
 

   

Abstract—Mobile agents are autonomous programs that may 
be dispatched through computer networks. Using a mobile agent 
is a potentially efficient method to perform transactions and 
retrieve information in networks. Unknown congestion in a 
network causes uncertainty in the routing times of mobile agents 
so the routing of mobile agents cannot rely solely on the average 
travel time. In this paper we deal with a given stochastic network 
in which the mobile agent routing time is a random variable. 
Given pre-specified values R and PR, the objective is to find the 
path with the minimum expected time under the constraint that 
the probability that the path time is less than R is at least PR. We 
show that this problem is NP-hard, and construct an exact 
pseudo-polynomial algorithm and an ε-approximation algorithm 
(FPTAS) for the problem. 
 

Index Terms—Agent-based architecture, fast routing algo-
rithm, FPTAS, stochastic routing. 

I. INTRODUCTION 
N the context of distributed computer communication 
networks, we define an agent as “a human or software 

system that communicates and cooperates with other human or 
software systems to solve a complex problem that is beyond 
the capability of each individual system” [1]. This definition is 
compatible with the definitions given by Jennings and 
Wooldridge [2], Shen et al. [3–5], and Peng et al. [6]. An 
autonomous agent-based system is a system that is able to 
function in some environments without the direct intervention 
of human beings or other agents and that has control over its 
own actions and internal states. Its major advantage is that it 
can effectively access distributed resources in a low-
bandwidth network. In particular, such a system may be useful 
in a client/server model, in which a client needs to access a 
huge database on a server.  

This access requires a large amount of data to be 
transmitted over the network and may significantly waste 
bandwidth. By sending a mobile program to the server and 
performing data processing at the server, unnecessary data 
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transmission can be avoided. Even if the client/server 
connection fails, the mobile program can successfully perform 
its mission.    

Mobile agent-based technologies have been used in 
distributed computer networks for more than two decades. 
Establishing the notion of mobile agents in 1994, White [7] 
describes a computational environment known as “Telescript” 
in which running programs are able to transport themselves 
from host to host in a computer network. Tsichritzis [8] 
introduces the notion of mobile computation by describing a 
hypothetical computing environment in which all the objects 
are mobile. Within the scope of this paper, we follow the 
definitions in [3–11] and define a mobile agent as “a software 
agent that is able to autonomously migrate from one host to 
another in a computer network.”  

The latest achievements in multi-agent systems have 
brought new possibilities for integrated systems management. 
In typical applications, a mobile agent visits several hosts in a 
network in order to complete its mission. The hosts provide 
the agent with information and access to services, as well as a 
platform for carrying out various actions and for 
communicating with other agents. The services and 
information that the agent needs to access are distributed 
across different sites and are available in different forms and 
at different levels of accuracy and degrees of reliability. This 
gives rise to a mobile agent routing problem with uncertain 
data, in which limited computational resources are available at 
many possible sites.  

A given benefit function determines how much benefit (e.g., 
information from sites, retrieval data, etc.) each site 
contributes to an agent’s mission. Since many different sites 
provide information yielding different degrees of benefit, the 
mobile agent should find a best possible itinerary to visit them 
under resource constraints. The problem of enhancing the 
efficiency of mobile agents then reduces to the problem of 
finding resource-constrained extremal paths in a graph. The 
agent’s routing problem consists in finding an information- or 
resource-constrained route that provides the best agent 
performance.  

In this study we deal with mobile agent routing in a 
stochastic network. An agent takes an instruction to move 
from one location to another until it reaches its destination, 
where each action/move involves uncertainty. The common 
objective function for an agent is the minimum expected 
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performance time or the minimum expected cost. In contrast 
to many earlier known agent routing problems (see, e.g. [12–
15]), we study uncertainty by explicitly taking into account 
variance in agents’ routes and probabilistic path 
characteristics.  

We do this by incorporating a corresponding non-linear 
constraint into the problem formulation. To the best of our 
knowledge, there is no work in the literature with a focus on 
the design of efficient (polynomial-time) solution methods for 
the constrained stochastic agent-routing problem. Aiming to 
fill this research gap, we develop a fast ε-approximation 
algorithm for solving the considered problem. Another 
contribution of this paper is that, whereas many previous 
works (e.g., [12–14]) have considered acyclic networks, we 
allow the network to contain cycles, which makes the problem 
much more practical. While the simple deterministic shortest 
path problem can be solved in polynomial time, the 
considered stochastic agent-routing problem turns out to be 
NP-hard.  

In the next section we provide a brief overview of other 
works related to our study. In Section III we formulate the 
problem. In Section IV we present the exact dynamic 
programming (DP) solution algorithm. In Section V we 
construct a new fully polynomial time approximation scheme 
(FPTAS) algorithm. Section VI concludes the paper. 

II. RELATED WORKS 

The following basic mobile agent-routing problems have 
been studied in the literature: 

Problem P1. To maximize the total benefit generated from 
agent travel, subject to the condition that the total travel time 
(sometimes called “delay”) does not exceed a given threshold. 
Such a problem has been studied by Camponogara and 
Shima [12] and by Elalouf and Levner [1]. 

Problem P2. To minimize the agent’s total expected travel 
time to complete the task under the constraint that the total 
travel cost does not exceed a given budget limit. Such a 
problem has been investigated by, e.g., Brewington et al. [15], 
Hassin [14], Goel et al. [16], and Xue et al. [17], among many 
others. 

For the agent routing task, a computational scheme 
considering multiple objectives has been pursued by Wu et 
al. [18], who combine three objectives (communication cost, 
path loss, and detected signal energy level) into a single 
function and optimize it using a genetic algorithm that 
outperforms local heuristics.  

To evaluate the effectiveness of multi-objective algorithms 
against a single-objective approach, Rajoopalan [19] applies a 
more general weighted genetic algorithm (WGA) iterated with 
different weights in order to obtain different non-dominated 
routing solutions. 

Osman et al. [20] analyze an execution model for agent 
routing to develop a pragmatic framework for fault tolerance 

in agent systems. This framework adopts a communication-
pair, independent-check pointing strategy. 

In this paper we consider the mobile agent framework 
described by Rech et al. [21] and by Camponogara and Shima 
[12]. Specifically, we develop a graph-theoretic model for 
computing the agent’s itinerary under resource constraints, 
and on the basis of this model we design exact DP and 
approximation solution algorithms. 

In what follows, we suggest a general three-stage technique, 
which follows and extends an earlier computational scheme 
suggested by Gens and Levner [22, 23] and by Elalouf and 
Levner [13] for the Knapsack and routing problems, 
respectively.  

The new technique essentially improves on the algorithms 
proposed by Camponogara and Shima [12] and Hassin [14] 
for the deterministic constrained routing problems P1 and P2, 
and also provides a new way to obtain a fast solution for the 
stochastic routing problem. 

III. PROBLEM FORMULATION 

The problem framework is based on a computational 
network composed of a graph (possibly cyclic), G = (N, A), 
with a set N of nodes, a set A of arcs, a start node s = 1, and a 
destination node t = n, where |N| = n and |A| = h.  The term tij, 
denoting the time to traverse arc (i, j) in G, is a normal random 
variable characterized by two parameters: the expected time 
mij and the variance vij. The parameters mij are assumed to be 
integers. A path p is called feasible if the probability that the 
path time is less than R is at least PR, where R and PR are 
given values. The problem is to find a feasible path with the 
minimum expected time. 

Problem input: G(N, A): a given graph.  
For any arc (i, j)∈A, two parameters are given: mij, the 

expected time; vij, the variance. 
M(p) denotes the expected time to traverse path p; 
( )

( , )
ij

i j p
M p m

∈

= ∑ . 

V(p) denotes the variance of the time it takes to traverse 
path p. We assume that all the times tij are independent 
random variables, and therefore ( )

( , )
ij

i j p
V p v

∈

= ∑ . 

In a mathematical form, the problem is to find a path p such 
that 

( )( )

( ) ( ) ( )1

min

.
p

R

M p

s t

M p P V p Rφ −+ ≤

 

Note that 1φ −  is the inverse form of the standard normal 
distribution. The meaning of the constraint is evident, i.e., if 
the constraint is satisfied, the probability that the traverse time 
will not exceed R is at least PR. 
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IV. EXACT SOLUTION ALGORITHM: DYNAMIC PROGRAMMING 

This section introduces an exact DP solution algorithm. 
Since mij are assumed to be integers, DP is a pseudo-
polynomial solution algorithm. Its complexity is estimated 
below. 

Let us associate with each path p a pair (M, V), where M = 
M(p) is the expected time to traverse path p, and, 
correspondingly, V = V(p) is the variance of the time to 
traverse p. We deal with sets S(k) of pairs (M, V), arranged in 
increasing order of the M-values, so that every pair in S(k) 
corresponds to a path from node s to a node k. In order to 
restore the path corresponding to a pair (M, V), we define for 
each pair a predecessor pair and use standard backtracking.  

If there are two pairs in S(k), (M1, V1) and (M2, V2) such 
that M1 ≤ M2 and V1 ≤ V2, then the pair (M2, V2) is called 
dominated and may be discarded. Let UB be an upper bound 
on the total expected time for the optimal path. For instance, 
UB can be set to

( , )
ij

i j A
m

∈
∑ . The polynomial time DP solution 

algorithm is as follows: 

Algorithm 1. Exact pseudo-polynomial DP solution 

1. Input: G(N, A), |N| = n, |A| = h,  
{(m(i, j), v(i, j) | (i, j)∈A}, R 

2. Output: A constrained path with minimum expected time 
3. Step 1. [Initialization] 
4. Set S(1) = {(0, 0)}, S(k) ← ∅ for k = 2, …, n 
5. Step 2. [Generate S(2) to S(n)] 
6. Repeat n-1 times   
7.   for each arc (u, k) A∈  (leading from node u to node k) 
8.    W← ∅ 
9.    for each pair (M, V)∈S(u) do 
10.      if ( )1( , ) ( , )RM m u k P V v u k Rφ −+ + + ≤  

then W ← W ∪ {(M+m(u, k), V+v(u, k))} 
11.    endfor 
12.  S(k) ← merge(S(k), W); during merging eliminate the 

dominated pairs 
13.   endfor 
14.  End Repeat 
15. Step 3. [Determine optimal solution] 
16. find min M in S(n), denote it by ans  
17. Return ans as the optimal time; use backtracking to find optimal 

path. 

Proposition 1.The complexity of the DP solution algorithm 
(Algorithm 1) is O(hnUB). 

Proof: Since the times are integers and we discard dominated 
pairs, there are at most UB pairs in sets W and S(k). 
Furthermore, constructing W in lines 9–11 requires O(UB) 
elementary operations, because W is constructed from a single 
S(k). Merging the sorted sets W and S(k) in line 12, as well as 
discarding all the dominated pairs, is done in linear time (in 
the number of pairs, which is at most UB).  

In Step 2, lines 5–14, we have two nested loops, where the 
first one begins at line 6 and the second at line 7. These two 
loops go over all the arcs n–1 times, so in total we have O(hn) 
iterations of lines 11–13. Thus, the total complexity of 
Algorithm 1 is O(hnUB). □  

V. FULLY POLYNOMIAL TIME APPROXIMATION SCHEME 

A. General Description of the FPTAS 
Our approach to constructing an FPTAS follows the so-

called interval partitioning computational scheme. The interval 
partitioning technique was originally proposed by Sahni [24] 
for the Knapsack problem and was later improved by Gens 
and Levner [21], Levner et al. [25], and Elalouf et al. [1]. We 
suggest a scheme that consists of three main stages: 

Stage A: Find a preliminary lower bound LB and an upper 
bound UB on the optimal path’s expected time such that 
UB/LB ≤ n. 

Stage B: Find improved lower and upper bounds such that 
UB/LB ≤ 2. 

Stage C: Partition the interval [LB,UB] into n/ε equal 
subintervals, delete sufficiently close solutions in the 
subintervals (taking only one “representative” from each 
subinterval), and then find an ε-approximation solution using 
full enumeration of the “representatives”. 

This technique is similar to that presented by Elalouf et 
al. [1]. Note, however, that the type of problem treated in the 
present paper is more practical than that in [1]. First, the 
problem considered here is of a stochastic nature, so it is 
described by a non-linear constraint. Second, its underlying 
graph G is allowed to have cycles. As a result, the algorithm 
proposed herein has a different complexity compared with that 
in [1]. 

B. Stage A: Finding Preliminary Lower and Upper Bounds 
We use the following greedy technique: Let A = {a1, a2, …, 

ah} be the set of arcs in G(N, A). Denote graph G'(N', A') with 
the same set of nodes, i.e., N' = N, and the set of arcs 'A A⊆ . 
To define A', we use the notation xai, a binary variable. If xai = 
1 then ai∈A'; otherwise ai ∉  A'. We order the arcs in G in 
non-decreasing order of their expected times, i.e., 

[ ] [ ] [ ]1 2a a ahm m m≤ ≤ ≤ , and initialize 0aix =  for any i = 1, 

…, h (i.e., we initialize G' as a graph with no arcs).  
Then we sequentially set [ ] [ ]1 21, 1,a ax x= =   and add each 

arc to the graph until we obtain a path from the source to the 
destination that satisfies the constraint.  

If all xai = 1 but we cannot find such a path, there is no 
feasible solution for the problem considered. Let xk be the last 
variable that is set to 1 in the above procedure. Then we 
set 0 akm m= . Obviously, the optimal total travel time (denoted 
by OPT) must lie between m0 and nm0. When OPT equals 
zero, the above greedy procedure in Stage A finds the exact 
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optimal solution (i.e., a path of zero duration) and Stages B 
and C are not required. 

Proposition 2. The complexity of the FPTAS in Stage A is 
O(n2 log h). 

Proof. Sorting the arcs described above is done in O(h log h). 
Each check of whether the graph G has a feasible path on a 
selected set of arcs requires O(n2) time [26]. The total number 
of checks is O(log h) if we use a binary search in the interval 
[1, h]. Thus, the complexity of Stage A is O(n2 log h). □  

C. Stage B: Finding Improved Bounds 
This stage has two building blocks: a test procedure denoted 

Test(w, ε), and a narrowing procedure denoted BOUNDS, 
which uses Test(w, ε) as a sub-procedure. The procedure is 
similar to the testing method described in [1] and [27], with 
some minor changes that take the stochastic nature of the 
problem into account.  

Test Procedure (Test(w, ε)) 
Test(w, ε) is a parametric dynamic-programming type 

algorithm that has the following property: Given positive 
parameters w and ε, it reports either that the minimum possible 
expected travel time is M* ≤ w or that that M* ≥ w(1-ε).  

Test(w, ε) will be repeatedly applied as a sub-procedure in 
the algorithm BOUNDS below to narrow the gap between UB 
and LB until UB/LB ≤ 2.  

Associate a pair (M, V) with each path p, where M = M(p) is 
the path’s expected travel time, and, correspondingly, 
V = V(p) is the variance of the path time. We deal with sets 
S(k) of pairs (M, V) arranged in increasing order of the M-
values so that every pair in S(k) corresponds to a path from the 
start node s to a node k. As in the DP solution algorithm 
above, we discard all the dominated pairs in all sets S(k).  

If M2–M1 ≤ δ, then the pair (M, V) is called δ-close. We 
discard δ-close pairs from set S(k) according to the following 
procedure: 

(a) Let w be a given parameter satisfying LB ≤ w ≤ UB. For 
each S(k), partition the interval [0,w] into n ε    equal 
subintervals of size no greater than δ = εw/n.  

(b) If, for a given subinterval, there are multiple pairs from 
S(k) for which the value of M falls into the subinterval, discard 
all such δ-close pairs, leaving only one representative pair in 
the subinterval, namely, the pair with the smallest (in this 
subinterval) V-coordinate. 

(c) Any pair (M, V) with M > w (called w-redundant) must 
be discarded. 

The algorithm for Test(w, ε) is as follows: 

Algorithm 2. Testing Procedure (Test(w, ε)) 

1. Input: G(N, A), |N| = n, |A| = h, {(m(i, j), v(i, j) | (i, j)∈A}, R 
2. Input ε, w 
3. Δ ← εw/n 

4. Step 1. [Initialization] 
5. Set S(1) = {(0, 0)}, S(k) ← ∅ for k = 2, …, n 
6. Step 2. [Generate S(1) to S(n)] 
7. Repeat n-1 times   
8.   for each arc (u, k) A∈  (leading from node u to node k) 
9.    W ← ∅ 
10.    for each pair (M, V) ∈S(u) do 

11.      if ( )1( , ) ( , )RM m u k P V v u k Rφ −+ + + ≤  

then W ← W ∪ {(M+m(u, k), V+v(u, k))} 
12.    endfor 
13.    S(k) ← merge(S(k), W); during merging eliminate the 

dominated pairs and the δ-close pairs 
14.   endfor 
15. End Repeat 
16. Step 3. Find a pair (M, V) in S(n), such that M ≤ w. 
17. If such a path is found in S(n), return M* ≤ w. 
18. If such a path cannot be found in S(n) return M* ≥ w(1–ε) 

Proposition 3. The complexity of Test(w, ε) is O(hn2/ε),  

Proof. Since the subinterval length is δ = εw/n, we have 
O(n/ε) subintervals in the interval [0, w]. Therefore there are 
O(n/ε) representative pairs in sets W and S(k). Further, 
constructing each W in lines 10-12 requires O(n/ε) elementary 
operations. Merging the sorted sets W and S(k) in line 13, as 
well as discarding all the dominated pairs, is done in linear 
time (in the number of pairs, which is O(n/ε)). Step 2 (starting 
in line 6) goes over all the arcs n-1 times, so in total we have 
O(nh) iterations of lines 10-12. Thus, the total complexity of 
Algorithm 2 is O(hn2/ε). □ 

The Narrowing Procedure BOUNDS 
The narrowing procedure presented in this section 

(BOUNDS) is adapted from the procedure suggested by Ergun 
et al. [27] for solving the restricted shortest path. Specifically, 
when we run Test(w, ε), we choose ε as a function of UB/LB, 
updating its value from iteration to iteration. To distinguish 
the allowable error (ε) in the FPTAS from the iteratively 
changing error in the testing procedure, we denote the latter as 
θ. The algorithm proceeds as follows: 

Algorithm 3. BOUNDS 

1. Input: LB and UB such that UB/LB ≤ n. 
2. Output: LB and UB such that UB/LB ≤ 2 
3. If UB/LB ≤ 2 , Goto 10 

4. Set 1UB LBθ ← −   

5. Set ( )1w L B UB θ← ⋅ −  

6. Run Test(w,θ ) 
7. If Test(w,θ ) returns that M* ≤ w then set UB ← w  
8. else set UB ← w(1-θ ) 
9. Go to line 3 
10. Return the improved LB and UB 
11. End 
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The complexity of BOUNDS is O(hn2). The proof is along 
the same line as that of Lemma 5 in [27]. 

D. Stage C: The ε-Approximation Algorithm (AA) 
We start Stage C with LB and UB values satisfying 

UB/LB ≤ 2, and obtain an ε-approximation path. 
Associate with each path p a pair (M, V), where, as above, 

M = M(p) is the path expected time, and, correspondingly, 
V = V(p) is the path variance. We deal with sets S(k) of pairs 
(M, V) arranged in increasing order of the M-values so that 
every pair in S(k) corresponds to a path from the start  node s 
to a node k. As in DP, we delete all the dominated pairs in all 
the S(k) sets. In addition to deleting the dominated pairs, we 
delete δ-close pairs as follows: 

(a) In each S(k), partition the interval [0, UB] into 
( )( )/ /UB LB n ε    equal subintervals of size no greater than 

δ = εLB/n; 
(b) If, for a given subinterval, there are multiple pairs from 

S(k) for which the value of M falls into the subinterval, discard 
all such δ-close pairs, leaving only one representative pair in 
the subinterval, namely, the pair with the smallest (in this 
subinterval) V-coordinate. 

(c) A pair (M, V) with M > UB may be discarded. 
The corresponding algorithm proceeds as follows: 

Algorithm 4. ε-approximation algorithm (AA (LB, UB, ε)) 

1. Input: G(N, A), |N| = n, |A| = h, {(m(i, j), v(i, j) | (i, j)∈A}, R 
2. Input UB, LB, ε 
3. Δ ← εLB/n 
4. Output: ε-approximation path such that path expected time is at 

most (1+ ε)OPT  
5. Step 1. [Initialization] 
6. Set S(1) = {(0, 0)}, S(k) ← ∅ for k = 2, …, n 
7. Step 2. [Generate S(2) to S(n)] 
8. Repeat n-1 times   
9.   for each arc (u, k) A∈  (leading from node u to node k) 
10.    W ← ∅ 
11.    for each pair (M, V) ∈S(u) do 

12.      if ( )1( , ) ( , )RM m u k P V v u k Rφ −+ + + ≤  then 

W←W ∪ {(M+m(u, k), V+v(u, k))} 
13.    endfor 
14.    S(k) ← merge(S(k), W); during merging eliminate the 

dominated pairs and the δ-close pairs 
15.   endfor 
16.  End Repeat 
17. Step 3. [Determine approximate solution] 
18. find min M in S(n), denote it by ans  
19. Return ans as the ε-approximation expected time, use 

backtracking to find the path 
20. The path’s expected time is at most (1+ε)OPT. 

Theorem 1. The complexity of AA(LB, UB, ε) is O(hn2/ε). 
The complexity of the entire three-stage FPTAS is O(hn2/ε). 

Proof: Since the subinterval length is δ = εLB/n, we have 
O(n(UB/LB)(1/ε)) subintervals in interval [0, UB], and since 
UB/LB ≤ 2, there are O(n/ε) subintervals in the interval [LB, 
UB]. Therefore, there are O(n/ε) representative pairs in any set 
W, T, and S(k).  

Constructing each W in lines 11–13 requires O(n/ε) 
elementary operations because W is constructed from a single 
S(k). Merging the sorted sets W and T in line 14, as well as 
discarding all the dominated pairs, is done in linear time (in 
the number of pairs, which is O(n/ε)). In Step 2 we have O(nh) 
iterations of lines 11–13. Thus, the total complexity of 
Algorithm 4 is O(hn2/ε). Since Step C dominates Steps A and 
B of the algorithm, the complexity of the entire approximation 
algorithm is O(hn2/ε). □ 

VI. CONCLUDING REMARKS 

The main contribution of this work is a novel routing 
scheme for mobile agents in a wireless stochastic network that 
optimizes agent performance and reduces possible delays. An 
auxiliary dynamic programming algorithm running in pseudo-
polynomial time is proposed for developing a fast routing 
strategy.  

Notably, algorithm complexity is thoroughly analyzed. The 
mathematical model and algorithms presented in this paper 
can serve as a prototype for future commercial protocols for 
mobile agent routing over stochastic networks. 

Future research should focus on developing more realistic 
models and solution algorithms that incorporate a broader 
variety of the practical characteristics of real-world computer 
and communication networks. 

REFERENCES 
[1] A. Elalouf, E. Levner, and T. C. E. Cheng, “Efficient routing of mobile 

agents for agent-based integrated enterprise management: A general 
acceleration technique,” Lecture Notes in Business Information 
Processing, vol. 88, pp. 1–20, 2011. 

[2] N. R. Jennings and M. J. Wooldridge, “Applications of Intelligent 
Agents,” in Agent Technology: Foundations, Applications, and 
Markets, N. R. Jennings, M. J. Wooldridge, Eds., Heidelberg: Springer, 
1998, pp. 3–28. 

[3] W. Shen, D. H. Norrie, and J.-P. Barthes, Multi-Agent Systems for 
Concurrent Intelligent Design and Manufacturing. London: Taylor and 
Francis, 2001. 

[4] W. Shen, D. Xue, and D. H. Norrie, “An agent-based manufacturing 
enterprise infrastructure for distributed integrated intelligent 
manufacturing systems,” in Proceedings of the Third International 
Conference on the Practical Application of Intelligent Agents and 
Multi-Agents, London, UK, 1997, pp. 1–16. 

[5] W. Shen, “Distributed manufacturing scheduling using intelligent 
agents,” IEEE Intelligent Systems, vol. 17, pp. 88–94, 2002.  

[6] Y. Peng, T. Finin, Y. Labrou, B. Chu, J. Long, X. Tolone, and A. 
Boughannam, “A multi-agent system for enterprise integration,” in 
Proc. of PAAM’98, London, UK, 1998, pp. 155–169. 

[7] J. E. White, Telescript Technology: The Foundation for the Electronic 
Marketplace, White Paper, Mountain View, CA, USA: General Magic, 
Inc., 1994. 

65 Polibits (47) 2013ISSN 1870-9044

Efficient Routing of Mobile Agents in a Stochastic Network



 

[8] D. Tsichritzis, Objectworld, Office Automation. Heidelberg: Springer-
Verlag, 1985. 

[9] W. Shen, Q. Hao, H. J. Yoon, and D. H. Norrie, “Applications of agent-
based systems in intelligent manufacturing: An updated review,” 
Advanced Engineering Informatics, vol. 20, pp. 415–431, 2006. 

[10] T. Papaioannou, Using Mobile Agents to Improve the Alignment 
between Manufacturing and Its IT Support Systems, Robotics and 
Autonomous Systems. Amsterdam: Elsevier, 1999.  

[11] W. Shen, F. Maturana, and D. H. Norrie, “MetaMorph II: An agent-
based architecture for distributed intelligent design and 
manufacturing,” Journal of Intelligent Manufacturing, vol. 11, pp. 
237–251, 2000. 

[12] E. Camponogara and R. B. Shima, “Mobile agent routing with time 
constraints: A resource constrained longest-path approach,” Journal of 
Universal Computer Science, vol. 16, pp. 372–401, 2010. 

[13] A. Elalouf and E. Levner, “General techniques for accelerating FPTAS 
for the routing and knapsack problems,” in Abstract Book, Annual 
Meeting 2011 of Operations Research Society of Israel (ORSIS 2011), 
Akko, Israel, 2011, p. 14. 

[14] R. Hassin, “Approximation schemes for the restricted shortest path 
problem,” Mathematics of Operations Research, vol. 17, 36–42, 1992. 

[15] B. Brewington, R. Gray, K. Moizumi, D. Kotz, G. Cybenko, and D. 
Rus, “Mobile agents in distributed information retrieval,” in Intelligent 
Information Agents, M. Klusch, Ed., Heidelberg: Springer Verlag, 
1999, pp. 355–395. 

[16] A. Goel, K. G. Ramakrishnan, D. Kataria, and D. Logothetis, “Efficient 
computation of delay-sensitive routes from one source to all 
destinations,” in IEEE Infocom’2001, Washington, DC: IEEE Press, 
2001, pp. 854–858. 

[17] G. Xue, A. Sen, W. Zhang, J. Tang, and K. Thulasiraman, “Finding a 
path subject to many additive QoS constraints,” IEEE Transactions on 
Networking, vol. 15, pp. 201–211, 2007. 

[18] Q. Wu, N. S. V. Rao, J. Barhen, S. S. Iyengar, V. K. Vaishnavi, H. Qi, 
and K. Chakrabarty, “On computing mobile agent routes for data fusion 
in distributed sensor networks,” IEEE Trans. Knowledge and Data 
Engineering, vol. 16, pp. 740–753, June 2004. 

[19] R. Rajagopalan, C. K. Mohan, P. Varshney, and K. Mehrotra, “Multi-
objective mobile agent routing in wireless sensor networks,”  in 
Evolutionary Computation, 2005. The 2005 IEEE Congress on  2–5 
Sept. 2005, vol. 2, 2005,  pp. 1730–1737. 

[20] T. Osman, W. Wagealla, and A. Bargiela, “An approach to rollback 
recovery of collaborating mobile agents,” IEEE Trans. Systems, Man 
and Cybernetics, Part C, vol. 34, pp. 48–57, Feb 2004. 

[21] L. Rech, R. S. Oliveira, and C. B. Montez, “Dynamic determination of 
the itinerary of mobile agents with timing constraints,” in Proc. 
IEEE/WIC/ACM International Conference on Intelligent Agent 
Technology, Compiegne, France, 2005, pp. 45–50. 

[22]  G. V. Gens and E. V. Levner, “Fast approximation algorithms for job 
sequencing with deadlines,” 
Discrete Applied Mathematics, vol. 3, pp. 313–318, 1981. 

[23]  G. V. Gens and E. V. Levner, “Fast approximation algorithms for 
knapsack type problems,” in Lecture Notes in Control and Information 
Sciences, vol. 23, Berlin: Springer Verlag, 1980.  

[24] S. Sahni, “Algorithms for scheduling independent tasks,” Journal of the 
ACM, vol. 23, pp .116–127, 1976. 

[25] E. Levner, A. Elalouf, and T. C. E. Cheng, “An improved FPTAS for 
mobile agent routing with time constraints,” Journal of Universal 
Computer Science, vol. 17, 1854–1862, 2011. 

[26] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction 
to Algorithms. Cambridge, MA: MIT Press, 2001.  

[27] F. Ergun, R. Sinha, and L. Zhang, “An improved FPTAS for restricted 
shortest path,” Information Processing Letters, vol. 83, pp. 287–291, 
2002. 

 

66Polibits (47) 2013 ISSN 1870-9044

Amir Elalouf, Eugene Levner, and T.C.E. Cheng

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10417

	I. INTRODUCTION
	II. Related Works
	III. Problem Formulation
	IV. Exact Solution Algorithm: Dynamic Programming
	V. Fully Polynomial Time Approximation Scheme
	A. General Description of the FPTAS
	B. Stage A: Finding Preliminary Lower and Upper Bounds
	C. Stage B: Finding Improved Bounds
	D. Stage C: The ε-Approximation Algorithm (AA)

	VI. Concluding Remarks
	References

