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David Sundgren and Alexander Karlsson

Abstract—Since second-order probability distributions assign
probabilities to probabilities there is uncertainty on two levels.
Although different types of uncertainty have been distinguished
before and corresponding measures suggested, the distinction
made here between first- and second-order levels of uncertainty
has not been considered before. In this paper previously existing
measures are considered from the perspective of first- and
second-order uncertainty and new measures are introduced. We
conclude that the concepts of uncertainty and informativeness
needs to be qualified if used in a second-order probability context
and suggest that from a certain point of view information can
not be minimized, just shifted from one level to another.

Index Terms—Uncertainty, entropy, second-order probability.

I. INTRODUCTION

EASONING under uncertainty is a fundamental problem

within artificial intelligence. In this probability is an
important tool, but in real life situations there is often
uncertainty regarding the probability values themselves.
Second-order probability, see e.g. [1], [2], [3], is an
hierarchical model of imprecise probability that can be
used to model different types of uncertainty regarding
first-order probability distributions, e.g., in terms of their
quality [4]. Just as in e.g. the possibilistic hierarchy [5],
the epistemic reliability model [4] or fuzzy probabilities [6],
probability distributions are discriminated by weights. In the
case of second-order probability the weights are themselves
probabilities. Where there are probability distributions there is
uncertainty, with a second-order distribution there is then the
uncertainty that comes with the second-order probabilities but
also the uncertainty of the first-order probabilities.

Thus it is meaningful to distinguish different types of
uncertainty, and in the limits of uncertainty, ignorance and
uninformativeness. As is pointed out in [7] ignorance comes
in different forms, and E. T. Jaynes wrote in [8] that ‘A
major thing to be learned in developing this neglected half
of probability theory is that the mere unqualified epithet
“uninformative” is meaningless.’

A. Levels of Uncertainty in Dempster-Shafer

In the literature on Dempster-Shafer theory [9] there is
in e.g. [10] a distinction between two types of uncertainty,
dissonance and nonspecificity. Shannon entropy is in [10]
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mentioned as an example of a measure of dissonance but
not nonspecificity; beliefs expressed in terms of probability
distributions are dissonant. Dissonance pertains to probabilistic
uncertainty and in e.g. [11] an entropy like measure for
dissonance (or discordance) of the basic assignment functions
of [9] is introduced. On the other hand nonspecificity is in [10]
described as increasing with the number of alternatives in
a decision situation and the Hartley measure is put forward
as the appropriate measure of nonspecificity. In [12], the
measures for discord and nonspecificity are aggregated into
total uncertainty, see also [13] for a more recent account of
uncertainty measures in evidence theory.

Since second-order probability is not equivalent to
Dempster-Shafer theory the uncertainty measures designed for
belief functions are not directly applicaple to second-order
distributions. Yet, in [14] there is a discussion of how
second-order distributions could be interpreted in terms of
nonspecificty. Smithson [14] recounts the situation in [15]
where Miss Julie is invited to bet on the outcomes of three
tennis matches in terms of second-order probability. In match
A it is known that it will be an even match; in terms of
first- and second-order uncertainty there is no second-order
uncertainty and maximum first-order uncertainty in match
A. Nothing is known about match B and Smithson [14]
suggests that the second-order distribution be a uniform
distribution spanning the [0, 1] interval, in this case both first-
and second-order uncertainty is high but it is questionable
whether any second-order distribution can model the ignorance
regarding match B. As regards to match C' Miss Julie knows
that one of the players is excellent and the other an amateur
but she does not know which one is the better player, in
this case there is no first-order uncertainty but maximum
second-order uncertainty. The corresponding second-order
distributions could be described as follows in the terms used
in the sequel of this paper: In match A we say that the
second-order distribution is determined by p(x; = 0.5, 25 =
0.5) = 1, in match C' we could have the second-order
distribution p(x; = 1,20 = 0) = 0.5,p(z1 = 0,290 = 1) =
0.5. The case of match B is probably not possible to fully
specify with second-order distributions.

According to Smithson [14] B is the most nonspecific
situation, C' is more specific than B and A is considered to
be “quite specific”. With respect to B there are two different
approaches; either use a uniform second-order distribution as
advised in [14] or refuse to express the uncertainty of B with
a second-order distribution. In the first case there is some
first-order uncertainty since there is positive probability for
high-entropy points. Inasmuch the second-order distribution
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assigns belief to points that are far apart there is a high
second-order uncertainty but belief in neighboring points
reduce second-order uncertainty to be less than maximal.

Comparing nonspecificity with first- and second-order
uncertainty, if match B after all is represented by a
second-order distribution B would be between A and C
along both the first- and second-order uncertainty scale while
being the most nonspecific, indicating that first-/second-order
uncertainty and dissonance/nonspecifity are independent
measures. If on the other hand B is left out for being
impossible to be modelled with a second-order distribution,
dissonance would have positive correlation to first-order
uncertainty.

Even though we discuss uncertainty measures for
second-order probability rather than for Dempster-Shafer
theory there would be a parallell in that what we call first-order
uncertainty could be seen as probabilistic just as dissonance
is. Second-order level uncertainty could correspondingly
described as deterministic.

B. Probabilistic and Deterministic Uncertainty

The distinction might be clarified with an example. Say
that we want to express ignorance as to the outcome of an
experiment with a second-order probability distribution. One
possibility is to assign all second-order probability to the
maximum entropy distribution where all outcomes are equally
probable. This way we would express ignorance on what could
be called the first-order level. But on the second-order level
we are absolutely certain, there is no doubt which first-order
distribution is the proper one, all uncertainty if placed on
the level of first-order probabilities. This situation might be
described as being certain of being uncertain. On the other
hand we could express ignorance by the uniform second-order
distribution on the zero entropy distributions where one of
the outcomes is certain. In a first-order perspective there is
no uncertainty, distributions with positive entropy are not
considered, however we would know no more about the
outcome of the experiment. The uncertainty remains but now
entirely on the second-order level, you might say that in this
case we are uncertain of being certain.

To make the experiment tangible, consider throwing a
die. The second-order distribution mentioned first, where all
second-order probability is assigned to the uniform distribution
(1/6,1/6,...,1/6) could be employed to express certainty
in that the die is fair. But if a uniform second-order
distribution is put on the six zero-entropy distributions
(1,0,...,0),...,(0,...,0,1) this would mean that we know
for certain that the die is fixed to always show the same number
but we have no idea which one. A possible interpretation in the
realm of philosophy or psychology could be that the first type
of second-order distribution could be used by someone who
believes in the fundamental randomness of everything but the
other type is suitable for an ignorant! determinist. These two

IThe term is of course not used in a derogatory sense.
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second-order probability distributions are extreme examples
and other second-order distributions could represent mixtures
of the two types of ignorance. The point is that ignorance is not
enough to specify a second-order distribution unambiguously.
And even given the distribution of uncertainty between the
two levels it is not obvious how to measure uncertainty.

Mork [16] has performed an extensive study on how
uncertainty could be measured from credal sets and from
second-order probability distributions. He introduced an
entropy based uncertainty measure called GSU (Gérdenfors-
Sahlin uncertainty) after [4]. Entropy has also been
applied to interval-based imprecise probabilities (i.e., without
second-order information) [17]. In this paper we will use
entropy as a basis for a majority of our uncertainty measures.
By using simple numerical examples, we will contrast the
result of our measures to previous measures found in the
literature.

In particular, we show that uncertainty measures for
second-order probability distributions can be constructed
in various ways, and that there are seemingly reasonable
requirements on uncertainty measures that are not always met
for the measures we discuss. We suggest that uncertainty
in a second-order probability setting needs to be qualified
in order to be measured consistently. There are likely many
aspects with which to specify what is meant by uncertainty
for second-order distributions, but whether uncertainty is
measured on the first- or second-order level, or both, appears to
be a relevant specification. To our knowledge the only previous
uncertainty measure for second-order probability that could
be said to cover both levels is the GSU measure of [16].
We here introduce a measure for aggregated uncertainty that
decomposes naturally into first and second-order levels.

C. Definitions and Notation

Let the outcome space {2 have a finite number of elements n,
Q={s;:i=1,...,n}. What we call first-order probabilities
are the probabilities of the n outcomes and second-order
probability distributions are probability distributions with
first-order distributions as random variables. That is, any
probability can be seen as a first-order probability, but
second-order probability is probabilities over probabilities.
Since we are more interested in the probabilities of outcomes
rather than the outcomes themselves, we denote the probability
Pr(s;) by z;, i.e. all x; are first-order probability values,
0Lz < I,Z?:l xz; = 1. All marginals mentioned below
are one-dimensional marginal probability distributions.

Further, to simplify computations we restrict the first-order
probability values to rational numbers, xz; = k;/N,
where > " ki = N. A probability distribution will
then be considered as a vector x = (z1,...,T,) =
(k1/N,...,kn/N). Let X denote a set of first-order
probabilities x where the marginals are rational numbers.
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Furthermore, let us define the set:

n
Xy = {x ix = (k;l/N,...,kn/N),Zk,» =N,k € N}
i=1
i.e., the set of all first-order probabilities in the form of rational
numbers that fulfill >  k; = N. For every N, Xy is
finite so we are therefore restricted to discrete second-order
probability distributions over first-order distributions. That is,
the discrete second-order probability distributions discussed
here have X as outcome space. Second-order probability
distributions are denoted p, and the probability of first-order
probability distribution x € Xy is then p(x). The marginal
probability of first-order probability value x; is written p;(z;).
We remind of the definition of Shannon entropy

H(x) = —Zwilogzmi.
i=1

II. FIRST-ORDER UNCERTAINTY

As we have argued we may distinguish two levels of
uncertainty. The term first-order uncertainty is intended to
capture uncertainty on the level of first-order probabilities
in the context of a second-order probability distribution.
In other words, first-order uncertainty is the type of
uncertainty expressed by probababilities of unknown outcomes
of an event. In the absence of second-order probability an
uncertainty measure such as entropy would be used, but
here we have second-order probability distributions to account
for. In this section we present one way of measuring such
first-order uncertainty.

Weighted entropy. This uncertainty measure intends to
capture the collected amount of entropy in the first-order
probability values. Since a second-order distribution assigns
probability values to the first-order variables, the entropy
values are weighted accordingly. That is, the more probable a
vector x is, the more weight we give to its entropy.

Wa(X.p) =Y p)H(x) =~ p(x) Zw logy @i .

xeX xeX

III. SECOND-ORDER UNCERTAINTY

These measures are meant give the degree of uncertainty
on the second-order level. For instance, if all second-order
probability is given to low entropy points there could still
be a high degree of uncertainty in that there is little or no
commitment to any one particular outcome.

We have found three basic approaches to second-order
uncertainty, one is the entropy of the second-order
probability distribution, the other one is based on how
much the second-order distribution is spread out. The latter,
distance-based measures are justified by the intuition that
uncertainty could be expressed by conflicting statements. The
third measure considers the volume of the support of the
second-order distribution.
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Entropy. This measure is simply the entropy H(p) of the
second-order distribution:

H(X,p) ==Y p(x)log, p(x).
xeX

Weighted Kullback-Leibler divergence. If we want to be
able to compare second- and first-order uncertainty, we have
to use an entropy-based distance measure so that first- and
second-order uncertainty are measured in the same units. If
second-order uncertainty is linked to the spread of belief over
the probability simplex and measure entropy, we suggest the
average Kullback-Leibler divergence, see [18], to the mean
as measure of second-order uncertainty, i.e., the mean of the
second-order distribution g = (g1, p2, . .., fin), defined by
Wi = D _xexy P(X)z; is used as point of reference.

Wi (X,p) = Y p(x) D (x|p) =

xeX
n T
Z p(x) Z z;logy *7 :
x€X i=1 Hi

Degree of imprecision. The degree of imprecision [19] aims
to be an approximation of the hypervolume spanned by the
first-order probability distributions with positive second-order
probability.

1O .
DI(X,p) = ~ ; [ Jmax i — min xz} ;
where Xy = {x € X|p(x) > 0}. Note that the
computation of DI can be performed by maximizing
respective minimizing over the extreme points of the convex
hull of first-order probability distributions with positive
second-order probability.

IV. AGGREGATED UNCERTAINTY

Under this rubric we collect measures that could claim
to express the aggregated degree of uncertainty on first and
second-order level.

Mork’s GSU. The uncertainty measure introduced in [16]
is named after Girdenfors and Sahlin and is inspired by their
discussion in [4] about epistemic reliability. The idea might
be summarized in that the information value is reduced by
adding second-order probability through a convex combination
of information values.

The measure is defined by:

GSU(X,p) = max { ; [ml );(p(x) log, xZ] } .
Sum of Wg and Wp,, . Since both the first-order measure
of weighted entropy and the second-order measure of weighted
Kullback-Leibler divergence are based on entropy of first-order
probabilities and have the same units the sum of the measures
is meaningful.
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TABLE 1
NUMERICAL EXAMPLES

[ Examples |

First- and Second-order Probability Distributions ]

A X ={(1/3,1/3,1/3)}, p(1/3,1/3,1/3) =1

B X = {(32, 29, 29)/90, (29, 32, 29)/90, (29, 29, 32) /901,
Vx € X,p(x) =1/3

X = X0, (Vx € X)(Pol(x|(1/3,1/3,1/3))) (Perks’ prior)

X = X10, (Vx € X)(Pol(x

(1/2,1/2,1/2))) (Jeffreys’ prior)

| m| O QA

X = X10, (Vx € X)(Pol(x

(1,1,1))) (Bayes-Laplace’s prior)

X =1{(1/6,1/6,2/3),(1/6,2/3,1/6)},
p(1/6,1/6,2/3) =3/4,p(1/6,2/3,1/6) = 1/4

Y ={(2/3,1/6,1/6),(1/3,1/3,1/3), (1/4,1/4,1/2)
Vy €Y,p(y) =1/3

= Q

(X,Y) =

XxY ={(xy)lx€ X,y €Y},
p(x,y) = p(x)p(y), p(x),p

(y) from F and G.

—

(X,Y) =

X xY ={(x,y)lx€ X,y €Y},
V(x,y) € X x Yp(x,y)) =1/6 , p(x), p(y) from F and G.

J X = {(1/6,1/6,2/3),(1/6,2/3,1/6), (7/10,1/10,1/5)].
p(x1) = 1/2,p(x2) = 1/3,p(xs3) = 1/6.

K X asinJ, but Vx € X, p(x) = 1/3.

Interestingly, the sum of W and Wp, , equals the entropy
of the second-order distribution’s mean:

Theorem 1: Wi (X,p) + Wp, (X,p) =
pi = e x P(X)Ti

Proof:
WH(Xap) + WDKL(X7p) =

Z p(x) Z Z; (10g2 % — log, xz> =

H(w), where

xEX i=1

_ Z p(x) le 10g2 Hi =
xeX i=1

_Z<Z >log2/¢1— Zmlogzﬂi:H(“)
i=1 \xeX =1

V. NUMERICAL EXAMPLES

To better understand these uncertainty measures we have
applied them to some second-order probability distributions
with various intuitive uncertainty properties. Some of the
distributions have only a few points, other distributions
have support on the entire space Xy, for N = 10. The
latter distributions will come from the multivariate Pdlya
family [20]:

(ki + ;)

Pol(Kla) = = Rl

NIT (30, i) ﬁ
LN+ Zl 1 04) i=1
where Y 'k, = N and «; are parameters of the
corresponding Dirichlet distribution. Note that we can obtain
a distribution over Xy by Pol(k/N|a). The Pélya family
of distributions can be seen as the discrete counterpart of
the Dirichlet family and is the result of integrating out the
underlying probabilities drawn from a Dirichlet distribution in
a multinomial distribution.
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Consider the examples defined by Table I (where n = 3)
and the results of applying the uncertainty measures, shown
in Table II.

The purpose of examples A and B is to how different
measures deal with two distributions that put all second-order
probability on high entropy points; on the one hand A
where the second-order distribution has support only on the
maximum entropy point, on the other B where there is a
uniform distribution on three different points that are close to
the maximum entropy. In Table II we see that H, the entropy
of the second-order distribution is the only measure that makes
much of the fact that the second-order distribution has support
on three points rather than one.

In examples C, D and E we look at symmetric Pdlya
distributions with parameters 1/3 (Perks), 1/2 (Jeffreys)
and 1 (Bayes-Laplace), respectively. The first-order level
measure Wy and the second-order level measure H increase
with the Dirichlet parameters while the other second-order
level measure Wp,, decreases. If we interpret the Dirichlet
parameters as a measure of the amount of available data higher
parameter values would give more (first order-) probabilistic
credibility to the mean probability vector.

If the parameters are equal, the mean would be the
maximum entropy point of the simplex. In our examples
then, first-order uncertainty would increase (as does Wpy), and
second-order uncertainty decrease (since there is more data to
support a particular first-order probability).

We may also note that GSU gives infinite values in
these cases. This is because there are zero-valued first-order
probabilities with positive second-order probability. It could
be argued that zero-valued first-order probabilities z; should
be excluded, since the event that xz; is the probability of is
impossible and does not belong in the outcome space. On the
other hand it is feasible that (on a second-order level) it is
possible but not certain that an event can not occur, i.e. that
neither x; = 0 or x; > 0 can be ruled out.
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TABLE II
RESULTS OF APPLYING THE UNCERTAINTY MEASURES TO THE EXAMPLES
First-order Second-order Aggregated
Examples Wi DI | H [ Wpy GSU | H(w)
A 1.5850 0.0000 | 0.0000 | 0.0000 | 1.5850 | 1.5850
B 1.5834 0.0333 | 1.5850 | 0.0016 | 1.5865 | 1.5850
C 0.6852 0.5682 | 5.5146 | 0.8997 o0 1.5850
D 0.8285 0.5682 | 5.8399 | 0.7565 o0 1.5850
E 1.0486 0.5682 | 6.0444 | 0.5364 o0 1.5850
F 1.2516 0.5000 | 0.8113 | 0.1768 | 2.0016 | 1.4284
G 1.4455 0.2500 | 1.5850 | 0.1091 | 1.7233 | 1.5546
H 2.6972 0.5000 | 2.3962 | 0.2858 | 3.7249 | 2.9830
1 2.6972 0.5000 | 2.5850 | 0.3408 | 3.4749 | 3.0379
J 1.2358 0.5333 | 1.4591 | 0.3189 | 2.0803 | 1.5547
K 1.2200 0.5333 | 1.5850 | 0.3633 | 2.0635 | 1.5833

V1. PROPERTIES

In [16] there are sets of requirements for uncertainty
measures both for credal sets and for second-order probability
distributions. Likewise there is in [21] a list of requirements
for measures of uncertainty, but designed for belief functions
(see [9]). Since the requirements of [21] do make sense
when translated to a second-order probability setting we will
consider also these, some of them also coincide with the
requirements of [16]. Please note that since belief functions
in the language of second-order probability is best translated
as lower bounds of first-order probabilities that in turn do not
determine unique second-order distributions, the translation of
properties must at times be ad hoc. Strictly speaking then, the
requirements below that are taken from [21] is to be considered
as inspired by [21] rather than literal translations.

Below we describe these requirements briefly, as far as
they can be expressed in the terms used in this paper. The
original authors have different notation, and in the case
of [21] information is carried by belief functions instead of
second-order distributions. Let /(X p) denote an uncertainty
measure for a second-order probability distribution p with
support on X.

(i) Conicides with entropy C1 in [16], (1) in [21].
Uncertainty coincides with entropy if all second-order
probability is put on a single vector. That is, If p(x) = 1
for some x € X, then U(X,p) = H(x).

(i1) Continuous C2 in [16]. U is continuous in p.

(iii) Symmetric C3 in [16]. U is symmetric, i.e. invariant
under permutations in the vectors x, ie.. if ¥ =
{(xﬂ(l),l‘w(g),...:L‘W(n))‘x S X} where 7 is a
permutation of {1,2,...,n}, U(X,p) =U(Y,p).

(iv) Hartley (2) in [21]. For a wuniform second-order
distribution, ie. p st p(x) = 1/|X]| for x € X,
uncertainty equals U(X,p) = log,|X|, the Hartley
measure of X.

(v) Range (3) in [21]. The range of U is the interval
[0, log, [€2]] = [0, log, n].

(v') With an alternative interpretation, (v)’ requires the
range to be [0, log, | X|].
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(vi) Additive C41in [16], (5) in [21]. Additivity, i.e. if X is the
cartesian product A x B and A and B are independent
so that p((x,y)) = p(x)p(y), then U(X, p) = U(A,p)+
U(B,p).

(vil) Subadditive C5 in [16], (4) in [21]. Subadditivity, i.e. if
X is the cartesian product A x B, then

(viii) Bounded by entropy NC1’ in [16]. The uncertainty of a
second-order distribution is at least as high as the entropy
of any of the first-order probability distributions in its
support. U (X, p) > maxxex H(X).

(ix) Bounded by credal set NC3 in [16]. If II is a partition
of X and Conv(X) is the convex hull of X, then
U (II(Conv(X))) > UII(X),p), where U’ is the
corresponding uncertainty measure for a credal set.
(ix") For some of the measures considered here

Wy, H,Wp,, , H(w)) it is not possible to remove

the second-order distribution p. But we might

formulate a version of NC3 that retains some of

what we believe is intended by the requirement.

Short of removing p we replace p with the

maximum entropy second-order distribution. We

declare requirement (ix)’ to be that U(X,p) <

U(X,q), where ¢ is the uniform second-order
distribution on X.

In Table III we summarize our findings of whether the

measures studied here fulfill the requirements. H(p) in the

rightmost column refers to the sum of Wy and Wp,, .

VII. SUMMARY AND CONCLUSIONS

In this paper, we have suggested a division of uncertainty
between two levels corresponding to first and second-order
probability. With such a division it becomes possible to
distinguish between on the one hand uninformativeness in the
guise of a uniform probability distribution over the possible
outcomes and on the other hand uninformativeness in the form
of a uniform second-order distribution. In the first case we are
sure of being uncertain but in the other we express uncertainty
on a higher level.

We studied the behavior of six different uncertainty
measures, two for each uncertainty level and two for
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TABLE III
PROPERTIES OF THE UNCERTAINTY MEASURES. NOTES: ! Wy + WDKL FULFILLS REQUIREMENT (IV) IF AND ONLY IF p; = 1/TL FORi=1,...,n. 2
EXAMPLE A IN TABLE Il SERVES AS COUNTER EXAMPLE IN THE NEGATIVE CASES. 3 PROVED IN [16]. 4 EXAMPLES F, G AND H IN TABLE II SERVE
TOGETHER AS COUNTER EXAMPLE SINCE THE UNCERTAINTIES OF ROW F AND G SHOULD ADD TO THE VALUE IN H. 5 WE HAVE NOT FOUND NEITHER
PROOF NOR COUNTEREXAMPLE. ¢ EXAMPLES F, G AND I IN TABLE II SERVE TOGETHER AS COUNTER EXAMPLE SINCE THE SUM OF THE
UNCERTAINTIES OF ROW F AND G SHOULD NOT BE LESS THAN THE VALUE IN I. 7 NOT APPLICABLE SINCE WE HAVE FOUND NO WAY OF DEFINING A
CORRESPONDING MEASURE FOR A CREDAL SET, I.E. WITH OUT THE SECOND-ORDER PROBABILITY DISTRIBUTION. 8 SEE EXAMPLES J AND K.

First-order Second-order Aggregated
Requirement Wy DI [ H [Wp, | GSU] H(u)
(1) Coincides with entropy Yes No No No Yes Yes
(ii) Continuous Yes Yes Yes Yes Yes3 Yes
(iii) Symmetric Yes Yes Yes Yes Yes3 Yes
(iv) Hartley No No Yes No No Nol
) Range Yes Yes No Yes No Yes
" No? No? Yes No? Yes No?
(vi)  Additive Yes No? Yes Yes Yes3 Yes
(vii)  Subadditive » » No® No® » No®
(viii)  Bounded by entropy No No No No Yes3 No
(ix) Bounded by credal set N.a” Yes | N.a” N. a” Yes3 N. a”
(ix") No® Yes Yes i No® No

the aggregated uncertainty. We introduced a new measure
for aggregated uncertainty, the sum of weighted entropy
and Kullback-Leibler divergence, where the weights are
second-order probabilities.

Furthermore, we showed that such a measure is equivalent
to the entropy of the mean first-order probability distribution.
In the paradigm of two levels of uncertainty, the entropy
of the mean could be viewed as the amount of uncertainty
that can be distributed on the first and second-order levels.
From such a perspective it is impossible to unequivocally
express unqualified ignorance, i.e. one must declare how
the uncertainty is distributed. And unless some reasonable
principle of uninformative distribution of uncertainty is
formulated we cannot say that first-order uncertainty is more
or less uncertain than second-order uncertainty.

We compared the measures by a set of properties that has
previously been utilized by [16] and [21]. Our separation
of measures into first, second-order and aggregated is not
very well reflected in the properties that are held, there is
no apparent pattern distinguishing the groups of measures.
The relation of measures and properties could be seen as
a degree of quality for the measures, the more properties
held the better. On the other hand it could be discussed
how appropriate the properties are for first and second-order
measures of uncertainty.

For example property (viii) seems at odds with the idea
that a second-order probability distribution weighs first-order
distributions differently. From our perspective it is perfectly
reasonable that an uncertainty measure for a second-order
distribution is lower than the entropy of any first-order
distribution in its support, at least if this distribution has
low second-order probability. If a distributions’ second-order
probability is low then it and its properties have a
correspondingly low impact.

If we compare our aggregated measure with the
GSU-measure, several differences can be found. Perhaps the
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first notably such is that GSU gives co as a result for examples
C - E in Table I while our measure are always finite. As
previously mentioned, the reason for such a result is due to
that a positive second-order probability was assigned to a zero
first-order probability. Beside the differences in properties,
found in Table III, the GSU-measure also seems to put more
emphasis on the first-order level, as is seen from examples A
and B.

In example A there is no uncertainty at the second level but
a maximum of uncertainty on the first level, while in example
B the second-order uncertainty is uniformly distributed around
this maximal first-level uncertainty. In this case DI and the
GSU-measure gives a aggregated uncertainty that is a bit
higher in example B whilst our measure gives the same amount
of uncertainty, however, distributed differently among the first
and second-order level. As for examples A and B, the pure
entropy measure H stands out since it measures the uncertainty
of Example A as zero but the uncertainty of B as the maximal
log, 3. This example shows that it could be problematic to
use a pure second-order probability entropy measure unless
you do believe that belief in three different but close points
should reflect much higher uncertainty than belief in a single
point. H is also unique among the measures studied here in
that it is bounded by the number of first-order distributions
in the support of the second-order distributions, giving much
higher uncertainty values for Examples C, D and E than the
others except GSU.

We have introduced a new dimension of uncertainty but
many questions remain. What should be required of measures
for first- and second-order uncertainty of second-order
distributions? Is it possible to express a larger amount
of uncertainty with higher-order distributions? And how is
uncertainty on higher levels to be measured?

The assumption of discrete distributions causes many
questions. See for instance the discussion above about the
measure I, does a finer granularity imply greater uncertainty?
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The points in the real-valued probability simplex that have no
support in our discrete examples, should they be viewed as
non-existent or simply as (second-order) impossible? Under
what circumstances can discrete second-order distributions
be seen as corresponding to reality, or when can they be
justified as approximations or simplifications? And what
consequences do such considerations have on the properties
that are desired for uncertainty measures? And how could
uncertainty measures for continuous second-order distributions
be designed and interpreted? These and similar questions are
to be addressed in future research.
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