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Abstract—Bubble recognition is a challenging problem in
a broad range from mechanics to medicine. These gas-filled
structures whose pattern and morphology alter in their
surrounding environment would be counted either manually
or with computational recognition procedures. In cardiology,
user dependent bubble detection and temporal counting in
videos require special trainings and experience due to ultra fast
movement, inherent noise and video quality. In this study, we
propose an efficient recognition routine to increase the objectivity
of emboli detection. Firstly, we started to compare five different
methods on two synthetic data sets emulating cardiac chamber
environment with increasing speckle noise levels. Secondly, real
echocardiographic video records were segmented by variational
active contours and Left Atria (LA) were extracted. Finally, three
successful methods in simulation were applied to LAs in order
to reveal candidate bubbles on video frames. Our detection rate
of proposed method was 95.7% and the others were 86.2% and
88.3%. We conclude that our approach would be useful in long
lasting video processing and would be applied in other disciplines.

Index Terms—Image thresholding, active contours, venous
emboli, echocardiography.

I. INTRODUCTION

In different disciplines, several approaches are developed to
detect bubbles and cavitations. These gas-filled structures are
generally formed within objects, surfaces, liquids, thin films
and inner layers. In solid state mechanics, thermodynamics
and metallurgy, bubbles and cavitations are generally locked
and have a non-moving nature. On the other hand, their
dynamics in fluids are characterized through the viscosity of
surrounding environments and physical properties of inner
media. Transition between different layers, the effect of
non-newtonian fluids would cause considerable variations in
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their behaviors. Even if bubble models offer a generalization
for quantification and motion estimation in these fields,
bubble monitoring and recognition in medicine still conserve
unresolved problems.

In medicine, bubbles so-called emboli are created in
endothelial tissues and are transported with veins to the heart.
Though the bubble visualization in time is a challenge for
an untrained clinician, human wise bubble recognition is a
spatial problem due to turbulence, endocardial tissues, blood
transportation and especially high level inherent noise. For
healthy subjects embolus would be filtered in circulation, lung
shunts or at most they would trigger migraine. However in
risky groups, they would cause severe diseases in a broad
range from stroke to blindness. For this purpose clinicians
are mostly focused on Left Atrium (LA) and Pulmonary
Artery (PA). Bubble examination is performed through video
streams. Echocardiologists refer to manually selected region of
interests (ROI) and try to discriminate moving objects which
are labeled as bubbles. These moving objects might have
nonlinear nature as Postema et al. [1] schematized such as
translation, fragmentation, clustering, jetting and cracking.

Initial attempts to detect bubbles in circulation were based
to Doppler ultrasonography. Embolus which are travelling
through superior vena cava are classified manually as
candidate bubbles when a sound peak from baseline or mean
in frequency domain is observed.

Computational procedures were developed to automatize
these methods which would cause variations between
clinicians or mislead grading methods of bubbles for diagnosis
purposes [2], [3].

Moreover, different computational approaches in other
disciplines proposed recognition solutions for spatially
non-moving bubbles or in low noise levels which would
not mislead iterative algorithms or cost functions. Snakes[4],
[5], [6], contour based models [7], principal component
analysis[8], gradient based thresholding methods[9], [10] were
utilized by different groups. Even if these methods would give
accurate detection results in single frames, they would cause
big time delays in videos. Furthermore, we note that speckle
noise, low resolution and partial view of cardiac chambers are
other bottlenecks in echocardiography.

Threshold based methods would be preferred in video
frames if computational processing time does not cause delay
and false alarms are low in recognition results. Researchers in
medicine developed frame based semi-automatic approaches.
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Brubakk et al. [11] proposed intensity and spatial thresholding
algorithm in manually selected ROIs. Norton et al. [12]
developed a quantification based on temporal change in
opacification through cardiac chambers. These methods
brought an expansion in this area as first automated analyzes.

In this study, we developed a spatio-temporal method for
bubble quantification. Both simulation and real echogenic
records were examined through different procedures with
additive noise. In our algorithm, pixel series in acquired
frames were thresholded dynamically by separating systolic
and diastolic time intervals respectively. Moreover, all detected
bubble wise structures were gathered into one frame. On
the parallel side four different thresholding procedures were
applied onto same data. Performance analysis reveals that our
approach is satisfactory through false alarms. We hypothesize
that our method provides better detection rates and increases
the clinician subjective ease-of-use in terms of decision
making in recognition.

II. METHODOLOGY

A. Simulation Videos

We started to create two different congenital atrial video
records. Simulated frames were set as 160x120 pixels, the
average size of segmented LA in real records. Each video
stream was 1 sec long and 25 frames/sec (fps). Bubbles
on simulation data were placed randomly as it is in real
environment. Their contrasts were close to real embolus. In
echocardiographic records, bubbles are travelling dynamically
and same bubbles generally might be seen in two previous
or posterior frames if there is not a massive opacification.
This visual procedure is applied by clinicians to lower false
alarms. In order to set same echocardiographic environment
and bubble behavior, we either placed bubbles in previous
and next frames by translating, rotating or removed. This
simulation procedure is checked double blinded by two
different clinicians. In order to evaluate the performance of
recognition algorithms, we generated speckle noise using
uniform distribution. This noise with mean µ; 0 and different
variances σ was added to simulation frames. In simulation,
we also adopted Germonpre et al. [13] criterion for bubble
classification in congenital diseases. When bubble numbers in
examined area is more or less than 20, subjects are grouped
as Type 1 and Type 2, respectively.

B. Cardiac Videos

We acquired two contrast Transoesophageal
Echocardiogram (cTEE) video records from two male
professional divers. The study protocol was approved in
advance by Centre for Hyperbaric Oxygen Therapy, Military
Hospital, Ethics Committee. Each subject provided written
informed consent to join the study.

Embolus detection and visualization protocol described by
Germonpre, et al. [13] is utilized for each subject. Both
divers underwent cTEE with agitated saline for contrast.

All cTEE video frames were recorded from Ultrasound
device (MicroMaxx, SonoSite Inc, WA) in high definition
640x480 pixels, avi format. For all subjects, acquisition was
performed three times to ascertain human based grading by
two echocardiologists as a double blind study.

C. Segmentation

Initially we started to perform our segmentation using active
contours implemented via level set introduced by Caselles
et al. [14]. In this approach contours are found using a
Lagrangian formulation based on the evolution of parametrized
curve. We remarked that the partial differential equation so
called evolution is relatively slow in terms of computational
time on video sequences. Therefore we adopted a modified
level set formulation and combined the methods of Chan et
al. and Vemuri et al. [15], [16].

An initial level set by fronts Γ is denoted by a distance
function φ(x) = ±dΓ(x) A zero level set function is;
Γ(t) = (x, y) : φ(x) = 0 Given the frant Γ let F (x) be the
speed function in the direction of the normal of Γ and x(t) be
a point on Γ which evolves progressively then φ(x(t), t) ≡ 0
for all t. When this expression is differentiated through t;

∂φ

∂t
+∇φdx

dt
= 0 (1)

Level set function has both positive and negative terms
including zeroes and is called signed distance function;

∂φ

∂t
= sign(φ)(1− |∇φ|) (2)

We resolved this equation by interpreting without
reinitialization. This approach is based on modified
formulation that consists of two energy terms; internal
and external. Internal term prevents the deviation of level set
from signed distance function whereas external term conducts
a motion on zero level set up to the final pattern features
especially contours. A consequent evolution of this level set
is a gradient flow and it minimizes the energy function as it
is expressed in Equation 1 and 2. All digital records were
segmented and analyzed in MATLAB 2010a (The MathWorks
Inc, Massachusetts).

D. Detection Algorithms

In the review paper of Sezgin et al.[17], distinctive
thresholding algorithms were classified through image analysis
within different categories.

For our study, we have used four different thresholding
methods; Otsu [18], Yen et al. [19], Ramesh et al. [20] and
Beghdadi et al. [21] with distinctive nature on image analysis
and recognition. Thresholding algorithms create binary level
images using either RGB color or gray level images. After
thresholding process, blobs would be recognized on frames.

Cardiac patterns and especially LA are composed of
gray level patterns. In our simulation and real echogenic
videos, bubbles would be easily identified through relevant
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thresholds. However, it should be remarked that ultrasonic
image processing is vulnerable to inherent speckle noise. This
type of interference would cause misleading in detection,
affect binary level image or introduce false alarms within
target blobs. In our study, these blobs correspond to candidate
bubbles.

All recognition results from each method were compared
with human wise detection in order to perform the statistical
rate of recognition. In simulation phase, we remarked that two
methods are reliable in bubble detection for different noise
levels. Therefore we applied them to real segmented cardiac
videos.

E. Proposed Method

2D Cardiac images form a three dimensional data when
frames are acquired sequentially with a device dependent fps.
Therefore, all pixels in LA have a time series. It would be
foreseen that when a bubble wise structure will be present on
this pixel, its gray level will change suddenly. For this reason, a
dynamic threshold which is applied to each pixel series would
reveal candidate bubbles as it is shown in Fig.3.

This dynamic threshold is set using mean µ and σ of
pixel time series. When a pixel value is above µ + 2σ, this
pixel is recognized as a bubble candidate in time. After this
recognition procedure, all bubble candidates are summed up
on corresponding frame. After detection, we added all bubbles
into one single frame as a novelty. This single frame gathers
all candidates and facilitates the visual recognition phase for a
clinician. After automatic recognition statistical analysis was
performed to compare real bubbles marked by two clinicians
with computational recognition.

III. RESULTS

In this paper, results are interpreted as simulation and real
echogenic bubbles. In both steps, our proposed method offered
better accuracy and low false alarms than existent methods.

In the simulation phase five methods including our method
were tested on two different congenital forms through
increasing noise levels. Simulation results were compared in
Table I and Fig. 1. Only three methods were satisfactory in
high level noises. Therefore, we selected them to test their
performance in real data.

In real echogenic forms, recognition algorithms offered
reliable methods as it is shown in Table II. However, existent
methods were vulnerable to inherent noise and endocardial
structures. It is noted in Fig. 2 that boundary structures could
not be thresholded efficiently with Ramesh et al.[20] or Yen
et al.[19]. Our proposed method detects bubbles with low
false alarms. It is also evident that bubble detection map
which bring all recognized candidates into one frame is a
novelty in this paper. In Fig. 4, the visualization of all detected
microembolus onto one single frame brings an ease-of-use for
bubble movements.

IV. DISCUSSION & CONCLUSION

Bubbles would be recognized accurately with different
approaches in steady state environments without noise. On
the other hand, medical imaging introduces always artifacts
and inherent noise. Microemboli in cardiology are affected
with speckle noise and their patterns are close to boundary
structures. Therefore, their recognition which is a diagnostic
tool for specialists in cardiology becomes a challenging
problem in video processing.

In real echogenic frames, blood circulation in LA translates
and rotates bubbles. They would be recognized as easily as
in simulated frames in Fig. 1. However, during the circulation
bubbles would be clustered, cracked or fragmented due their
physical properties and turbulence. In these cases, a severe
blurring causes false alarms. Moreover, it is noted that some
fragments of endocardial wall would be detected as bubbles.
In Fig. 2, recognition with Yen et al.[19] and Ramesh et al.[20]
could not filter out endocardial fragments. Suboptimal image
quality and acoustic shadowing which are the main artifacts
in echogenic records are also another challenge for detection.
They lower detection rates by inserting dashed or circular spots
whose contrast is identical with real bubbles.

Our method benefits a reliable detection as it is noted in
Table I and II with low false alarms. The only pitfall of
proposed method is its computational time. It is evident that all
pixel series should be interpreted to create frames containing
only blobs; candidate bubbles.

As a feature work, we note that bubble behavior would
be studied in other cardiac chambers or pulmonary artery
using other imaging modalities to build up a computational
framework in cardiac analysis.
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Original σ = 0.07 σ = 0.5

Frame

Otsu[18]

Yen et al.[19]

Ramesh et al.[20]

Beghdadi et al.[21]

Proposed method
Fig. 1. Comparison of five different methods in simulated LA.
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Segmented LA Ramesh et al.[20]

Yen et al.[19] Proposed Method

Fig. 2. Comparison of three different methods in TEE.

Fig. 3. Dynamic thresholding of pixel through intensity in proposed method.

Fig. 4. Bubble map of video sequence.
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