

Abstract—Mobile agents are autonomous programs that may
be dispatched through computer networks. Using a mobile agent
is a potentially efficient method to perform transactions and
retrieve information in networks. Unknown congestion in a
network causes uncertainty in the routing times of mobile agents
so the routing of mobile agents cannot rely solely on the average
travel time. In this paper we deal with a given stochastic network
in which the mobile agent routing time is a random variable.
Given pre-specified values R and PR, the objective is to find the
path with the minimum expected time under the constraint that
the probability that the path time is less than R is at least PR. We
show that this problem is NP-hard, and construct an exact
pseudo-polynomial algorithm and an ε-approximation algorithm
(FPTAS) for the problem.

Index Terms—Agent-based architecture, fast routing algo-
rithm, FPTAS, stochastic routing.

I. INTRODUCTION
N the context of distributed computer communication
networks, we define an agent as “a human or software

system that communicates and cooperates with other human or
software systems to solve a complex problem that is beyond
the capability of each individual system” [1]. This definition is
compatible with the definitions given by Jennings and
Wooldridge [2], Shen et al. [3–5], and Peng et al. [6]. An
autonomous agent-based system is a system that is able to
function in some environments without the direct intervention
of human beings or other agents and that has control over its
own actions and internal states. Its major advantage is that it
can effectively access distributed resources in a low-
bandwidth network. In particular, such a system may be useful
in a client/server model, in which a client needs to access a
huge database on a server.

This access requires a large amount of data to be
transmitted over the network and may significantly waste
bandwidth. By sending a mobile program to the server and
performing data processing at the server, unnecessary data

Manuscript received on June 1, 2012; accepted for publication on August
23, 2012.

A. Elalouf is with Bar-Ilan University, Ramat Gan, Israel (e-mail:
amir.elalouf@biu.ac.il).

E. Levner is with Ashkelon Academic College, Ashkelon, Israel (e-mail:
elevner@acad.ash-college.ac.il).

T.C.E. Cheng is with Hong Kong Polytechnic University, Kowloon, Hong
Kong (e-mail: edwin.cheng@inet.polyu.edu.hk).

transmission can be avoided. Even if the client/server
connection fails, the mobile program can successfully perform
its mission.

Mobile agent-based technologies have been used in
distributed computer networks for more than two decades.
Establishing the notion of mobile agents in 1994, White [7]
describes a computational environment known as “Telescript”
in which running programs are able to transport themselves
from host to host in a computer network. Tsichritzis [8]
introduces the notion of mobile computation by describing a
hypothetical computing environment in which all the objects
are mobile. Within the scope of this paper, we follow the
definitions in [3–11] and define a mobile agent as “a software
agent that is able to autonomously migrate from one host to
another in a computer network.”

The latest achievements in multi-agent systems have
brought new possibilities for integrated systems management.
In typical applications, a mobile agent visits several hosts in a
network in order to complete its mission. The hosts provide
the agent with information and access to services, as well as a
platform for carrying out various actions and for
communicating with other agents. The services and
information that the agent needs to access are distributed
across different sites and are available in different forms and
at different levels of accuracy and degrees of reliability. This
gives rise to a mobile agent routing problem with uncertain
data, in which limited computational resources are available at
many possible sites.

A given benefit function determines how much benefit (e.g.,
information from sites, retrieval data, etc.) each site
contributes to an agent’s mission. Since many different sites
provide information yielding different degrees of benefit, the
mobile agent should find a best possible itinerary to visit them
under resource constraints. The problem of enhancing the
efficiency of mobile agents then reduces to the problem of
finding resource-constrained extremal paths in a graph. The
agent’s routing problem consists in finding an information- or
resource-constrained route that provides the best agent
performance.

In this study we deal with mobile agent routing in a
stochastic network. An agent takes an instruction to move
from one location to another until it reaches its destination,
where each action/move involves uncertainty. The common
objective function for an agent is the minimum expected

Efficient Routing of Mobile Agents in a
Stochastic Network

Amir Elalouf, Eugene Levner, and T.C.E. Cheng

I

61 Polibits (47) 2013ISSN 1870-9044; pp. 61–66

performance time or the minimum expected cost. In contrast
to many earlier known agent routing problems (see, e.g. [12–
15]), we study uncertainty by explicitly taking into account
variance in agents’ routes and probabilistic path
characteristics.

We do this by incorporating a corresponding non-linear
constraint into the problem formulation. To the best of our
knowledge, there is no work in the literature with a focus on
the design of efficient (polynomial-time) solution methods for
the constrained stochastic agent-routing problem. Aiming to
fill this research gap, we develop a fast ε-approximation
algorithm for solving the considered problem. Another
contribution of this paper is that, whereas many previous
works (e.g., [12–14]) have considered acyclic networks, we
allow the network to contain cycles, which makes the problem
much more practical. While the simple deterministic shortest
path problem can be solved in polynomial time, the
considered stochastic agent-routing problem turns out to be
NP-hard.

In the next section we provide a brief overview of other
works related to our study. In Section III we formulate the
problem. In Section IV we present the exact dynamic
programming (DP) solution algorithm. In Section V we
construct a new fully polynomial time approximation scheme
(FPTAS) algorithm. Section VI concludes the paper.

II. RELATED WORKS

The following basic mobile agent-routing problems have
been studied in the literature:

Problem P1. To maximize the total benefit generated from
agent travel, subject to the condition that the total travel time
(sometimes called “delay”) does not exceed a given threshold.
Such a problem has been studied by Camponogara and
Shima [12] and by Elalouf and Levner [1].

Problem P2. To minimize the agent’s total expected travel
time to complete the task under the constraint that the total
travel cost does not exceed a given budget limit. Such a
problem has been investigated by, e.g., Brewington et al. [15],
Hassin [14], Goel et al. [16], and Xue et al. [17], among many
others.

For the agent routing task, a computational scheme
considering multiple objectives has been pursued by Wu et
al. [18], who combine three objectives (communication cost,
path loss, and detected signal energy level) into a single
function and optimize it using a genetic algorithm that
outperforms local heuristics.

To evaluate the effectiveness of multi-objective algorithms
against a single-objective approach, Rajoopalan [19] applies a
more general weighted genetic algorithm (WGA) iterated with
different weights in order to obtain different non-dominated
routing solutions.

Osman et al. [20] analyze an execution model for agent
routing to develop a pragmatic framework for fault tolerance

in agent systems. This framework adopts a communication-
pair, independent-check pointing strategy.

In this paper we consider the mobile agent framework
described by Rech et al. [21] and by Camponogara and Shima
[12]. Specifically, we develop a graph-theoretic model for
computing the agent’s itinerary under resource constraints,
and on the basis of this model we design exact DP and
approximation solution algorithms.

In what follows, we suggest a general three-stage technique,
which follows and extends an earlier computational scheme
suggested by Gens and Levner [22, 23] and by Elalouf and
Levner [13] for the Knapsack and routing problems,
respectively.

The new technique essentially improves on the algorithms
proposed by Camponogara and Shima [12] and Hassin [14]
for the deterministic constrained routing problems P1 and P2,
and also provides a new way to obtain a fast solution for the
stochastic routing problem.

III. PROBLEM FORMULATION

The problem framework is based on a computational
network composed of a graph (possibly cyclic), G = (N, A),
with a set N of nodes, a set A of arcs, a start node s = 1, and a
destination node t = n, where |N| = n and |A| = h. The term tij,
denoting the time to traverse arc (i, j) in G, is a normal random
variable characterized by two parameters: the expected time
mij and the variance vij. The parameters mij are assumed to be
integers. A path p is called feasible if the probability that the
path time is less than R is at least PR, where R and PR are
given values. The problem is to find a feasible path with the
minimum expected time.

Problem input: G(N, A): a given graph.
For any arc (i, j)∈A, two parameters are given: mij, the

expected time; vij, the variance.
M(p) denotes the expected time to traverse path p;
()

(,)
ij

i j p
M p m

∈

= ∑ .

V(p) denotes the variance of the time it takes to traverse
path p. We assume that all the times tij are independent
random variables, and therefore ()

(,)
ij

i j p
V p v

∈

= ∑ .

In a mathematical form, the problem is to find a path p such
that

()()

() () ()1

min

.
p

R

M p

s t

M p P V p Rφ −+ ≤

Note that 1φ − is the inverse form of the standard normal
distribution. The meaning of the constraint is evident, i.e., if
the constraint is satisfied, the probability that the traverse time
will not exceed R is at least PR.

62Polibits (47) 2013 ISSN 1870-9044

Amir Elalouf, Eugene Levner, and T.C.E. Cheng

IV. EXACT SOLUTION ALGORITHM: DYNAMIC PROGRAMMING

This section introduces an exact DP solution algorithm.
Since mij are assumed to be integers, DP is a pseudo-
polynomial solution algorithm. Its complexity is estimated
below.

Let us associate with each path p a pair (M, V), where M =
M(p) is the expected time to traverse path p, and,
correspondingly, V = V(p) is the variance of the time to
traverse p. We deal with sets S(k) of pairs (M, V), arranged in
increasing order of the M-values, so that every pair in S(k)
corresponds to a path from node s to a node k. In order to
restore the path corresponding to a pair (M, V), we define for
each pair a predecessor pair and use standard backtracking.

If there are two pairs in S(k), (M1, V1) and (M2, V2) such
that M1 ≤ M2 and V1 ≤ V2, then the pair (M2, V2) is called
dominated and may be discarded. Let UB be an upper bound
on the total expected time for the optimal path. For instance,
UB can be set to

(,)
ij

i j A
m

∈
∑ . The polynomial time DP solution

algorithm is as follows:

Algorithm 1. Exact pseudo-polynomial DP solution

1. Input: G(N, A), |N| = n, |A| = h,
{(m(i, j), v(i, j) | (i, j)∈A}, R

2. Output: A constrained path with minimum expected time
3. Step 1. [Initialization]
4. Set S(1) = {(0, 0)}, S(k) ← ∅ for k = 2, …, n
5. Step 2. [Generate S(2) to S(n)]
6. Repeat n-1 times
7. for each arc (u, k) A∈ (leading from node u to node k)
8. W← ∅
9. for each pair (M, V)∈S(u) do
10. if ()1(,) (,)RM m u k P V v u k Rφ −+ + + ≤

then W ← W ∪ {(M+m(u, k), V+v(u, k))}
11. endfor
12. S(k) ← merge(S(k), W); during merging eliminate the

dominated pairs
13. endfor
14. End Repeat
15. Step 3. [Determine optimal solution]
16. find min M in S(n), denote it by ans
17. Return ans as the optimal time; use backtracking to find optimal

path.

Proposition 1.The complexity of the DP solution algorithm
(Algorithm 1) is O(hnUB).

Proof: Since the times are integers and we discard dominated
pairs, there are at most UB pairs in sets W and S(k).
Furthermore, constructing W in lines 9–11 requires O(UB)
elementary operations, because W is constructed from a single
S(k). Merging the sorted sets W and S(k) in line 12, as well as
discarding all the dominated pairs, is done in linear time (in
the number of pairs, which is at most UB).

In Step 2, lines 5–14, we have two nested loops, where the
first one begins at line 6 and the second at line 7. These two
loops go over all the arcs n–1 times, so in total we have O(hn)
iterations of lines 11–13. Thus, the total complexity of
Algorithm 1 is O(hnUB). □

V. FULLY POLYNOMIAL TIME APPROXIMATION SCHEME

A. General Description of the FPTAS
Our approach to constructing an FPTAS follows the so-

called interval partitioning computational scheme. The interval
partitioning technique was originally proposed by Sahni [24]
for the Knapsack problem and was later improved by Gens
and Levner [21], Levner et al. [25], and Elalouf et al. [1]. We
suggest a scheme that consists of three main stages:

Stage A: Find a preliminary lower bound LB and an upper
bound UB on the optimal path’s expected time such that
UB/LB ≤ n.

Stage B: Find improved lower and upper bounds such that
UB/LB ≤ 2.

Stage C: Partition the interval [LB,UB] into n/ε equal
subintervals, delete sufficiently close solutions in the
subintervals (taking only one “representative” from each
subinterval), and then find an ε-approximation solution using
full enumeration of the “representatives”.

This technique is similar to that presented by Elalouf et
al. [1]. Note, however, that the type of problem treated in the
present paper is more practical than that in [1]. First, the
problem considered here is of a stochastic nature, so it is
described by a non-linear constraint. Second, its underlying
graph G is allowed to have cycles. As a result, the algorithm
proposed herein has a different complexity compared with that
in [1].

B. Stage A: Finding Preliminary Lower and Upper Bounds
We use the following greedy technique: Let A = {a1, a2, …,

ah} be the set of arcs in G(N, A). Denote graph G'(N', A') with
the same set of nodes, i.e., N' = N, and the set of arcs 'A A⊆ .
To define A', we use the notation xai, a binary variable. If xai =
1 then ai∈A'; otherwise ai ∉ A'. We order the arcs in G in
non-decreasing order of their expected times, i.e.,

[] [] []1 2a a ahm m m≤ ≤ ≤ , and initialize 0aix = for any i = 1,

…, h (i.e., we initialize G' as a graph with no arcs).
Then we sequentially set [] []1 21, 1,a ax x= =  and add each

arc to the graph until we obtain a path from the source to the
destination that satisfies the constraint.

If all xai = 1 but we cannot find such a path, there is no
feasible solution for the problem considered. Let xk be the last
variable that is set to 1 in the above procedure. Then we
set 0 akm m= . Obviously, the optimal total travel time (denoted
by OPT) must lie between m0 and nm0. When OPT equals
zero, the above greedy procedure in Stage A finds the exact

63 Polibits (47) 2013ISSN 1870-9044

Efficient Routing of Mobile Agents in a Stochastic Network

optimal solution (i.e., a path of zero duration) and Stages B
and C are not required.

Proposition 2. The complexity of the FPTAS in Stage A is
O(n2 log h).

Proof. Sorting the arcs described above is done in O(h log h).
Each check of whether the graph G has a feasible path on a
selected set of arcs requires O(n2) time [26]. The total number
of checks is O(log h) if we use a binary search in the interval
[1, h]. Thus, the complexity of Stage A is O(n2 log h). □

C. Stage B: Finding Improved Bounds
This stage has two building blocks: a test procedure denoted

Test(w, ε), and a narrowing procedure denoted BOUNDS,
which uses Test(w, ε) as a sub-procedure. The procedure is
similar to the testing method described in [1] and [27], with
some minor changes that take the stochastic nature of the
problem into account.

Test Procedure (Test(w, ε))
Test(w, ε) is a parametric dynamic-programming type

algorithm that has the following property: Given positive
parameters w and ε, it reports either that the minimum possible
expected travel time is M* ≤ w or that that M* ≥ w(1-ε).

Test(w, ε) will be repeatedly applied as a sub-procedure in
the algorithm BOUNDS below to narrow the gap between UB
and LB until UB/LB ≤ 2.

Associate a pair (M, V) with each path p, where M = M(p) is
the path’s expected travel time, and, correspondingly,
V = V(p) is the variance of the path time. We deal with sets
S(k) of pairs (M, V) arranged in increasing order of the M-
values so that every pair in S(k) corresponds to a path from the
start node s to a node k. As in the DP solution algorithm
above, we discard all the dominated pairs in all sets S(k).

If M2–M1 ≤ δ, then the pair (M, V) is called δ-close. We
discard δ-close pairs from set S(k) according to the following
procedure:

(a) Let w be a given parameter satisfying LB ≤ w ≤ UB. For
each S(k), partition the interval [0,w] into n ε   equal
subintervals of size no greater than δ = εw/n.

(b) If, for a given subinterval, there are multiple pairs from
S(k) for which the value of M falls into the subinterval, discard
all such δ-close pairs, leaving only one representative pair in
the subinterval, namely, the pair with the smallest (in this
subinterval) V-coordinate.

(c) Any pair (M, V) with M > w (called w-redundant) must
be discarded.

The algorithm for Test(w, ε) is as follows:

Algorithm 2. Testing Procedure (Test(w, ε))

1. Input: G(N, A), |N| = n, |A| = h, {(m(i, j), v(i, j) | (i, j)∈A}, R
2. Input ε, w
3. Δ ← εw/n

4. Step 1. [Initialization]
5. Set S(1) = {(0, 0)}, S(k) ← ∅ for k = 2, …, n
6. Step 2. [Generate S(1) to S(n)]
7. Repeat n-1 times
8. for each arc (u, k) A∈ (leading from node u to node k)
9. W ← ∅
10. for each pair (M, V) ∈S(u) do

11. if ()1(,) (,)RM m u k P V v u k Rφ −+ + + ≤

then W ← W ∪ {(M+m(u, k), V+v(u, k))}
12. endfor
13. S(k) ← merge(S(k), W); during merging eliminate the

dominated pairs and the δ-close pairs
14. endfor
15. End Repeat
16. Step 3. Find a pair (M, V) in S(n), such that M ≤ w.
17. If such a path is found in S(n), return M* ≤ w.
18. If such a path cannot be found in S(n) return M* ≥ w(1–ε)

Proposition 3. The complexity of Test(w, ε) is O(hn2/ε),

Proof. Since the subinterval length is δ = εw/n, we have
O(n/ε) subintervals in the interval [0, w]. Therefore there are
O(n/ε) representative pairs in sets W and S(k). Further,
constructing each W in lines 10-12 requires O(n/ε) elementary
operations. Merging the sorted sets W and S(k) in line 13, as
well as discarding all the dominated pairs, is done in linear
time (in the number of pairs, which is O(n/ε)). Step 2 (starting
in line 6) goes over all the arcs n-1 times, so in total we have
O(nh) iterations of lines 10-12. Thus, the total complexity of
Algorithm 2 is O(hn2/ε). □

The Narrowing Procedure BOUNDS
The narrowing procedure presented in this section

(BOUNDS) is adapted from the procedure suggested by Ergun
et al. [27] for solving the restricted shortest path. Specifically,
when we run Test(w, ε), we choose ε as a function of UB/LB,
updating its value from iteration to iteration. To distinguish
the allowable error (ε) in the FPTAS from the iteratively
changing error in the testing procedure, we denote the latter as
θ. The algorithm proceeds as follows:

Algorithm 3. BOUNDS

1. Input: LB and UB such that UB/LB ≤ n.
2. Output: LB and UB such that UB/LB ≤ 2
3. If UB/LB ≤ 2 , Goto 10

4. Set 1UB LBθ ← −

5. Set ()1w L B UB θ← ⋅ −

6. Run Test(w,θ)
7. If Test(w,θ) returns that M* ≤ w then set UB ← w
8. else set UB ← w(1-θ)
9. Go to line 3
10. Return the improved LB and UB
11. End

64Polibits (47) 2013 ISSN 1870-9044

Amir Elalouf, Eugene Levner, and T.C.E. Cheng

The complexity of BOUNDS is O(hn2). The proof is along
the same line as that of Lemma 5 in [27].

D. Stage C: The ε-Approximation Algorithm (AA)
We start Stage C with LB and UB values satisfying

UB/LB ≤ 2, and obtain an ε-approximation path.
Associate with each path p a pair (M, V), where, as above,

M = M(p) is the path expected time, and, correspondingly,
V = V(p) is the path variance. We deal with sets S(k) of pairs
(M, V) arranged in increasing order of the M-values so that
every pair in S(k) corresponds to a path from the start node s
to a node k. As in DP, we delete all the dominated pairs in all
the S(k) sets. In addition to deleting the dominated pairs, we
delete δ-close pairs as follows:

(a) In each S(k), partition the interval [0, UB] into
()()/ /UB LB n ε   equal subintervals of size no greater than

δ = εLB/n;
(b) If, for a given subinterval, there are multiple pairs from

S(k) for which the value of M falls into the subinterval, discard
all such δ-close pairs, leaving only one representative pair in
the subinterval, namely, the pair with the smallest (in this
subinterval) V-coordinate.

(c) A pair (M, V) with M > UB may be discarded.
The corresponding algorithm proceeds as follows:

Algorithm 4. ε-approximation algorithm (AA (LB, UB, ε))

1. Input: G(N, A), |N| = n, |A| = h, {(m(i, j), v(i, j) | (i, j)∈A}, R
2. Input UB, LB, ε
3. Δ ← εLB/n
4. Output: ε-approximation path such that path expected time is at

most (1+ ε)OPT
5. Step 1. [Initialization]
6. Set S(1) = {(0, 0)}, S(k) ← ∅ for k = 2, …, n
7. Step 2. [Generate S(2) to S(n)]
8. Repeat n-1 times
9. for each arc (u, k) A∈ (leading from node u to node k)
10. W ← ∅
11. for each pair (M, V) ∈S(u) do

12. if ()1(,) (,)RM m u k P V v u k Rφ −+ + + ≤ then

W←W ∪ {(M+m(u, k), V+v(u, k))}
13. endfor
14. S(k) ← merge(S(k), W); during merging eliminate the

dominated pairs and the δ-close pairs
15. endfor
16. End Repeat
17. Step 3. [Determine approximate solution]
18. find min M in S(n), denote it by ans
19. Return ans as the ε-approximation expected time, use

backtracking to find the path
20. The path’s expected time is at most (1+ε)OPT.

Theorem 1. The complexity of AA(LB, UB, ε) is O(hn2/ε).
The complexity of the entire three-stage FPTAS is O(hn2/ε).

Proof: Since the subinterval length is δ = εLB/n, we have
O(n(UB/LB)(1/ε)) subintervals in interval [0, UB], and since
UB/LB ≤ 2, there are O(n/ε) subintervals in the interval [LB,
UB]. Therefore, there are O(n/ε) representative pairs in any set
W, T, and S(k).

Constructing each W in lines 11–13 requires O(n/ε)
elementary operations because W is constructed from a single
S(k). Merging the sorted sets W and T in line 14, as well as
discarding all the dominated pairs, is done in linear time (in
the number of pairs, which is O(n/ε)). In Step 2 we have O(nh)
iterations of lines 11–13. Thus, the total complexity of
Algorithm 4 is O(hn2/ε). Since Step C dominates Steps A and
B of the algorithm, the complexity of the entire approximation
algorithm is O(hn2/ε). □

VI. CONCLUDING REMARKS

The main contribution of this work is a novel routing
scheme for mobile agents in a wireless stochastic network that
optimizes agent performance and reduces possible delays. An
auxiliary dynamic programming algorithm running in pseudo-
polynomial time is proposed for developing a fast routing
strategy.

Notably, algorithm complexity is thoroughly analyzed. The
mathematical model and algorithms presented in this paper
can serve as a prototype for future commercial protocols for
mobile agent routing over stochastic networks.

Future research should focus on developing more realistic
models and solution algorithms that incorporate a broader
variety of the practical characteristics of real-world computer
and communication networks.

REFERENCES
[1] A. Elalouf, E. Levner, and T. C. E. Cheng, “Efficient routing of mobile

agents for agent-based integrated enterprise management: A general
acceleration technique,” Lecture Notes in Business Information
Processing, vol. 88, pp. 1–20, 2011.

[2] N. R. Jennings and M. J. Wooldridge, “Applications of Intelligent
Agents,” in Agent Technology: Foundations, Applications, and
Markets, N. R. Jennings, M. J. Wooldridge, Eds., Heidelberg: Springer,
1998, pp. 3–28.

[3] W. Shen, D. H. Norrie, and J.-P. Barthes, Multi-Agent Systems for
Concurrent Intelligent Design and Manufacturing. London: Taylor and
Francis, 2001.

[4] W. Shen, D. Xue, and D. H. Norrie, “An agent-based manufacturing
enterprise infrastructure for distributed integrated intelligent
manufacturing systems,” in Proceedings of the Third International
Conference on the Practical Application of Intelligent Agents and
Multi-Agents, London, UK, 1997, pp. 1–16.

[5] W. Shen, “Distributed manufacturing scheduling using intelligent
agents,” IEEE Intelligent Systems, vol. 17, pp. 88–94, 2002.

[6] Y. Peng, T. Finin, Y. Labrou, B. Chu, J. Long, X. Tolone, and A.
Boughannam, “A multi-agent system for enterprise integration,” in
Proc. of PAAM’98, London, UK, 1998, pp. 155–169.

[7] J. E. White, Telescript Technology: The Foundation for the Electronic
Marketplace, White Paper, Mountain View, CA, USA: General Magic,
Inc., 1994.

65 Polibits (47) 2013ISSN 1870-9044

Efficient Routing of Mobile Agents in a Stochastic Network

[8] D. Tsichritzis, Objectworld, Office Automation. Heidelberg: Springer-
Verlag, 1985.

[9] W. Shen, Q. Hao, H. J. Yoon, and D. H. Norrie, “Applications of agent-
based systems in intelligent manufacturing: An updated review,”
Advanced Engineering Informatics, vol. 20, pp. 415–431, 2006.

[10] T. Papaioannou, Using Mobile Agents to Improve the Alignment
between Manufacturing and Its IT Support Systems, Robotics and
Autonomous Systems. Amsterdam: Elsevier, 1999.

[11] W. Shen, F. Maturana, and D. H. Norrie, “MetaMorph II: An agent-
based architecture for distributed intelligent design and
manufacturing,” Journal of Intelligent Manufacturing, vol. 11, pp.
237–251, 2000.

[12] E. Camponogara and R. B. Shima, “Mobile agent routing with time
constraints: A resource constrained longest-path approach,” Journal of
Universal Computer Science, vol. 16, pp. 372–401, 2010.

[13] A. Elalouf and E. Levner, “General techniques for accelerating FPTAS
for the routing and knapsack problems,” in Abstract Book, Annual
Meeting 2011 of Operations Research Society of Israel (ORSIS 2011),
Akko, Israel, 2011, p. 14.

[14] R. Hassin, “Approximation schemes for the restricted shortest path
problem,” Mathematics of Operations Research, vol. 17, 36–42, 1992.

[15] B. Brewington, R. Gray, K. Moizumi, D. Kotz, G. Cybenko, and D.
Rus, “Mobile agents in distributed information retrieval,” in Intelligent
Information Agents, M. Klusch, Ed., Heidelberg: Springer Verlag,
1999, pp. 355–395.

[16] A. Goel, K. G. Ramakrishnan, D. Kataria, and D. Logothetis, “Efficient
computation of delay-sensitive routes from one source to all
destinations,” in IEEE Infocom’2001, Washington, DC: IEEE Press,
2001, pp. 854–858.

[17] G. Xue, A. Sen, W. Zhang, J. Tang, and K. Thulasiraman, “Finding a
path subject to many additive QoS constraints,” IEEE Transactions on
Networking, vol. 15, pp. 201–211, 2007.

[18] Q. Wu, N. S. V. Rao, J. Barhen, S. S. Iyengar, V. K. Vaishnavi, H. Qi,
and K. Chakrabarty, “On computing mobile agent routes for data fusion
in distributed sensor networks,” IEEE Trans. Knowledge and Data
Engineering, vol. 16, pp. 740–753, June 2004.

[19] R. Rajagopalan, C. K. Mohan, P. Varshney, and K. Mehrotra, “Multi-
objective mobile agent routing in wireless sensor networks,” in
Evolutionary Computation, 2005. The 2005 IEEE Congress on 2–5
Sept. 2005, vol. 2, 2005, pp. 1730–1737.

[20] T. Osman, W. Wagealla, and A. Bargiela, “An approach to rollback
recovery of collaborating mobile agents,” IEEE Trans. Systems, Man
and Cybernetics, Part C, vol. 34, pp. 48–57, Feb 2004.

[21] L. Rech, R. S. Oliveira, and C. B. Montez, “Dynamic determination of
the itinerary of mobile agents with timing constraints,” in Proc.
IEEE/WIC/ACM International Conference on Intelligent Agent
Technology, Compiegne, France, 2005, pp. 45–50.

[22] G. V. Gens and E. V. Levner, “Fast approximation algorithms for job
sequencing with deadlines,”
Discrete Applied Mathematics, vol. 3, pp. 313–318, 1981.

[23] G. V. Gens and E. V. Levner, “Fast approximation algorithms for
knapsack type problems,” in Lecture Notes in Control and Information
Sciences, vol. 23, Berlin: Springer Verlag, 1980.

[24] S. Sahni, “Algorithms for scheduling independent tasks,” Journal of the
ACM, vol. 23, pp .116–127, 1976.

[25] E. Levner, A. Elalouf, and T. C. E. Cheng, “An improved FPTAS for
mobile agent routing with time constraints,” Journal of Universal
Computer Science, vol. 17, 1854–1862, 2011.

[26] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms. Cambridge, MA: MIT Press, 2001.

[27] F. Ergun, R. Sinha, and L. Zhang, “An improved FPTAS for restricted
shortest path,” Information Processing Letters, vol. 83, pp. 287–291,
2002.

66Polibits (47) 2013 ISSN 1870-9044

Amir Elalouf, Eugene Levner, and T.C.E. Cheng

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10417

	I. INTRODUCTION
	II. Related Works
	III. Problem Formulation
	IV. Exact Solution Algorithm: Dynamic Programming
	V. Fully Polynomial Time Approximation Scheme
	A. General Description of the FPTAS
	B. Stage A: Finding Preliminary Lower and Upper Bounds
	C. Stage B: Finding Improved Bounds
	D. Stage C: The ε-Approximation Algorithm (AA)

	VI. Concluding Remarks
	References

