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Abstract—The management of infrastructure for supporting
Cloud Computing presents the challenge of automated service
provisioning, which addresses the problem of mapping
high-level requirements expressed in end-user terms to low-level
resources such as CPU, memory, and network bandwidth.
Current infrastructure is supported through virtualization via
hypervisors. In this paper, we describe the formal specification
of a high-level component for enhancing hypervisors. With
this component, applications running in a Virtual Machine
can receive a Quality of Service defined by Service Level
Objectives. The manager is aware of the application’s needs and
requests the CPU resources through the lifetime of the Virtual
Machine. The implementation of our proposal achieves to manage
computing-oriented and net-oriented applications.

Index Terms—Hypervisor, QoS, SLO.

I. I NTRODUCTION

NOWADAYS, virtualization infrastructure is a common
solution for supporting Cloud Computing, Grid, and

High Performance Computing. An important challenge in
these infrastructures is the automated service provisioning
of Virtual Machine (VM) based resource providers for the
execution of applications. When we review the literature [1],
some interesting questions arise from end users willing to
deploy applications in VM-based resource providers.

– How can we predict (or have some degree of certainty)
that deadline execution time requirements for a given job
will be met?

– How can we compute the amount of resources that
are needed to increase (or decrease) the number of
transactions to a certain required level?

– Moreover, how can we provide the needed resources
and at the same time minimize the degradation of the
externally-perceived response times?

In this paper, we describe the formal specification of
a high-level component for enhancing hypervisors. The
component is named QoS App-SLO manager and allows end
users to express the application’s requirements in terms of a
Service Level Objective (SLO).

With our component, applications running in a virtual
machine can receive a Quality of Service (QoS) defined by
two types of SLOs (slo2, slo3).
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Fig. 1: Interactions of the QoS App-SLO manager in a
VM-based resource provider

The manager is aware of the application’s needs and
requests the CPU resources through the lifetime of the Virtual
Machine. The implementation of our proposal achieves to
manage computing-oriented and net-oriented applications, i.e.
it meets at least the agreed application requirements, and
provides self-management for external modifications in the
application’s SLO (e.g. a user requests more transactions per
secod (tps)).

The proposal relies on the services offered by the
hypervisor, the host OS, and the low-level component QoS
CPU manager [2] which manages the SLOslo1.

II. QOS APP-SLO MANAGER

In this section, we describe a QoS App-SLO manager.
Figure 1 shows the interactions of this manager in a
VM-based resource provider. It allows handling the high-level
requirements of user’s applications, i.e. it runs in the scope of
the privilegedVM and manages the resources needed by each
guest VM.

Additionaly, the definitions of the proposal are build upon
two systems to acquire knowledge about information of each
application:

– An inter-VM messaging system, which is a communica-
tion system that allows writing and reading information in
both ways: privilegedVM from/to guest virtual machines.

– An application-helper which runs in the guest virtual
machine with an independent periodτah. It measures
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the metric tps transactions per second and writes
the measured metrics through the inter-VM messaging
system.

A. Characteristics

The formal specification that we propose has the following
features: Application rate (app-rate) guarantees for granting
a requirement expressed in transactions per secondtps,
user-perceived service guarantees for providing a SLO
in (user-perceived) response times, net-rate guarantees for
granting a requirement expressed in requests per secondrps,
and a request admission control for applying a policy in the
incoming requests to meet a SLO.

B. Definitions

Definition 2.1: Let % be the set of online guest virtual
machines identifiers and letApptypevm be the sequence
indexed by% that defines the type of application that is running
in the guest virtual machine so that

Apptypevm ∈ {computing-oriented,net-oriented}∀vm ∈ %.

Definition 2.2: Let slotypevm be a set that has the type of
resquested SLOsslo2 or slo3 for a givenvm. Let slo2 be a
service level objective of the form ”ensure that the application
running in a guest virtual machinevm will be able to achieve
an application rate of at least 95% of the targettps or rps”.
Let slo3 be a service level objective of the form ”ensure that
the application running in a guest virtual machinevm will be
able to achieve a % of the served requests with response times
below a given threshold expressed in seconds”. Letappslo be
the set of parameters of the requested service level objectives
for all managed virtual machines

Inspecting the throughput that was achieved by each
computing-oriented application can be done as follows.

Definition 2.3: Let tpsvm be the throughput achieved by
the computing-oriented application between the time interval
Caht, Caht−1 and let T be the number of composite
transactions measured by the application-helper so that

tpsvm =
T

Caht − Caht−1
.

C. Network-manager

With this subsystem we aim to measure the burst behaviour
of the net-oriented application. Web technologies are based on
the transport protocols Hypertext Transfer Protocol (HTTP)
and the secure HTTP protocol (HTTPS), both main function
is to move data between Web servers and browsers. Despite
the fact that it is a stateless protocol it is nowadays the facto
transport protocol for technologies based on web services.
Common protocols for deployment of web services are SOAP
(Simple Object Access Protocol), REST (Representational
state transfer), and XML-RPC.

The approach for measuring the throughput of a web
application assumes that requests are atomic and represents
a unit of work which ends with the successful transfer
of the results. As Web servers are the target application,
for managing the net-oriented applications we propose the
following approach.

Trace the http requests of each VM by inspecting the
connection states of the incoming HTTP packets. Depending
of the hypervisor [3], [4], tracing could be done in the
privilegedVM or the guest VM. Thus, we can measure the
response time of each connection and build a distribution array
http at every trace period of lengthτhttp = Chtt − Chtt−1.
This array hasn elements, each element is a counter of
successful (served) requests according to its response timert.
The granularity ofn depends of thert ranges that need to be
grouped. We propose a granularity ofn = 9 which is mapped
to the ranges shown in Table I. The metricλvm is the arrival
rate observed in the virtual machinevm for the net-oriented
application.

TABLE I: SERVICE TIME GROUPS OFHTTP REQUESTS USED

TO BUILD THE DISTRIBUTION ARRAY.

array position response time range
0 rt < 1µs
1 1µs ≤ rt < 10−5s
2 10−5s ≤ rt < 10−4s
3 10−4s ≤ rt < 1ms
4 1ms ≤ rt < 10−2s
5 10−2s ≤ rt < 10−1s
6 10−1s ≤ rt < 1s
7 1s ≤ rt < 10s
8 10s ≤ rt < 100s

In order to measure the metric mean response time of the
served requests it makes use of a circular bufferCB with a
history lengthl for each vm so that

Definition 2.4: Let CBvm be the history of response times
of the lastl served requests for a givenvm. Let meanRTvm

be the computed mean response time observed for virtual
machinevm so that

meanRTvm =
∑1

k=l CBvm,k

l
∀vm ∈ %.

Using the distribution arrayhttp the inspection of
throughput achieved by each net-oriented application can be
done as follows.

Definition 2.5: Let rpsvm be the throughput achieved
during the last periodτhttp andR the number of successful
completed requests measured by thenetwork-managerso that

R =
n∑

k=1

httpvm,k,

rpsvm =
R

Chtt − Chtt−1
.

Finally, the metrics are advertised through the inter-VM
messaging system.
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D. App-rate metrics collector

It is in charge of getting the observed metrics of the
running application. It interacts with the inter virtual machine
messaging system and the network manager. Its function is
to keep a snapshot of the measured metrics for the learning
component.

Definition 2.6: Let TPSappvm be the set of measured
metrics app-rate expressed in requests/transactions per second
so that TPSappvm = m(vm)

m(x) =

{
tpsvm Apptypevm = computing-oriented

rpsvm Apptypevm = net-oriented
(1)

E. Learning component

Its function is to compute online parameters that profiles the
current application rate. We use a multi queue system. Each
virtual machine is modeled using Little’s law from queueing
theory.

By having the CPU consumption of each virtual machine
and the application rate we obtain the service demandSD as
follows

Definition 2.7: Let avgmets be a set of mean CPU metrics
for each virtual machine computed by the QoS CPU manager
during the previous controller period. LetSDvm be the mean
CPU time spent per transaction/request during the previous
period

SDvm =
avgmetsvm

TPSappvm
.

In order to obtain the learned service demand we apply a
forecasting method. First, we obtain a trend of the pasts service
demands by applying exponential moving average (EMA) [5]
which technically can be classified as an Auto-Regressive
Integrated Moving Average ARIMA(0,1,1) model with no
constant term [6]. Second, the method enhances the trend by
measuring the volatility of the sampled metrics using a trading
mechanism with a configurable parameter$. We propose to
apply Bollinger bands [7] in order to capture the burst behavior
of the running applications and improve the reactiveness of the
QoS CPU manager.

Definition 2.8: Let SDtrend be an Exponential Moving
Average function to compute the trend for the service demand
of a givenvm so thatSDtrendvm,t is defined as follows

SDtrendvm,t = SDvm,t, t = 0,

SDtrendvm,t = α∗SDvm,t+(1−α)∗SDtrendvm,t−1, t > 0.

Definition 2.9: Let N be the length of history needed to
forecast the next service demand. LetSDforecast be a
forecasting function to compute the next service demand of
a givenvm so thatSDforecastvm,t is defined as follows

σvm,t =

√√√√ 1
N

t−N∑
i=t

(SDvm,i − SDvm)2,

SDvm =
1
N

t−N∑
i=t

SDvm,i,

SDforecastvm,t = SDtrendvm,t+$∗σvm,t 0 ≤ $ ≤ 2.

The service demand forecasted is a snapshot of the needed
resources for the next controller period. However, we introduce
the notion of Number of Rounds To LearnNRTL parameter
in order to find out a tradeoff between reactiveness and
disturbance. ANRTL = 1 means that theSDforecastvm,t

will be used at each controller period in order to compute a
new CPU requirement for the application, the reactiveness of
the learning phase is high but the accuracy of the forecast is
affected by the disturbances of so frequent changes in theslo1
(CPU resource). On the contrary, forNRTL > 1 we introduce
the notion of learning phase (or window) which helps in the
smoothing of the service demand forecasted and also improves
the accuracy of computed values.

Definition 2.10: Let NRTL be the length of the controller
window needed to learn a smoothed value ofSDforecast.
The length of the period of each NRTL window is given
by controller period times. Let NRTL be a counter which
decreases at each controller period.

Now we use an approach to find out the burst behaviour of
the requests in the net-oriented application. It is proposed to
use an array of percentilesperc of p = n − 1 elements (see
section II-C) for eachvm with a net-oriented application. Each
element has a circular buffer of lengthNRTL. The position
of the element in the array accounts, in the circular buffer, the
percentage of requests that were served below the threshold
defined in the position of each element (response times) in the
arrayhttp.

Definition 2.11: Let perc be an array of circular buffers.
Each circular buffer of length NRTL for each virtual machine
vm so that

put

(∑j
i=0 httpvm,i

rpsvm

)
in percvm,j , 1 ≤ j ≤ n.

For instance, percvm,6 is a circular buffer with the
percentage of requests that were successful server below 1
second, see table I.

The QoS CPU manager usesβ to set the reactiveness of
the manager in order to climb and achieve the requestedslo1
for each vm. The default value of the parameterβ is set
to 0, though can be dynamically configured by the type of
application running in the virtual machine, e.g. computing
intensive applications have a value of 0. However, net-oriented
applications need mechanisms to detect the behavior of bursty
applications and configure a properly value ofβ. Therefore,
we useperc to measure the bursty behavior as follows.

Definition 2.12: Let β be the degree of burst behaviour
detected in the (served) requests of the traced application
running in the virtual machinevm so that
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burstvm =
n∑

j=1

σvm,j ,

σvm,j =

√√√√ 1
N

NRTL∑
i=1

(percvm,i − percvm)2,

βvm = b(burstvm)∀vm ∈ % iff NRTL = 0.

b(x) =



0.5 0.00 ≤ x ≤ 0.03
0.6 0.03 ≤ x ≤ 0.06
0.7 0.06 ≤ x ≤ 0.09
0.8 0.09 ≤ x ≤ 0.12
0.9 0.12 ≤ x ≤ 0.15
1.0 0.15 ≤ x

(2)

F. CPU-rate estimator

When a learning phase ends, that isNRTL = 0, this
component sets thenewQoS estimated for the running
application. The approach of the process involves asking an
increase or decrease in the amount of assigned resources,
which in fact is and admission control procedure. Due that
higher decisions (such as migration of VMs) are leave to
the global resource manager, the CPU-rate estimator works
as follows.

– It stores the forecasted service demand.
– It stores the modification of the QoS.
– It computes and stores the percentage of QoS granted

with the current state of the CPU resources.
– It uses the notion of premium services, via differentiated

service, to prioritize the assignment of the CPU
resources.

The CPU-rate estimator computes the needed raw CPU
power for all virtual machines with computing-oriented and
net-oriented applications defined in the setstps andrps. The
needed raw CPU power is transformed into a SLO of type
slo1 and requested via the QoS CPU manager.

Definition 2.13: Let S be the current state (available
resources) of the CPU capacity of the resource provider at time
t. Let ϑ be a parameter required by the end user for the SLO
which express the degree of tolerable (soft,...,hard) reduction
in the requestedslo1. Let ac an admission control mechanism
that is defined in the QoS CPU manager as follows:

ac(MHzSLA, ϑ) =
1 MHzSLA ≤ St

∧
ϑ = 1

St

MHzSLA MHzSLA ∗ ϑ ≤ St

∧
0.5 ≤ ϑ < 1

0 otherwise

(3)

This function helps to manage the admission control
of new virtual machines and online virtual machines that
request internal updates ofslo1, i.e. all virtual machines with

ac(MHzSLA, ϑ) = 0 can be rejected and the status is
informed to the QoS App-SLO manager.

Definition 2.14: Let Ŝ% be an array of virtual machines
ordered by differentiated service. Letmhzbe the needed CPU
in order to achieve a given application rate (i.e. MHz to serve
the target referenceappslo or λ) for a givenvm. Let newQoS
be the CPU that is granted by the QoS CPU manager according
to ϑ, if is not specified thenϑ = 1. Let ϕ be the configurable
node capacity, and letΦ be the raw CPU capacity of the
resource provider. Letψ the minimum reservation ofϕ for the
guest virtual machines. LetΞ be the absolute CPU capacity
of the node, i.e. for 4 processorsϕ = 4 ∗ 100 = 400. The sets
appslo andslotype were defined in Def. 2.2. Now, we define
negotiateslo1 as the function that sets the raw CPU (in % of
ϕ) for each VM. In other words, anslo1 is computed so that
the running application receivesslo2 or slo3.

newQoSvm = negotiateslo1(mhz(vm), ϑ)∀vm ∈ Ŝ%

iff NRTL = 0
(4)

negotiateslo1(MHzSLA, ϑ) =

max(
MHzSLA ∗ ac(MHzSLA, ϑ)

ϕ
,ψ)

(5)

mhz(vm) =



Φ ∗min
(

appslovm∗SDforecastvm,t

Ξ , 1.0
)

if vm ∈ tps
∧
slotypevm = slo2

Φ ∗min
(

appslovm∗SDforecastvm,t

Ξ , 1.0
)

if vm ∈ rps
∧
slotypevm = slo2

Φ ∗min
(

λvm∗SDforecastvm,t

Ξ , 1.0
)

if vm ∈ rps
∧
slotypevm = slo3

(6)
In the third case of Equation 6, we have introduced the

notion of automatic sizing for net-oriented applications which
request anslo3. In this case, the requestedslo3 takes into
account the observed arrival rateλ of each traced net-oriented
application and it increases or decreases its demand according
to the observed behaviour.

G. Net-rate estimator

For net-oriented applications we follow an approach to
implement an admission control mechanism. It is applied at
the end of a learning phase. Only if the target net-oriented
application has a computing-oriented behaviour it is likely,
applying queueing theory, to find a relation between the
number of requests served and the CPU consumed. However,
net-oriented applications have a burst behaviour with different
resource consumption patterns. Therefore, we propose to use
the user-perceived service as a measure of the quality served
by the net-oriented application. Even if it can be seen as
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a black-box that ignores the inner bottlenecks which can
cause a bad perceived service, with this approach we aim
to size the resources according to the current configuration
of the net-oriented application and scale up the aggregation
of VMs. We assume that a load balancer can manage the
external requests and distribute them to the online virtual
machines, thus by aggregating VMs we increase the number
of served requests. However, additional inner optimizations in
the configuration of the web application server can be applied
out of the band and the effect of this optimizations will be
seen as an increase/reduce of the resources assigned. Finally,
thecapacity is granted according to the differentiated service.

Definition 2.15: Let γ be the CPU resources, expressed in
percentage of the full node capacity, that are available for all
VMs. Let capacityvm be the granted capacity, expressed in
rps, of the virtual machine so that

capacityvm = n(vm)∀vm ∈ rps.

n(vm) =
newQoSvm ∗ γ
SDforecastvm,t

(7)

Now we compute the admission control parameter for the
net packets. We use the metrics of the network manager, i.e.
the dynamics of the external arrival rate of the net-oriented
application clients and the queue length of the current pending
requests for each traced net-flow that was observed during the
last controller period.

Definition 2.16: Let percvm,6 be a circular buffer with the
percentage of requests that were successful server below 1
second. Letslovm,target the service level objective requested
by the user. Let∆slo be the adjustment positive/negative in the
number of requests per second admitted to reach the virtual
machine. Letreqadmissionvm be the required admission
control parameter that limits the amount of accepted requests.

abovecapacityvm = λvm − rpsvm,

slovm,level =

(∑NRTL
i=0 percvm,6

NRTL

)
,

∆vm = (slovm,level − slovm,target) ∗ abovecapacityvm,

reqadmissionvm = capacityvm + ∆vm.

Next step is to adjust the admission control according to the
number of waiting requests in the system.

Definition 2.17: Let QL be an array of circular buffers.
Each circular buffer for each virtual machinevm has a length
of NRTL elements and it stores the observed queue length
of waiting/pending requests inside the system during the last
controller period. Let maxQL a sort-term memory value of the
maximum queue length observed in the NRTL samples. Let
admissionvm be therps that will be admitted in the next
learning phase.

put(ObservedQLvm,t) inQLvm,t,∀vm ∈ rps,

admissionvm = steadystate(vm)∀vm ∈ rps.

steadystate(vm) =

max (reqsvm, reqadmissionvm −maxQL)
if QLvm

reqsvm
> 0.05

max
(
reqsvm, reqadmissionvm − maxQL

2

)
otherwise

(8)

The next step is the application of the network
level admission-control through the network manager. By
controlling the admission of incoming net packets before
arriving the target application we aim to ensure a given level of
user-perceived service in the response times. Therefore, with
this approach we do not only size the resources according to a
given external demand but also according to an expected level
in the quality of service.

III. E VALUATION

We implement the abovementioned proposal in a Local
Resource Manager (LRM) to test the resource management
of computing-oriented and net-oriented applications. In the
following, we have the characteristics of the QoS App-SLO
manager.

– Application-aware. It uses inspection of high-level
application metrics in order to learn the CPU needed
(slo1) to achieve app-rate level requirements (tps, rps).

– Service negotiation. It acts on behalf of administrators
in order to request the newslo1 through the QoS CPU
manager interfaces. However, it depends on reservations
(leases) to grant or revoke the assigned resources as well
as policies to detect and limit the misbehavior of virtual
machines. If a newslo1 can not be fully granted then
it is informed via a VMstate information system. The
VM-state agent is in charge of informing about this issue
to external agents so that decisions about the migration of
virtual machines can be managed by, for instance, global
resource managers.

– Learning. It acquires online knowledge about the
consumed resources. It also constructs a CPU profile for
the resource consumed by the running application.

We set up three experiments in two physical machines with
Fedora Linux and Xen interconnected through a gigabit switch,
both with Intel Quad CPU Q6700 with 8GB of memory and
a 750GB SATA Disk.

A. Evaluation of computing-oriented applications

The experimental setup test the following festures:

– Create four virtual machines which request, as a bootstrap
mechanism, different CPU-rate SLO guarantees.

– Deploy a math-application in all VMs.
– Handle virtual machines which request different app-rate

guarantees with fixed differentiated services.
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Fig. 2: Application throughput relative to agreed SLO. An
user’s view of the application performance.

– Provide dynamic management by responding to external
agents that change the initial VM’s differentiated service
(pc3 and pc4).

– Provide dynamic management by responding to external
agents that change the initial VM’s app-rate.

The agreed app-rate requirement is managed according to
each requested parameter. The initial CPU-rate parameter is an
initial guess of the needed resources though it can be obtained
from previous executions. The learning procedure obtains and
requests new CPU-rates which are managed according to
their respective differentiated service. Applications can benefit
from having hard and soft guarantees about the expected
performance (tps). Additionally, each user has a real view
of its application throughput. Figure 2 shows results for this
experiment. The speedup graph represents the transactions
per second relative to its agreed app-rate. From the results
for the SLO type 2 (slo2) we obtained the following mean
relative errors: pc1 -0.01, pc2 -0.01, pc3 -0.07, and pc4 -0.03.
Therefore, we can observe that each VM achieves its agreed
SLO, and additionally we can observe that VMs with premium
services receive their corresponding aggregated resources, thus
they achieve a better throughput.

B. Evaluation of net-oriented applications

We setup a web application server that renders 3D
images and a web image server in two VMs, and for
http benchmarking we use Siege [8]. Figure 3 shows the
results of this experiment. In this experiment we see the
controller changing the CPU resources of two web-based
services which have different resource intensive requirements.
Despite that pc3’s workload is network intensive with low
CPU consumption and pc2’s workload is CPU intensive with
low network consumption, the controller is able to manage
both type of applications. At the same time, the network
QoS policy adjusts the acceptance in the number of allowed
connections that can reach each VM.

A closer look in Figure 3(b) shows that after time 95s more
than 90% of the requests are served by the web image server
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Fig. 3: Distribution vector of served requests. Http packets are
controlled.

with a response time below one second. The same behaviour
is observed for the web application server in Figure 3(a).

C. Automatic sizing

We test in this experiment a net-oriented application, i.e.
a virtual machine with the web application server described
in the previous experiment. The goal is to evaluate that
the QoS App-SLO manager is able to find out the VM’s
resource configuration parameters so that the application, at
any moment, can reach its maximum throughput and at the
same time meet the user’s perceived service-time requirements
slo3.

First, as a baseline experiment, we evaluate the web
application server without our QoS App-SLO manager, for
this experiment we launch the benchmarking tool Siege with
an incremental load in the number of simulated web clients
(2,8,32,128,256). Each incremental load has a think-time equal
to zero and a duration of 60secs. The results show the
saturation points which can be observed in metrics CPU
consumption and successful requests. The surges correspond
to the start and end times of the load generated by the
benchmarking tool, each one with a duration of 60secs.

The maximum transaction rate is achieved with 8 clients
starting at second 61 and the saturation point of response times
at second 190 with 32 clients, which can be seen more clearly
in Figure 4(b) and Figure 4(a) respectively. Therefore, the
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Fig. 4: Application web server.

mean response times perceived by remote users start climbing
at second 190.

In the second part of this experiment we enabled the
QoS App-SLO manager in order to evaluate its automatic
sizing capability. The workload used in this experiment has
an incremental/decremental traffic pattern with the following
number of remote clients: 2,8,32,128,256,128,32,8,2; each set
of clients has a duration of 60secs giving an experiment of
length 540secs.

The results can be seen in Figure 5 and Figure 6. Figure 5(a)
shows that automatic sizing allows requesting CPU resources
taking into account the dynamics of the observed requests.
Therefore, it is achieved that the resources assigned to the VM
can grow or shrink by tracing platform-independent metrics
(http requests).

We achieve to trace accuracy http metrics that allow us to
keep track of the pending requests in the system. Figure 6(b)
shows the queue length of the mean pending requests observed
during the last controller period.

We observe that, when managed, the queue of pending
requests is less than when there is not admission control.
Finally, the admission control applies the requested policy
in order to meet theslo3. Figure 6(a) compares the mean
response times of the web application server as seen by the
end-user. When managed, the response times are kept below
1 second.
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Fig. 5: Automatic sizing of an application web server.

IV. RELATED WORK

Dongyan Xu et al. [9], [10] identified the following
challenges that arise in realizing the vision of anautonomic
virtual environment adaptationin a multi-domain share
infrastructure:

1) Live adaptation mechanisms: The need to support
application-transparent adaptation of Virtual Distributed
Enviroments (VDEs). VMs supports runtime resource
re-allocation and VM migration within LANs but, a
multi-domain infrastructure needs live migration across
networks domains without pausing or checkpointing the
application. The solution has to meet two requirements:
VMs need to retain the same IP address and remain
connected to each other and migration mechanism
cannot relay on NFS.

2) Logistic service for VM migration: Consisting of
distributed depots. A depot is part of a infrastructure
domain, in it, VM images are assembled using either
local or transfered “parts”. Optimization problem: how
to compute a distributed schedule for VM parts delivery
and assembly so that all VMs will be ready in their
destination hosts no later than a certain deadline?.

3) Adaptation decision making: Mechanisms for monitor-
ing, controling, and adjusting resource allocations and
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Fig. 6: Comparing traced metrics of an application web server

locations of VDEs. The identified problems are related
to find out when an application needs more resources
to perform well (or better), how to conciliate when
adaptation affects the virtual environments sharing the
same resources?, and migration issues, i.e. decide which
virtual environment and where should it go by solving
tradeoffs between resource availability and overhead.

4) Adaptation shepherding: a intelligent component that
takes decisions (“justify and approve”) regarding
adaptation requests, as a mechanism for preventing the
abuse of adaptations.

The factors that drive the adaptation ofVDEs are:
availability of infrastructure resources that are dynamic and
heterogeneous, and (2) the changing resources needs of the
applications that run in a virtual environments.

Paul Ruth et al. [11] presents VioCluster, virtualization
for dynamic computational domains. The problem is that
each computational domain (e.g. cluster) faces the conflict
between dynamic workload and static capacity. An opportunity
to arises to resolve this conflict by dynamically adapting
the capacity of clusters by borrowing idle machines of
peer domains. Authors introduce the concept ofvirtual
computation domains(or “virtual domains” for short) which
allow a cluster to dynamically grow and shrink based on
resource demand. VioCluster uses both machine and network
virtualization techniques to logically move machines between
virtual domains.

The HPC research community is particularly interested in
using VMs. However, the main concerns widely discussed
are the overhead caused by the virtualization layer,
and the security [12], [13], [14]. On the other hand,
large-scale scenarios such as HPC will benefit from fine-grain
management tools to assign CPU resources.

The work of Kephartet al. [15] discusses the importance
of self-management systems in the context of autonomic
computing. These systems accept high-level objectives from
administrators and apply self management policies.

Policy-based QoS control and learning have been proposed
in non-VM contexts. Solutions based on QoS guarantees
have been discussed using control theory [16], [17], online
analytic performance models [18], regression-based analytic
models [19], and statistical inference [20]. Some applications
of these approaches are dynamic provisioning [21] and energy
conservation [22]. With our proposal, we aim to provide a
framework to meet the low-level VM requirements for the
dynamic workload of the hosted application.

V. CONCLUSION

We have presented the conceptual design and theoretical
foundation of a Quality of Service App-SLO manager which
is in charge of managing the application goals.

The proposal has a set of definitions that captures the
properties for the management of two types of SLOs:slo2
expressed in the app-rate metric transactions (or requests)
per second, andslo3 expressed in the web metric response
times. Additionally, the manager supports an admission control
mechanism for the management of net-oriented applications.

Through experiments, we have presented results for
different types of workloads: a math parallel application and a
web-based application. We evaluated the management of two
service level objectives: application rate, and response times.

The results show that the component is able to concurrently
manage mixed workloads with their specific application’s
objectives at different levels with mixed workloads.

Future work includes extending the capabilities of the
proposal to support distributed applications in Cloud
Computing environments.
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