 

proportion of reference object’s interior that is split by the 

other target object’s exterior. The exterior volume splitting 

metric (IVsEV) is defined by 
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IVsEV(A, B) =
volume(Ai ÇBe)

volume(Ai )

 

It measures how much A is away from B. Again, boundary 

does not matter. Observe that volume(A) = volume(AB) + 

volume(ABe), and hence IVsEV(A,B) = 1 - IVsIV(A,B).  

The metric value is between 0 and 1, inclusive. If the metric 

value IVsIV(A,B) = 0, the objects are disjoint or externally 

connected. If the metric value IVsIV(A,B) > 0, then this value 

indicates two things. First, AiBi ≠ .  Usually, the truth 

value of AiBi is established by considering the intersection 

of the boundaries of two objects (extensive computation takes 

place because the objects are represented with boundary 

information only). Here if the metric value IVsIV(A,B) > 0, 

we can quickly determine the truth value of  AiBi. Secondly, 

the actual value of the metric IVsIV(A,B) measures what 

relative portion of object A is common with object B; the 

larger the value of the metric, the larger the commonality and 

conversely.  Let  

    

This can directly answer queries such as object A has x 

percent in common with B, whereas object B has y percent in 

common with A, provided A and B intersect. If x=y=0, then 

the objects are either externally connected or disjoint, but this 

metric alone does not tell how far apart they are.  In order to 

determine that, we simply compute the distance between the 

boundaries to differentiate between DC and EC. The metric 

does embody knowledge about which object is larger. If x<y, 

then object A is bigger than object B. 

F.2. Boundary Metrics: segmentation of thick boundary of 

reference object by the interior and thick boundary of target 

object 

Recall, for the 3D object shown in Fig. 6(a), Abe is the 

boundary exterior neighborhood of Ab with some radius (Fig. 

6(b)), and Abi is the boundary interior neighborhood of Ab 

with some radius, see Fig. 6(c). The value of the radius is 

application-dependent. We use the qualitative interior and 

exterior neighborhood without specific reference to r, as IA 

 Abi  and EA  Abe  in the following equations. 

Considering the interior neighborhood of the reference 

object, we define the closeness to interior volume (BinsIV) as 

follows:   

BinsIV(A, B) =
volume(D I AÇBi )

volume(D I A)

 

This metric contributes to the overall degree of relations of 

PO, EQ, TPP, and TPPc. 

Similarly, we can consider the exterior neighborhood of an 

object, and can define a metric for exterior volume closeness 

(BexsIV) by replacing ΔIA by ΔEA.  

BexsIV(A, B) =
volume(DEAÇBi )

volume(DEA)

 

This metric is a measure of how much of the exterior 

neighborhood of Ab is aligned with the interior of B. This 

metric is useful for analyzing the degree of relations of PO, 

EQ, TPP, and TPPc. 

Similarly the metrics for the exterior of B are defined for 

completeness as follows:   

BeinsEV(A,B)  becomes 

BinsEV(A, B) =
volume(D I AÇBe)

volume(D I A)

 

BexsEV(A,B)  is defined by replacing ΔIA by ΔEA.  

BexsEV(A, B) =
volume(DEAÇBe)

volume(DEA)

 

Boundary-boundary intersection is an integral predicate 

for distinguishing RCC8 relations.  

Similarly, for quantitative metrics, it can be important to 

consider how much of the inside and outside of the boundary 

neighborhood of reference object is shared with the boundary 

neighborhood of the other object.  

BinsBin(A,B) is designed to measure how much of the 

Interior Neighborhood of A is split by the Interior 

Neighborhood of B. This metric is useful for fuzzy regions 

with fuzzy interior boundary. 

BinsBin(A, B) =
volume(D I AÇD I B)

volume(D I A)

 

BexsBin(A,B) is designed to measure how much of the 

Exterior Neighborhood of A is split by the Interior 

Neighborhood of B.  

BexsBin(A, B) =
volume(DEAÇD I B)

volume(DEA)

 

This metric is useful when the region is vague around both 

sides of the boundary. 

BinsBex(A,B) is defined by replacing ΔIA by ΔEA and is 

designed to measure how much of the interior neighborhood 

of A is split by the exterior neighborhood of B, It is useful to 

analyze topological relations DC and EC.  

BinsBex(A, B) =
volume(D I AÇDEB)

volume(D I A)  

BexsBex(A,B) is designed to measure how much of the 

exterior neighborhood of A is split by the exterior 

neighborhood of B. This metric is useful for fuzzy regions, if 

BexsBex(A,B) = 0 then we can narrow down the candidates 

of possible relations between A and B to DC, NTPP, and 

NTPPc.  

x =
volume(Ai ÇBi )

volume(Ai )
*100 y =

volume(Bi Ç Ai )

volume(Bi )
*100
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BexsBex(A, B) =
volume(DEAÇDEB)

volume(DEA)

 

F.3. Boundary Metrics: segmentation of crisp boundary of 

reference object by the interior and the boundary of target 

object 

We define several splitting metrics to specifically examine 

the proportion of the boundary of the reference object that is 

split by the volume, boundary neighborhoods, and boundary 

of the target object; we denote these metrics accordingly for 

boundary splitting. It should be noted that there are five 

versions of the equations for this metric. First, the boundary 

may be the thick boundary composite neighborhood (interior 

and exterior), in which case it is a volume, see Fig. 8. If the 

boundary is a simple boundary, it is a 2D area.  Therefore, for 

numerator calculations, we will be calculating AbB as either 

a volume or an area. It also is possible that AbB is an edge (a 

curve or a line segment). For example, for two cubes, a cube 

edge may intersect the face of the cube as a line segment or an 

edge of another cube in a line segment, or even as a single 

point (i.e., a degenerate line segment). If AbB is an edge, we 

calculate edge length. For the denominator, volume(Ab)  and 

area(Ab) are self-evident depending on whether we have a 

thick or simple boundary. However, length(Ab) calls for an 

explanation. In the numerator, when length(AbB) is 

applicable, then this intersection is part of an edge in Ab;  

length(Ab) is computed as the length of the enclosing edge. 

These metrics are defined and described below. The converses 

of the metrics can be derived similarly. 

BsIV(A,B) measures the Boundary of A split by the 

Interior Volume of B. 

BsIV(A, B) =
volume(Ab ÇBi )

volume(Ab)
or

area(Ab ÇBi )

area(Ab)
or

length(Ab ÇBi )

length(Ab)  

BsEV(A,B) is defined by replacing Bi by Be and measures the 

Boundary of A split by the Exterior Volume of B.  

BsEV(A, B) =
volume(Ab ÇBe)

volume(Ab)
or

area(Ab ÇBe)

area(Ab)
or

length(Ab ÇBe)

length(Ab)  

BsBin(A,B) is defined by replacing Bi by ΔI(B) and measures  

the Boundary of A split by the Interior Neighborhood of B.   

BsBin(A, B) =
volume(AbÇD I B)

volume(Ab)
or

area(AbÇD I B)

area(Ab)
or

length(AbÇD I B)

length(Ab)  

BsBex(A,B) is defined by replacing Bi by ΔEB and measures  

the Boundary of A split by the Exterior Neighborhood of B.   

BsBex(A, B) =
volume(AbÇDEB)

volume(Ab)
or

area(AbÇDEB)

area(Ab)
or

length(AbÇDEB)

length(Ab)  

BsB(A,B) is defined by replacing Bi by Bb and measures the 

Boundary of A split by the Boundary of B. 

BsB(A, B) =
volume(Ab ÇBb)

volume(Ab)
or

area(Ab ÇBb)

area(Ab)
or

length(Ab ÇBb)

length(Ab)  
This metric is again directly applicable to computing 

AbBb which is used to distinguish many of the RCC8 

relations. This subsequently allows us to narrow down the 

candidates of possible relations between A and B to DC, 

NTPP, and NTPPc. 

For crisp regions, we have an interior, boundary, and 

exterior.  For vague regions, we have boundary interior and 

exterior neighborhoods. The smaller the radius for boundary 

neighborhoods, the smaller the ambiguity in the object 

boundary.  For consistency, we can combine the interior and 

exterior neighborhoods into one, which we call a thick 

boundary.  For a thick boundary, the object has three disjoint 

crisp parts: the interior, the thick boundary, and the exterior.  

Now we can reason with these parts similar to how we use 

crisp regions for determining the spatial relations.  

F.4. Anatomy of Metrics 

The following discussion is applicable when there is 

positive distance between the boundaries, AbBb = , 

irrespective of AiBi ≠, see Fig. 9, or AiBi = , see Fig. 

10.  In Fig. 7, we see that the space relative to an object A can 

be partitioned into 5 parts: interior (dark), interior-

neighborhood (light dark inside the boundary), boundary, 

exterior neighborhood (light dark), and exterior (all outside). 

In Fig 9, B shares only Ai. In Fig 10, B shares only Ae . In Fig 

11, B shares all five parts, Ai, Abi, Ab, Abe, and Ae . 

 

Fig. 9. The space relative to object A is partitioned into 5 parts: interior 

(dark), interior-neighborhood (light dark inside the boundary), boundary, 

exterior neighborhood (light dark), and exterior (all outside). A and B have 

disjoint boundaries, B is inside A, but away from the boundary by r = dab. 
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Fig. 10. The space relative to object A is partitioned into 5 parts: interior 

(dark), interior-neighborhood (light dark inside the boundary), boundary, 

exterior neighborhood (light dark), and exterior (all outside). A and B have 

disjoint boundaries, B is outside A ,but away from the boundary by r = dab. 

 

Fig. 11. An example where B shares Ai, ΔIA  Abi, Ab, ΔEA  Abe, and Ae . 

V. SPATIAL RELATIONS: TOPOLOGICAL AND METRICAL 

If the regions are crisp, we can use the 9-intersection 

model for determining connectivity relations for 2D 

connectivity knowledge [2],[10], and for relative size 

information we use the 3D metrics from Section IV. The 

relative size of the objects and boundary is obtained by using 

volume metrics IVsIV, IVsB, and boundary-related BsB 

metrics.  Metrics measure the degree of connectivity; for 

example, for the proper overlap relation PO(A,B), IVsIV 

metric helps to determine the relative extent of overlap of 

each object.  In Section IV we discussed which metrics are 

specific to each of the connectivity relations.  If one or both 

regions have vague boundaries, we can use metrics to create a 

thick boundary, Abt  AbiAbe, by using the interior and 

exterior neighborhoods. Again we have, crisp interior Ai, 

exterior Ae, and thick boundary Abt. 

By using the 9-Intersection model on Ai, Ae, and Abt, we 

can derive the connectivity, degree of connectivity, and 

relative size information for vague regions. Other applications 

such as natural language and topological association [5] can 

use appropriate combinations of these topological parts. Fig. 5 

provides a visual summary of: (1) what intersections are 

required to classify each topological relation, and (2) the 

contribution (T / F) indication if the intersection is non-empty 

or empty. This tree can be used to classify crisp topological 

relations. Fig. 12 provides a visual summary of: (1) what 

metrics are required to classify each topological relation, and 

(2) the contribution (0 / +) each metric has with regards to the 

overall quality of the relation. This tree can be used to classify 

crisp relations. Similarly, a tree could be generated for vague 

regions with appropriate metrics from the set of 20 metrics. 

The general frame work for combining topology and 

metrics given in Fig. 12 can be explained diagrammatically in 

Fig. 13 as follows. First of all topological relations are 

determined. Then metrics are developed to strengthen the 

quality of the topological relations. Finally the metric based 

tree is generated that captures the topological and metrical 

relations in a single hybrid tree. 

 

Fig. 12. Tree for the metrics required for classification and the contribution 

(0/+) of the respective metrics to the overall quality of classification.  

 

Fig. 13. The structure of topological relations system and metrics relations 

leading to hybrid system. 

VI. CONCLUSIONS AND FUTURE DIRECTIONS 

Herein we presented an exhaustive set of metrics for use 

with both crisp and vague regions, and showed how each 

metric is linked to RCC8 relations for 3D objects. Our metrics 

are systematically defined and are more expressive (consistent 

with natural language) than previously published efforts. 

Further, we showed the association between our metrics and 

the topology and size of objects.  

This work should be useful for a variety of applications 

dealing with automated spatial reasoning in 3D. In the future, 

we plan to use these metrics to associate natural language 

terminology with 3D region connection calculus including 

occlusion considerations. Also we will explore the 

applications of these metrics between heterogeneous 

dimension objects, OmRm and OnRn for m, n {1,2,3}. 
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