
Content Extraction based on Hierarchical
Relations in DOM Structures

Sergio Ĺopez, Josep Silva, and David Insa

Abstract—This article introduces a new approach for content
extraction that exploits the hierarchical inter-relations of the
elements in a webpage. Content extraction is a technique used
to extract from a webpage the main textual content. This is
useful in order to filter out the advertisements and all the
additional information that is not part of the main content. The
main idea behind our approach is to use the DOM tree as an
explicit representation of the inter-relations of the elements in a
webpage. Using the information contained in the DOM tree we
can identify blocks of content and we can easily determine what
of the blocks contains more text. Thanks to this information, the
technique achieves a considerable recall and precision. Using the
DOM structure for content extraction gives us the benefits of
other approaches based on the syntax of the webpage (such as
characters, words and tags), but it also gives us a very precise
information regarding the related components in a block, thus,
producing very cohesive blocks.

Index Terms—Content Extraction, Block Detection, DOM

I. I NTRODUCTION

CONTENT Extraction is one of the major areas of
interest in the Web for both the scientific and industrial

communities. This interest is due to the useful applications of
this discipline. Essentially, content extraction is the process
of determining what parts of a webpage contain the main
textual content, thus ignoring additional context such as
menus, status bars, advertisements, sponsored information, etc.
Content extraction is a particular case of a more general
discipline calledBlock Detectionthat tries to isolate every
information block in a webpage. For instance, observe the
blocks that form the webpage in Figure 1, and in particular,
the main block delimited with a dashed line. Note that inside
the main block there are other blocks that should be discarded.

It has been measured that almost 40-50% of the components
of a webpage can be considered irrelevant [1]. Therefore,
determining the main block of a webpage is very useful
for indexers and text analyzers to increase their performance
by only processing relevant information. Other interesting
applications are the extraction of the main content of a
webpage to be suitably displayed in a small device such as
a PDA or a mobile phone; and the extraction of the relevant
content to make the webpage more accessible for visually
impaired or blind.

Manuscript received on October 21, 2011, accepted for publication on
December 9, 2011.

The authors are with the Departamento de Sistemas Informáticos y
Computacíon, Universitat Polit̀ecnica de Val̀encia, E-46022 Valencia, Spain
(e-mail:{slopez,jsilva,dinsa}@dsic.upv.es).

Fig. 1. Blocks of a webpage from the Nature website

Our technique combines ideas from other works such as [2],
[3], and it also uses additional information that is explicit in
the DOM tree of webpages, and that allows the technique to
produce very accurate results.

In summary, the main advantages of our technique are the
following:

– It does make no assumptions about the particular
structure of webpages.

– It only needs to process a single webpage (no templates,
neither other webpages of the same website are needed).

– No preprocessing stages are needed. The technique can
work online.

– It is fully language independent (it can work with pages
written in English, German, etc.).

– The particular text formatting of the webpage does not
influence the performance of the technique.

The rest of the paper has been structured as follows: In
Section II we discuss the state of the art and show some
problems of current techniques that can be solved with our
approach. In Section III we recall the DOM model and
provide some useful notation. Then, we present our algorithms
and explain the technique with examples in Section IV. In
Section V we give some details about the implementation and 5 Polibits (45) 2012ISSN 1870-9044; pp. 5–12

show the results obtained with a collection of benchmarks.
Finally, Section VI concludes.

II. RELATED WORK

Many different techniques have been proposed to solve the
problem of content extraction. Some of them are based on the
assumption that the webpage has a particular structure (e.g.,
based on table markup-tags) [4], that the main content text
is continuous [5], that the system knows a priori the format
of the webpage [4], or even that the whole website to which
the webpage belongs is based on the use of some template
that is repeated [6]. This allows the system to analyze several
webpages and try to deduce the template of the webpage in
order to discard menus and other repeated blocks.

The main problem of these approaches is a big loss of
generality. In general, they require to previously know or
parse the webpages, or they require the webpage to have a
particular structure. This is very inconvenient because modern
webpages are mainly based on<div> tags that do not require
to be hierarchically organized (as in the table-based design).
Moreover, nowadays, many webpages are automatically and
dynamically generated and thus it is often impossible to
analyze the webpages a priori.

There are, however, other approaches that are able to work
online (i.e., with any webpage) and in real-time (i.e., without
the need to preprocess the webpages or know their structure).
One of these approaches is the technique presented in [2]. This
technique uses acontent code vector(CCV) that represents all
characters in a document determining whether they are content
or code. With the CCV, they compute acontent code ratio
to identify the amount of code and content that surrounds
the elements of the CCV. Finally, with this information,
they can determine what parts of the document contain the
main content. Another powerful approach also based on the
labeling of the characters of a document has been presented
in [3]. This work is based on the use oftag ratios (TR).
Given a webpage, the TR is computed for each line with the
number of non-HTML-tag characters divided by the number
of HTML-tags. The main problem of the approaches based on
characters or lines such as these two, or words such as [7], is
the fact of completely ignoring the structure of the webpage.
Using characters or words as independent information units
and ignoring their interrelations produces an important loss of
information that is present and explicit in the webpage, and
that makes the system to fail in many situations.

Example 2.1:Consider the portion of a source code
extracted from a Fox News webpage shown in Fig. 2.1.
The tag ratios associated to this webpage are shown in
Figure 3. Observe that the initial part of the footer (which
is not part of the main content) is classified as part of
the main content because it starts with a high tag ratio.
Unfortunately, this method does not take into account the
information provided by tags, and thus, it fails to infer that
the footer text belongs to a different< div > than the other
text classified as relevant.

Fig. 3. Tag ratios associated with the code in Example 2.1

The distribution of the code between the lines of a webpage
is not necessarily the one expected by the user. The format of
the HTML code can be completely unbalanced (i.e., without
tabulations, spaces or even carriage returns), specially when it
is generated by a non-human directed system. As a common
example, the reader can see the source code of the main
Google’s webpage. At the time of writing these lines, all the
code of the webpage is distributed in only a few lines. In this
kind of webpages tag ratios are useless.

In this work, we solve this situation by using a ratio
similar to the tag ratio but based on the DOM structure
of the webpage. This makes our approach keep the good
properties of the tag ratios approach, but it also solves
the problems shown in the previous example because the
technique combines the computed ratios with the information
of the DOM tree. In particular, because the DOM tree is
independent of the distribution of the code between the lines
of the HTML webpage, our technique is able to work with any
webpage independently of how the webpage was generated or
formatted.

It should be clear that—as it happens in the other
approaches—the technique could fail to detect the main block
if other block (e.g., the footer) contains more text density that
the real main block. But our technique easily distinguishes
between different blocks (thanks to the DOM information),
and it does not mix information from different blocks as in
Example 2.1.

Although essentially different to our work, there exist other
techniques that make use of the DOM structure, and thus,
they could exploit the same information than our technique.
The most similar approach is the one presented in [8].
This approach presents a proxy server that implements a
set of filters for HTML documents. These filters include
HTML cleaning (e.g., removing images, scripts, etc.), HTML
refactoring (e.g., removing empty tables), and deleting
advertisements (e.g., with a blacklist of URLs that allow 6Polibits (45) 2012 ISSN 1870-9044

Sergio López, Josep Silva, David Insa

<body>
(...)
<div id="article-section" class="hnews hentry item">

<h1 id="article-title" class="entry-title">Alleged
victim tells court Sandusky (...)</h1>

<div class="article-text">
<title="Abstract">Sandusky trial continues after

yesterday‘s testimony from alleged victim | Fox News</title>
<p>Sandusky has displayed no visible emotion (...)</p>
<p>The man identified as "Victim 10" by (...)</p>
<p>The man, now 25, had been in foster care (...)</p>

</div>
</div>
<div id="section-footer">

<p class="published">Published June 13, 2012</p>
<p class="summary">This material may not be published,

broadcast, rewritten, or redistributed. FOX News Network.
All rights reserved. All market data delayed 20 minutes</p>

</div>
(...)

</body>

Fig. 2. Code extracted from a Fox News webpage

them to remove external publicity content). Some of these
transformations are used by our technique, but the objective
is different, we do not want to clean, improve or transform
the original webpage; our goal is to detect the main content
and remove all the other components of the webpage. Also
the implementation is different, our tool is not based on a
proxy server; it is implemented in the client side, and thus it
is independent of any external resource.

There are some approaches specialized for a particular
content such as tables that are somehow related to our work.
They do not focus on block detection but in content extraction
from tables [9], or in wrappers induction [10], [11]. Other
related approaches are based on statistical models [12], [13]
and machine learning techniques [14], [15] and they use
densitometric features such as link density and text features
such as number of words starting with an uppercase letter [16].

III. T HE DOM TREE

The Document Object Model (DOM) [17] is an API that
provides programmers with a standard set of objects for the
representation of HTML and XML documents. Our technique
is based on the use of DOM as the model for representing
webpages. Given a webpage, it is completely automatic to
produce its associated DOM structure and vice-versa. In fact,
current browsers automatically produce the DOM structure of
all loaded webpages before they are processed.

The DOM structure of a given webpage is a tree where
all the elements of the webpage are represented (included
scripts and CSS styles) hierarchically. This means that a table
that contains another table is represented with a node with a
successor that represents the internal table. Essentially, nodes

in the DOM tree can be of two types: tag nodes, and text
nodes.1 Tag nodes represent the HTML tags of a HTML
document and they contain all the information associated with
the tags (e.g., its attributes). Text nodes are always leaves in
the DOM tree because they cannot contain other nodes. This
is an important property of DOM trees that we exploit in our
algorithms.

Definition 3.1 (DOM Tree):Given an HTML documentD,
the DOM treet = (N,E) of D is a pair with a finite set
of nodesN that contain either HTML tags (including their
attributes) or text; and a finite set of edgesE such that
(n → n′) ∈ E, with n, n′ ∈ N if and only if the tag or
text associated withn′ is inside the tag associated withn in
D. The reflexive and transitive closure ofE is represented
with E∗.

For the purpose of this work, it does not matter how the
DOM tree is built. In practice, the DOM’s API provides
mechanisms to add nodes and attributes, and provides methods
to explore and extract information from the tree.

Example 3.2:Consider again the source code from
Example 2.1. A portion of the associated DOM tree is depicted
in Figure 4. For the time being the reader can ignore the
different colors and borders of nodes.

IV. CONTENT EXTRACTION USINGDOM TREES

In this section we formalize our technique for content
extraction. The technique is based on the notion ofchars-nodes
ratio (CNR), which shows the relation between text content
and tags content of each node in the DOM tree.

1We make this assumption for simplicity of presentation. In the current
DOM model, there are 12 types of nodes, including the type text. 7 Polibits (45) 2012ISSN 1870-9044

Content Extraction based on Hierarchical Relations in DOM Structures

Fig. 4. DOM representation of the Fox News webpage

Definition 4.1 (chars-nodes ratio):Given a DOM tree
(N,E), a noden ∈ N and the set of nodesM ⊆ N that form
the subtree rooted atn (M = {n′ ∈ N | (n → n′) ∈ E∗}),
the chars-nodes ratioof n is chars/weight; where chars
is the number of characters in the text nodes ofM , and
weight = |M |.

The interesting property of this definition, is that it considers
nodes as blocks where the internal information is grouped
and indivisible using the DOM structure. Therefore, the CNR
of an internal node, takes into account all the text and tags
included in its descendants. Note also that the CNR of a
node n, CNR(n), with a single childn1 is always smaller
than CNR(n1) becausen can not contain text. However, if
n has several childrenn1...nc, thenCNR(n) can be greater
thanCNR(n1) depending on the amount of text in the other
children. This is very useful, because it allows us to detect
blocks of relevant content, even if some nodes without text
belong to the block.

Now, we are in a position to describe our method for content
extraction. (i) We first compute the CNR for each node in the
DOM tree. Then, (ii) we select those nodes with a higher CNR
and, starting from them, we traverse the DOM tree bottom-up
to find the best container nodes (e.g., tables, divs, etc.) that,
roughly, contain as more relevant text as possible and less
nodes as possible. Each of these container nodes represents
an HTML block. Finally, (iii) we choose the block with more
relevant content. All three steps can be done with a cost linear
with the size of the DOM tree.

The first step is computed with a costO(|N |). With a
single traversal of the tree, it ignores irrelevant code that
should not be counted as text (such as Javascript), and it
computes the CNRs. Even though, the computation of the
CNR seems to be trivial because the DOM model’s API has
a method to obtain the text content of a node, this method

cannot discriminate between different kinds of text contents
(e.g., plain text, scripts, CSS...). Moreover, there does not
exist a method to calculate the number of descendants of a
given node; therefore, the computation of CNRs is done with
a cumulative and recursive process that explores the DOM
tree counting the text and descendants of each node. This
process also allows us to detect irrelevant nodes that we call
“nonContentNode”. They are, for instance, nodes without text
(e.g., img), nodes mainly used for menus (e.g.,nav and a)
and irrelevant nodes (e.g.,script, video and svg). This is an
important advantage over other techniques that rely on the
analysis of single characters or lines. These techniques cannot
ignore the noisy code if they do not perform a pre-processing
stage to delete these tags.

Algorithm 1 recursively obtains the CNR of each node
starting at the root node of the DOM tree. At each node it adds
three new attributes to the node with the computed weight
(weight), the number of characters it contains (textLength),
and the CNR (CNR). The number of characters is computed
ignoring special characters such as spaces or line breaks. This
makes the algorithm independent of the formatting of the
webpage (e.g., those webpages that organize the code using
several spaces do not influence the CNRs).

The algorithm distinguishes between three kinds of nodes,
namelytextNodewhich is a kind of DOM node that contains
plain text and that is always a leaf, thus, it has weight 1;
nonContentNodethat represents irrelevant nodes with a CNR
of 0; and the rest of nodes that represent all kinds of tags.
All methods (such asaddAttribute) and attributes (such as
innerText) used in the algorithm are standard in the DOM
model and have the usual meaning.

Once the CNRs are calculated, in the second step we select
those nodes with a higher CNR. Then, we propagate these
nodes bottom up to discover the blocks to which they belong, 8Polibits (45) 2012 ISSN 1870-9044

Sergio López, Josep Silva, David Insa

Algorithm 1 Algorithm to compute chars-nodes ratios

Input: A DOM tree T = (N,E) and the root node ofT , root ∈ N
Output: A DOM tree T ′ = (N ′, E)

computeCNR(root)

function ComputeCNR(node n)
casen.nodeTypeof
“textNode”:

n.addAttribute(‘weight’,1);
n.addAttribute(‘textLength’,n.innerText.length);
n.addAttribute(‘CNR’,n.innerText.length);
return n;

“nonContentNode”:
n.addAttribute(‘weight’,1);
n.addAttribute(‘textLength’,0);
n.addAttribute(‘CNR’,0);
return n;

otherwise:
descendants = 1;
charCount = 0;
for each child ∈ n.childNodesdo

newChild= ComputeCNR(child);
charCount = charCount + newChild.textLength;
descendants = descendants + newChild.weight;

n.addAttribute(‘weight’,descendants);
n.addAttribute(‘textLength’,charCount);
n.addAttribute(‘CNR’,charCount/descendants);
return n;

and the block with more text is selected. This means that if
some nodes not belonging to the main block are included in
the selected nodes, they will be discarded in the next steps.

The computation of the container blocks is performed with
Algorithm 2. Roughly, this algorithm takes the DOM tree and
the set of nodes identified in the previous step, and it removes
all the nodes in the set that are descendant of other nodes in the
set (line (1)). Then, in lines (2) and (3), it proceeds bottom-up
in the tree by discarding brother nodes and collecting their
parent until a fix point is reached. This process produces a
final set of nodes that represent blocks in the webpage. From
all these nodes, we take the one that contains more text (in
the subtree rooted at that node) as the final block.

Example 4.2:Consider again the HTML code from
Example 2.1 and its associated DOM tree shown in Figure 4.
Algorithm 1 computes the CNR associated to each node of
the DOM tree. All the CNRs are shown in Figure 5.

After we have computed the CNRs we take the top rated
nodes. Let us consider that the dark nodes in Figure 4 represent
the top rated nodes. Then, we use Algorithm 2 to identify the
most relevant blocks in the webpage. Initially, all the dark
nodes are in the set of blocks. Then, because nodes 7 and
8 are brothers, in the first iteration, the algorithm removes
nodes 7 and 8, and it adds node 6 to the set. In the second
iteration, nodes 5 and 6 are removed, and node 2 is added.

Fig. 5. Char-Nodes Ratios associated with the code in Example 2.1

Finally, in the third iteration, nodes 2 and 3 are removed, and
node 1 is added. Therefore, the final set of nodes computed
by Algorithm 2 only contains the dashed nodes (1 and 4). The
node that contains more text is selected as the block with the
main content of the webpage. Observe that due to the structure 9 Polibits (45) 2012ISSN 1870-9044

Content Extraction based on Hierarchical Relations in DOM Structures

Algorithm 2 Identifying main content blocks

Input: A DOM tree T = (N,E) and a set of nodesS ⊂ N
Output: A set of nodesblocks ⊂ N
Initialization: blocks = S

(1) blocks = blocks\{b | (b′ → b) ∈ E∗ with b, b′ ∈ blocks}
(2) while (∃n ∈ N . (n → b), (n → b′) ∈ E with b, b′ ∈ blocks)
(3) blocks = (blocks\{b | (n → b) ∈ E}) ∪ {n}

return blocks

of the DOM tree, the final node is often a container tag. Note
also that all the nodes of this container are part of the final
block, even if they do not contain text. Therefore, the final
block is a block with all the information of the initial webpage
that was placed together by the designer including related but
non-textual elements such as images. The information of other
blocks is not mixed with the information of the main block
due to the structure of the DOM tree. For instance, node 4
corresponds to the footer, and it contains a lot of text. However,
although it is textually adjacent in the source code to some
nodes included in the main block; it is outside the container
selected as the main content block (node 1). Therefore, node
4 is finally discarded.

V. I MPLEMENTATION

We have implemented the technique presented in this paper
and made it publicly available, including the source code. It
was implemented as a Firefox’s plugin that can be installed
in the Firefox’s browser as a toolbar. Then, it can filter any
loaded webpage or produce information about the CNRs of
the DOM tree.

The implementation allows the programmer to activate
the transformations of the technique and to parameterize
them in order to adjust the amount of blocks retrieved,
and the thresholds used to detect these blocks. In order to
determine the default configuration, it was initially tested with
a collection of real webpages that allowed us to tune the
parameters. Then, we conducted several experiments with real
and online webpages to provide a measure of the average
performance regarding recall, precision and the F1 measure
(see, e.g., [18] for a discussion on these metrics).

For the experiments, we selected from the top-most
500 visited webpages (see http://www.alexa.com/topsites)
a collection of domains with different layouts and page
structures in order to study the performance of the technique
in different contexts (e.g., company’s websites, news articles,
forums, etc.). Then, we randomly selected the final evaluation
set. We determined the actual content of each webpage by
downloading it and manually selecting the main content text.
The DOM tree of the selected text was then produced and
used for comparison evaluation later.

Table I summarizes the results of the performed
experiments. The first column contains the URLs of the

evaluated webpages. For each benchmark, columnDOM
nodes shows the number of nodes of the whole DOM tree
associated to this benchmark; columnMain block shows
the number of nodes that were identified by the tool as the
main block; columnRecall shows the number of relevant
nodes retrieved divided by the total number of relevant nodes
(i.e., in the main block); columnPrecision shows the
number of relevant nodes retrieved divided by the total number
of retrieved nodes; Finally, columnF1 shows the F1 metric
that is computed as(2∗P ∗R)/(P +R) beingP the precision
andR the recall.

Experiments reveal that in many cases, the retrieved block
is exactly the relevant block (F1=100%), and in general, the
recall is 100%. This means that the retrieved block often
contains all the relevant information. The average recall is
94.39 and the average precision is 74.08. These are really
good measures. For instance, with the same webpages, the best
previous technique (using tag ratios [3]) produces an average
recall of 92.72 and an average precision of 71.93.

Observe one important property of the experiments: in all
cases, either the recall, the precision, or both, are 100%.
This phenomenon did not happen by a chance, it is a direct
consequence of the way in which the technique selects blocks.
Let us consider a DOM tree where noden is the actual relevant
block. Our technique explores the DOM tree bottom-up to find
this node, and only four cases are possible: (1) If we detect
noden as the main block, then both recall and precision are
100%. (2) If we choose a node that is a descendant ofn, then
precision is 100%. (3) If we choose a node that is an ancestor
of n, then recall is 100%. Finally, (4) if we select a node that
is not an ancestor neither a descendant ofn then both recall
and precision would be 0%. This case is very rare because this
would mean that there exists a non-relevant block that contains
more text than the relevant block. This never happened in all
the experiments we did.

We could take advantage of this interesting characteristic
of our technique. We could parameterize the technique to
ensure that we have a 100% recall, or to ensure that we have
a 100% precision depending on the applications where it is
used. This can be easily done by making Algorithm 2 to be
more restrictive (i.e., selecting blocks closer to the leaves,
thus, ensuring 100% precision), or more relaxed (i.e., selecting
blocks closer to the root, thus, ensuring 100% recall). 10Polibits (45) 2012 ISSN 1870-9044

Sergio López, Josep Silva, David Insa

TABLE I
BENCHMARK RESULTS

Benchmark DOM nodes Main block Recall Precision F1

www.wikipedia.org 870 nodes 712 nodes 100 % 100 % 100 %
www.facebook.com 744 nodes 293 nodes 28.6 % 100 % 44.47 %
www.nytimes.com 742 nodes 217 nodes 100 % 49.7 % 66.39 %
www.engadget.com 2897 nodes 1345 nodes 100 % 100 % 100 %
us.gizmodo.com 2205 nodes 1375 nodes 100 % 84 % 91.3 %
googleblog.blogspot.com 1138 nodes 743 nodes 100 % 100 % 100 %
www.bbc.co.uk 401 nodes 111 nodes 100 % 4.98 % 9.49 %
www.vidaextra.com 1144 nodes 602 nodes 100 % 100 % 100 %
www.gizmologia.com 926 nodes 415 nodes 100 % 100 % 100 %
www.elpais.com 3017 nodes 120 nodes 100 % 100 % 100 %
www.elmundo.es 1722 nodes 416 nodes 100 % 100 % 100 %
www.ox.ac.uk 279 nodes 30 nodes 100 % 28 % 43.75 %
www.thefreedictionary.com 1170 nodes 509 nodes 100 % 100 % 100 %
www.nlm.nih.gov 320 nodes 156 nodes 100 % 56.52 % 71.56 %
www.scielosp.org 563 nodes 458 nodes 100 % 100 % 100 %
www.wordreference.com 269 nodes 95 nodes 100 % 57.23 % 72.79 %
en.citizendium.org 1645 nodes 1478 nodes 100 % 100 % 100 %
knol.google.com 601 nodes 219 nodes 100 % 100 % 100 %
www.healthopedia.com 557 nodes 21 nodes 100 % 21 % 34.7 %
www.filmaffinity.com 1198 nodes 153 nodes 100 % 100 % 100 %
www.umm.edu 290 nodes 30 nodes 100 % 22.22 % 36.42 %
www.microsiervos.com 604 nodes 382 nodes 100 % 68.83 % 81.54 %
abcnews.go.com 907 nodes 102 nodes 100 % 44.16 % 61.27 %
www.latimes.com 1056 nodes 22 nodes 100 % 100 % 100 %
www.philly.com 378 nodes 30 nodes 100 % 100 % 100 %
www.blogdecine.com 1567 nodes 24 nodes 100 % 8.33 % 15.38 %
www.cnn.com 597 nodes 248 nodes 100 % 67.21 % 80.39 %
www.lashorasperdidas.com 87 nodes 30 nodes 100 % 100 % 100 %
www.cbc.ca 847 nodes 138 nodes 100 % 100 % 100 %
www.appleweblog.com 1013 nodes 475 nodes 5.9 % 100 % 11.15 %
www.applesfera.com 1215 nodes 721 nodes 7.49 % 100 % 13.94 %
www.guardian.co.uk 1111 nodes 59 nodes 100 % 100 % 100 %
www.news.cnet.com 2023 nodes 169 nodes 100 % 71.01 % 83.05 %
www.venturebeat.com 263 nodes 107 nodes 100 % 100 % 100 %
www.computerworld.com 558 nodes 62 nodes 100 % 100 % 100 %
www.usatoday.com 1118 nodes 523 nodes 100 % 100 % 100 %
www.cbssports.com 1450 nodes 232 nodes 100 % 67.05 % 80.28 %
www.nationalfootballpost.com 565 nodes 23 nodes 100 % 9.62 % 17.55 %
ncaabasketball.fanhouse.com 885 nodes 78 nodes 100 % 40.20 % 57.35 %
www.sportingnews.com 1394 nodes 79 nodes 100 % 72.48 % 84.05 %
www.hoopsworld.com 629 nodes 112 nodes 100 % 100 % 100 %
profootballtalk.nbcsports.com 394 nodes 28 nodes 100 % 45.17 % 62.23 %
www.thehollywoodgossip.com 362 nodes 44 nodes 100 % 100 % 100 %
www.rollingstone.com 993 nodes 29 nodes 100 % 20.42 % 33.92 %
popwatch.ew.com 919 nodes 93 nodes 100 % 100 % 100 %
www.people.com 923 nodes 56 nodes 100 % 32 % 48.49 %
www.cinemablend.com 495 nodes 59 nodes 100 % 37.34 % 54.38 %

All the information related to the experiments, the source
code of the benchmarks, the source code of the tool and other
material can be found at http://users.dsic.upv.es/∼jsilva/CNR.

VI. CONCLUSIONS

Content extraction is useful not only for the final user,
but also for many systems and tools such as indexers as a
preliminary stage. It extracts the relevant part of a webpage
allowing us to ignore the rest of content that can become
useless, irrelevant, or even worst, noisy. In this work, we
have presented a new technique for content extraction uses
the DOM structure of the webpage to identify the blocks that
groups those nodes with a higher proportion of text.

The DOM structure not only allows us to improve the
detection of blocks, but it also allows us to discard those parts

of the webpage that have a large amount of textual information
but belong to other HTML containers. Our implementation
and experiments have shown the usefulness of the presented
technique.

The technique could be used not only for content extraction,
but also for blocks detection. It could detect all blocks in
a webpage by applying the presented algorithms iteratively
to detect one block after the other. In this way, we could
detect the most relevant block; then, remove from the DOM
tree all its nodes, and detect the next relevant block in the
remaining DOM tree. This process would identify all blocks
in relevant order. Another interesting open line of research
is using the technique to detect the menus of a webpage.
A preliminary study showed that instead of using a ratio
characters/nodes, we could use a ratio hyperlinks/nodes to
discover big concentrations of links in the DOM tree. If we 11 Polibits (45) 2012ISSN 1870-9044

Content Extraction based on Hierarchical Relations in DOM Structures

collect those concentrations of links where the links contain
less characters, we will find the menus of the webpage.

ACKNOWLEDGMENTS

This work was partially supported by the Spanish
Ministerio de Ciencia e Innovación under the grant
TIN2008-06622-C03-02 and by theGeneralitat Valenciana
under the grant PROMETEO/2011/052. David Insa was
partially supported by theMinisterio de Educacíonunder grant
FPU AP2010-4415.

REFERENCES

[1] D. Gibson, K. Punera, and A. Tomkins, “The volume and evolution
of web page templates,” inProceedings of the 14th International
Conference on World Wide Web (WWW’05), Chiba, Japan, 2005, pp.
830–839.

[2] T. Gottron, “Content code blurring: A new approach to content
extraction,” in Proceedings of the 5th International Workshop on
Text-Based Information Retrieval (TIR’08), Turin, Italy, 2008, pp. 29–33.

[3] T. Weninger, W. Hsu, and J. Han, “CETR — content extraction via tag
ratios,” in Proceedings of the 19th International Conference on World
Wide Web (WWW’10), North Carolina, USA, 2010, pp. 971–980.

[4] X. Li and B. Liu, “Learning to classify text using positive and unlabeled
data,” inProceedings of the International Joint Conference on Artificial
Intelligence (IJCAI’03), Acapulco, Mexico, 2003.

[5] J. Arias, K. Deschacht, and M. Moens, “Language independent content
extraction from web pages,” inProceedings of the 9th Dutch-Belgian
Information Retrieval Workshop (DIR’09), The Netherlands, 2009, pp.
50–55.

[6] B. Krüpl, M. Herzog, and W. Gatterbauer, “Using visual cues for
extraction of tabular data from arbitrary HTML documents,” in
Proceedings of the 14th International Conference on World Wide Web
(WWW’05), Chiba, Japan, 2005.

[7] F. Finn, N. Kushmerick, and B. Smyth, “Fact or fiction: Content
classification for digital libraries,” inProceedings of DELOS-NSF
Workshop on Personalisation and Recommender Systems in Digital
Libraries, Dublin, 2001.

[8] S. Gupta, G. Kaiser, D. Neistadt, and P. Grimm, “DOM-based
content extraction of HTML documents,” inProceedings of the
12th International Conference on World Wide Web (WWW’03), North
Budapest, Hungary, 2003, pp. 207–214.

[9] B. Dalvi, W. W. Cohen, and J. Callan, “Websets: Extracting sets
of entities from the web using unsupervised information extraction,”
Carnegie Mellon School of Computer Science, Tech. Rep., 2011.

[10] N. Kushmerick, D. S. Weld, and R. Doorenbos, “Wrapper induction for
information extraction,” inProceedings of the Fifteenth International
Joint Conference on Artificial Intelligence (IJCAI’97), 1997.

[11] W. W. Cohen, M. Hurst, and L. S. Jensen, “A flexible learning system
for wrapping tables and lists in HTML documents,” inProceedings
of the international World Wide Web conference (WWW’02), 2002, pp.
232–241.

[12] C. Kohlscḧutter and W. Nejdl, “A densitometric approach to web
page segmentation,” inProceeding of the 17th ACM conference on
Information and knowledge management (CIKM ’08). New York, NY,
USA: ACM, 2008, pp. 1173–1182.

[13] C. Kohlscḧutter, “A densitometric analysis of web template content,”
in Proceedings of the 18th international World Wide Web conference
(WWW’09). New York, NY, USA: ACM, 2009, pp. 1165–1166.

[14] S. Baluja, “Browsing on small screens: Recasting web-page
segmentation into an efficient machine learning framework,” in
Proceedings of the 15th International Conference on World Wide Web
(WWW’06). New York, NY, USA: ACM, 2006, pp. 33–42.

[15] J. Gibson, B. Wellner, and S. Lubar, “Adaptive web-page content
identification,” in Proceedings of the 9th annual ACM international
workshop on Web information and data management (WIDM ’07). New
York, NY, USA: ACM, 2007, pp. 105–112.

[16] C. Kohlscḧutter, P. Fankhauser, and W. Nejdl, “Boilerplate detection
using shallow text features,” inProceedings of the third ACM
international conference on Web search and data mining (WSDM ’10).
New York, NY, USA: ACM, 2010, pp. 441–450.

[17] W3C Consortium, “Document Object Model (DOM).” [Online].
Available: www.w3.org/DOM

[18] T. Gottron, “Evaluating content extraction on html documents,”
in Proceedings of the 2nd International Conference on Internet
Technologies and Applications (ITA’07). Wrexham, North Wales: 2007,
2007, pp. 123–132.

12Polibits (45) 2012 ISSN 1870-9044

Sergio López, Josep Silva, David Insa

