
 

  

Abstract—Named entities are perhaps the most important 
indexing element in text for most of the information extraction 
and mining tasks. Construction of a Named Entity Recognition 
(NER) system becomes challenging if proper resources are not 
available. Gazetteer lists are often used for the development of 
NER systems. In many resource-poor languages gazetteer lists of 
proper size are not available, but sometimes relevant lists are 
available in English. Proper transliteration makes the English 
lists useful in the NER tasks for such languages. In this paper, we 
have described a Maximum Entropy based NER system for 
Hindi. We have explored different features applicable for the 
Hindi NER task. We have incorporated some gazetteer lists in 
the system to increase the performance of the system. These lists 
are collected from the web and are in English. To make these 
English lists useful in the Hindi NER task, we have proposed a 
two-phase transliteration methodology. A considerable amount 
of performance improvement is observed after using the 
transliteration based gazetteer lists in the system. The proposed 
transliteration based gazetteer preparation methodology is also 
applicable for other languages. Apart from Hindi, we have 
applied the transliteration approach in Bengali NER task and 
also achieved performance improvement. 
 

Index Terms—Gazetteer list preparation, named entity 
recognition, natural language processing, transliteration. 

I. INTRODUCTION 
amed entity recognition is a subtask of information 
extraction that seeks to locate and classify the proper 
names in a text. NER systems are extremely useful in 

many Natural Language Processing (NLP) applications such 
as question answering, machine translation, information 
extraction and so on. NER systems have been developed for 
resource-rich languages like English with very high 
accuracies. But construction of an NER system for a resource-
poor language is very challenging due to unavailability of 
proper resources.  

English is resource-rich language containing lots of 
resources for NER and other NLP tasks. Some of the 
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resources of English language can be used to develop NER 
system for a resource-poor language. Also English is used 
widely in many countries in the world. In India, although there 
are several regional languages like Bengali, Hindi, Tamil, 
Telugu etc., English is widely used (also as subsidiary official 
language). Use of the Indian languages in the web is very little 
compared to English. So, there are a lot of resources on the 
web, which are helpful in Indian language NLP tasks, but they 
are available in English. For example, we found several 
relevant name lists on the web which are useful in Hindi NER 
task, but these are in English. It is possible to use these 
English resources if a good transliteration system is available.   

Transliteration is the practice of transcribing a word or text 
in one writing system into another. Technically most 
transliterations map the letters of the source script to letters 
pronounced similarly in the goal script. Direct transliteration 
from English to an Indian language is a difficult task. As our 
primary objective is to make the available English gazetteer 
lists useful for the Hindi NER task, we propose a two-phase 
transliteration, which is capable to do that.  

The transliteration module uses an intermediate alphabet, 
which is designed by preserving the phonetic properties. The 
English names in the name lists are transliterated to the 
intermediate alphabet. A Hindi word, when it needs to be 
checked whether it belongs to a gazetteer list, is also 
transliterated into the intermediate alphabet. For an English-
Hindi word pair, if their transliterated intermediate alphabet 
strings are the same, then we conclude that the English word 
is the transliteration of the Hindi word. 

In this paper, we have identified suitable features for Hindi 
NER task. These features are used to develop a Maximum 
Entropy (MaxEnt) based Hindi NER system. The highest F-
value achieved by the MaxEnt based system is 75.89. Then 
the transliteration based gazetteer lists are incorporated in the 
system and F-value is increased to 81.12. The improvement in 
accuracy demonstrates the effectiveness of the proposed 
transliteration approach. 

The proposed transliteration module is applicable to other 
languages also. We have chosen another language Bengali and 
applied the transliteration approach for using the English 
gazetteers in Bengali NER task. Also in Bengali, the addition 
of the transliteration based gazetteer lists increases the 
accuracy.  

The paper is structured as follows. Varios NER techniques 
and transliteration systems for different languages are 
discussed in Section II. In Section III, the architecture of the 
MaxEnt based Hindi NER system is presented. Then two-
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phase transliteration system is discussed in Section IV. In the 
next section, the prepared gazetteers and the corresponding 
experimental results are discussed. The experiments on 
Bengali NER are summarized in Section VI. Section VII 
presents the overall discussion. Finally Section VIII concludes 
the paper. 

II. PREVIOUS WORK 
There are a variety of techniques for NER. Two broadly 

classified approaches to NER are: 
− Linguistic approach and 
− Machine learning based approach. 

The linguistic approach is the classical approach to NER. It 
typically uses rules manually written by linguists. Though it 
requires a lot of work by domain experts, a NER system based 
on manual rules may provide very high accuracy. There are 
several rule-based NER systems, containing mainly 
lexicalized grammar, gazetteer lists, and list of trigger words, 
which are capable of providing F-value of 88-92 for English 
[9], [13], [18]. 

The main disadvantages of these rule-based techniques are: 
they require huge experience and grammatical knowledge on 
the particular language or domain; the development is 
generally time-consuming and sometimes changes in the 
system may be hard to accommodate. Also, these systems are 
not transferable, which means that one rule-based NER system 
made for a particular language or domain, cannot be used for 
other languages or domains. 

The recent Machine Learning (ML) techniques make use of 
a large amount of annotated data to acquire high-level 
language knowledge. ML based techniques facilitate the 
development of recognizers in a very short time. Several ML 
techniques have been successfully used for the NER task. 
Here we mention a few NER systems that have used ML 
techniques. 

‘Identifinder’ is one of the first generation ML based NER 
systems which used Hidden Markov Model (HMM) [2]. By 
using mainly capital letter and digit information, this system 
achieved F-value of 87.6 on English. Borthwick used MaxEnt 
in his NER system with lexical information, section 
information and dictionary features [3]. He had also shown 
that ML approaches can be combined with hand-coded 
systems to achieve better performance. He was able to 
develop a 92% accurate English NER system. Mikheev et al. 
has also developed a hybrid system containing statistical and 
hand coded system that achieved F-value of 93.39 [14]. 

Other ML approaches like Support Vector Machine (SVM), 
Conditional Random Field (CRF), Maximum Entropy Markov 
Model (MEMM) are also used in developing NER systems. 
Combinations of different ML approaches are also used. For 
example, we can mention a system developed by Srihari et al., 
which combined several modules, built by using MaxEnt, 
HMM and handcrafted rules, that achieved F-value of 93.5 
[17].  

The NER task for Hindi has been explored by Cucerzan and 
Yarowsky in their language independent NER which used 
morphological and contextual evidences [5]. They ran their 
experiments with 5 languages: Romanian, English, Greek, 
Turkish and Hindi. Among these, the accuracy for Hindi was 
the worst. For Hindi the system performance has F-value of 
41.70 with very low recall 27.84% and about 85% precision. 
A successful Hindi NER system is developed by Li and 
McCallum using CRF with feature induction [12]. They 
automatically discovered relevant features by providing a 
large array of lexical tests and using feature induction to 
automatically construct the features that mostly increase 
conditional likelihood. In an effort to reduce overfitting, they 
used a combination of a Gaussian prior and early stopping. 
The training set consisted in 340 K words. Feature induction 
constructed 9,697 features from an original set of 152,189 
atomic features; many are position-shifted but only about 1% 
are useful. Highest test set accuracy of their system is the F-
value of 71.50. The MaxEnt based Hindi NER system 
developed by Saha et al. has achieved F-value of 80.01 [16]. 
The system has used word selection and word clustering based 
feature reduction techniques to achieve this result. 

Transliteration is also a very important topic and several 
transliteration systems for different languages have been 
developed using different approaches. The basic approaches 
of transliteration are phoneme based or spelling-based. To 
mention a phoneme-based statistical transliteration system 
from Arabic to English is developed by Knight and Graehl 
[10]. This system used finite state transducer that implemented 
transformation rules to do back-transliteration. A spelling-
based model that directly maps English letter sequences into 
Arabic letters is developed by Al-Onaizan and Knight [1]. 
There are several transliteration systems for English-Japanese 
[8], English-Chinese [11], English-Spanish [4] and many 
other languages to English. 

But very few attempts were made to develop transliteration 
systems for Indian languages to English or other languages. 
We can mention a transliteration system for Bengali-English 
transliteration developed by Ekbal et al. [7]. They have 
proposed different models modifying the joint source channel 
model. In that system a Bengali string is divided into 
transliteration units containing a vowel modifier or matra at 
the end of each unit. Similarly, English string is also divided 
into units. Then various unigram, bigram or trigram models 
are defined depending on consideration of contexts of the 
units. Linguistic knowledge in the form of possible conjuncts 
and diphthongs in Bengali and their representations in English 
are also considered. This system is capable of transliterating 
mainly person names. The highest transliteration accuracy 
achieved by the system is 69.3% Word Agreement Ratio 
(WAR) for Bengali to English and 67.9% WAR for English to 
Bengali transliteration. 



 

III. MAXENT BASED HINDI NER SYSTEM 
We have used MaxEnt classifier to develop the system. 

Selection of an appropriate feature set is very important to 
train a ML based classifier. As language resources and tools 
are limited in Hindi, we have given the most importance to the 
features. MaxEnt model has the capability to use different 
features to compute the conditional probabilities. 

In Hindi, there is no capitalization of letters to distinguish 
proper nouns from other nouns. Capitalization is a very 
important feature for English as most of the names are 
capitalized. Due to absence of the capitalization feature, Hindi 
NER task is difficult. Also, person names are more diverse in 
Indian languages; many common words are used as names.  

In the following sections we discuss the features that we 
have identified and used to develop the Hindi NER system. 

A. Feature Description 
The features that we have identified for the Hindi NER task 

are: 
− Surrounding Words  

As the surrounding words are very important to recognize a 
NE, previous and next words of a particular word are used as 
features. As a feature, previous m words (wi-m...wi-1) to next n 
words (wi+1...wi+n) can be treated depending on the training 
data size, total number of candidate features etc. During 
experiment different combinations of previous four words to 
next four words are used as features. These features are multi-
valued. For a particular word wi, its previous word wi-1 can be 
any word in the vocabulary, which makes the feature space 
very high. Such high-dimensional features do not work well if 
amount of training data is not sufficient. 

− Binary Word Feature  
The multi-valued feature can be modified as a set of binary 

feature to reduce the feature space. Class specific lists are 
compiled taking the frequent words present in a particular 
position. For example, for the previous word of the person 
class, frequent words are collected in PrevPerson list. Such 
lists are compiled for each class and each position (previous m 
to next n). Now C binary features replace the word feature for 
a particular position, where C is the number of classes. The 
word in a particular position is checked whether it is in the 
corresponding position list for a class or not. Firstly we have 
prepared the lists blindly by taking the words occurring at 
least four times in a particular position corresponding to a 
class. 

− Context Lists 
The idea of binary word feature is used to define the class 

context features. Context words are defined as the frequent 
words present in a word window for a particular class. In our 
experiment we have listed all the frequent words present 
anywhere in wi-3...wi+3 window for a particular class. Then this 
list is manually edited to prepare the context word list for a 
class. For example, location context list contains roda (road), 
rajdhani (capital), sthita (located in), jakar (going to) etc. The 
feature is defined as, for a word wi, if any of its surrounding 

words (wi-3...wi+3) is in a class context list then the 
corresponding class context feature is 1. 

− Named Entity Tags of Previous Words 
Named entity (NE) tags of the previous words (ti-m...ti-1) are 

used as feature. This feature is dynamic. The value of the 
feature for wi is available after obtaining the NE tag of wi-1. 

− First Word 
If the word is the first word of a sentence, then this feature 

is set to 1. Otherwise, it is set to 0. 
− Containing Digit 

If a word contains digit(s) then the binary feature 
ContainsDigit is set to 1. 

− Made up of 4 Digits 
For a word w if all the characters are digits and having only 

4 digits in w, then the feature fourDigit is set to 1. This feature 
is helpful for identifying year. A little modification of the 
feature might give better result. As in our development, we are 
working in news domain, the years are limited to 1900-2100 
in most cases. Then we have modified the feature as if it is a 
four-digit word and its value is between 1900 and 2100 then 
the feature value is 1.  

− Numerical Word 
If a word is a numerical word, i.e. it is a word denoting a 

number (e.g. tin (three), char (four) etc.) then the feature 
NumWord is set to 1. 

− Word Suffix 
Suffix information is useful to identify the named entities. 

This feature can be used in two ways. The first and naive one 
is that a fixed length word suffix of current and surrounding 
words can be treated as feature. During evaluation, it was 
observed that this feature is useful and able to increase the 
accuracy by a considerable amount. Still, better approach is to 
use suffix based binary feature. Variable length suffixes of a 
word can be matched with predefined lists of useful suffixes 
for different classes of NEs. Suffix list of locations is very 
useful since most of the location names in India end with a 
specific list of suffixes. Suffix list of locations contains 116 
suffixes like, bad, pur, puram, ganj, dihi etc.  

− Word Prefix 
Prefix information of a word is also useful. A fixed length 

word prefix of current and surrounding words can be treated 
as feature. 

− Parts-of-Speech (POS) Information 
The POS of the current word and the surrounding words are 

important to recognize names. For this task we have used the 
POS tagger developed at IIT Kharagpur, India. The tagset of 
the tagger contains 28 tags. Firstly we have used the POS 
values of current and surrounding tokens as feature. 

All 28 POS tags are not helpful in recognizing names. 
Nominal and postpositional tags are the most important in 
name finding in Hindi. Then we have modified the POS 
tagger to a coarse-grained POS tagger which has only three 
tags - nominal, postpositional (PSP) and others. These coarse 
grained POS values of current and surrounding tokens are 
more helpful for name recognition.  



The POS information is also used in another way. Some 
binary features are defined using the POS information. For 
example, a binary feature NominalPSP is defined as 
following, if the current token is nominal and the next token is 
a PSP then the feature is set to 1, otherwise 0.  

B. Maximum Entropy Based Model 
MaxEnt is a flexible statistical model which assigns an 

output for each token based on its history and features. 
MaxEnt computes the probability p(o|h) for any o from the 
space of all possible outputs O, and for every h from the space 
of all possible histories H. A history is all the conditioning 
data that enables to assign probabilities to the space of output. 
In NER, history can be viewed as all information derivable 
from the training corpus relative to the current token wi. The 
computation of p(o|h) depends on a set of features, which are 
helpful in making predictions about the output.  

Given a set of features and a training corpus, the MaxEnt 
estimation process produces a model in which every feature fi 
has a weight αi. We can compute the conditional probability 
as [15] 

if (h ,o )1( | )
( ) i

i

p o h
Z h

α= ∏                (1) 

ιf (h ,ο )
ι( ) α

O i

Z h = ∑ ∏                         (2)  

The probability is given by multiplying the weights of 
active features. The weight αi is estimated by a procedure 
called Generalized Iterative Scaling (GIS) [6]. This method 
improves the estimation of weights iteratively. The MaxEnt 
estimation technique guarantees that, for every feature fi, the 
expected value equals the empirical expectation in the training 
corpus.  

For our development we have used a Java based open nlp 
MaxEnt toolkit1 to get the probability values of a word 
belonging to each class. That is, given a sequence of words, 
the probability of each class is obtained for each word. To 
find the most probable tag corresponding to each word of a 
sequence, we can choose the tag having the highest class-
conditional probability value.  

Sometimes this method results in inadmissible assignment 
for tags belonging to the sequences that never happen. To 
eliminate these inadmissible sequences we have made some 
restrictions. Then we have used a beam search algorithm with 
beam length 3 with these restrictions. This algorithm finds the 
most probable tag sequence from the class conditional 
probability values. 

C. Training Data 
The training data used for this task contains of about 243 K 

words with 16,482 NEs, which is collected from the popular 
daily Hindi newspaper "Dainik Jagaran". In this development, 
we have considered four types of NEs to recognize. These are 
Person (Per), Location (Loc), Organization (Org) and Date. 
To recognize entity boundaries, each name class N is 
subdivided into four sub-classes, i.e., N_Begin, N_Continue, 
 

1 www.maxent.sourceforge.net 

N_End, and N_Unique. Hence, there are total 17 classes (4 
name classes × 4 sub-classes + 1 not-name class). The corpus 
contains 6,298 Person, 4,696 Location, 3,652 Organization 
and 1,845 Date entities. 

D. Evaluation 
About 80 different experiments are conducted taking 

several combinations from the mentioned features to identify 
the best feature set for the NER task. We have evaluated the 
system using a blind test file of size 25 K words, which is 
totally different from the training file. The accuracies are 
measured in terms of F-measure, which is weighted harmonic 
mean of precision and recall. Precision is the percentage of the 
correct annotations and recall is the percentage of the total 
named entities that are successfully annotated. The general 
expression for measuring the F-value is:  Fβ = ((1 + β2) 
(precision × recall)) / (β2 × precision + recall). Here the 
value of β is taken as 1. 

First of all, we have used only the current and surrounding 
words as feature of MaxEnt. We have experimented with 
several combinations of previous 4 to next 4 words (wi-

4...wi+4) to identify the best word-window. The results are 
shown in Table I. 

 
TABLE I.  

RESULTS (F-MEASURE) OF MAXENT BASED SYSTEM USING WORD FEATURES 
Feature Per Loc Org Date Total 

wi, wi-1, wi+1 61.36 68.29 52.12 88.9 67.26 

wi, wi-1, wi-2, wi+1, wi+2 64.10 67.81 58 92.30 69.09 

wi, wi-1, wi-2, wi-3, wi+1, wi+2, 
wi+3 

60.42 67.81 51.48 90.18 66.84 

wi, wi-1, wi-2, wi-3, wi-4, wi+1, 
wi+2, wi+3, wi+4 

58.42 64.12 47.97 84.69 61.27 

wi, wi-1inList, wi-2inList, 
wi+1inList, wi+2inList 65.37 70.33 47.37 83.72 66.17 

 
From Table I we can observe that word window (wi-2...wi+2) 

gives the best result. When the window size is increased, the 
performance degrades. List based binary word features are not 
effective. In the table, the notation wi-ninList is used to indicate 
binary word features for all classes for wi-n. We have already 
mentioned that the binary word feature matches the word if it 
presents in a frequent word list which is formed from the 
training corpus. By analyzing the word lists we have observed 
that the lists do not contain all the words related to a class. For 
example, the word ‘jakar’ (going to) in the next position helps 
to conclude that the current word has high probability to be a 
location name. But the word is ‘jakar’ is not in the 
corresponding list because the word is not occurring in that 
particular position with high frequency in our training corpus. 
Manual editing of the lists might help the binary word feature 
to perform better.  

Similar experiments are conducted to find the best feature 
set for the Hindi NER task. The features described earlier are 
applied separately or in combination to build the MaxEnt 



 

based model. In Table II we have summarized the results. 
Only the best values of each feature category are given in the 
table. This result is considered as the baseline in this study.  

 
TABLE II. 

RESULTS OF MAXENT BASED SYSTEM USING DIFFERENT FEATURES 

Feature Per Loc Org Date Total 

words, previous NE tags 63.33 69.56 58.58 91.76 69.64 

words, tags, prefix(≤4) 66.67 71 58.58 87.8 70.02 

words, tags, suffix(≤4) 70 76.92 59.18 88.9 73.5 

words, tags, suffix (≤4), 
prefix(≤4) 

70.44 70.33 59.18 90.18 72.64 

words, tags, digit information 62.94 69.56 50 91.76 67.63 

words, tags, suffix (≤4), digit 70.44 76.92 60.44 93.02 74.51 

words, tags, POS (28 tags) 66.67 72.84 60 88.9 71.22 

words, tags, POS(coarse-
grained) 69.62 80.74 58.7 91.76 75.22 

words, tags, POS(coarse-
grained), suffix (≤4), digit 72.23 78.1 62.37 93.02 75.67 

words, tags,  ‘nominalPSP’, 
suffix (≤4), digit 72.5 80.74 58.7 93.02 75.89 

 
From the table we can observe that some of the features are 

able to improve the system accuracy separately, but when 
applied in combination with other features, they cause 
decreasing of the the accuracy. For example, with the 
information about the word and tag only we achieve F-value 
of 69.64. When suffix information is added, F-value is 
increased to 73.5 and when prefix information is added then 
F-value of 70.02 is achieved. But when both the suffix and 
prefix features are combined, then the F-value is 72.64. Prefix 
information increases the accuracy alone, but when combined 
with suffix information, it decreases the accuracy instead of 
increasing it. More complex features do not guarantee the  
better result. The best accuracy of the system is the F-value of 
75.89, which is obtained by using current word, surrounding 
words (wi-1, wi+1), previous NE tags, suffix information (≤4), 
digit information (contains digit, four digit, numerical word) 
and the POS based binary feature nominalPSP. Here an 
interesting observation is, that the best feature set uses the 
word window (-1 +1), i.e. one previous word and one next 
word. Using the wider window reduces the performance, 
though in Table I it was found that window (-2 +2) performs 
best. 

IV. GAZETTEER INFORMATION 
Gazetteer lists or name dictionaries are helpful in NER. It is 

observed that a huge number of organization names end with 
some specific words like Inc., Corp., Limited etc. If all such 
words can be collected in a list then they can help to recognize 
the organization names. Again, it is very common that some 
designations like prof., minister etc. and some other qualifiers 
like Mr., Dr., Sri etc. appear before the name of a person. A 
list containing all such words helps in person name 

identification.  A surname list is also helpful for identifying 
person names. Similarly location list, organization list, first 
name list etc. are some helpful gazetteer lists. 

Gazetteer lists are successfully used in many English NER 
systems. Borthwick’s ‘MENE’ has used 8 dictionaries [3], 
which are: First names (1,245), Corporate names (10,300), 
Corporate names without suffix (10,300), Colleges and 
Universities (1,225), Corporate suffixes (244), Date and Time 
(51) etc. The numbers in parentheses indicate the size of the 
corresponding dictionaries. As another example, we can 
mention the hybrid system developed by Srihari et al. (2000). 
The gazetteer lists used in the system are: First name (8,000), 
Family name (14,000) and a large gazetteer of Locations 
(250,000). There are many other systems which have used 
name dictionaries to improve the accuracy. 

Being influenced by these systems, we have decided to use 
gazetteer lists in our system. We have planned to use a few 
gazetteer lists like, person prefix, corporate suffix, surname, 
first name, location etc.   

Initially we have attempted to prepare the gazetteers from 
the training corpus. Comparing with similar English 
dictionaries, it seems that prepared dictionaries might be 
sufficient for person prefix words, organization suffix words 
etc. but person first name list, location list etc. are not 
sufficient for the Hindi NER task. Then we have attempted to 
use the web sources for creating large gazetteer lists. 

As our goal is to develop a NER system for Hindi, we are 
mainly interested in preparing gazetteers, which will contain 
mainly places in India, Indian first names and Indian 
surnames. For that purpose, we have collected the names from 
several websites. Mainly we have explored some Indian baby 
name websites to prepare the first name list. Also a lot of 
names of non-Indian famous personalities who are likely to 
appear in Indian news, collected from several sources, are 
added to the first name list. Similarly, we have prepared the 
location dictionary using Indian telephone directory, postal 
websites and the web encyclopedia ‘wikipedia’. In Table III, 
we have mentioned the main sources from which we have 
collected the names. 

TABLE III. 
SOURCES OF GAZETTEER LISTS 

Gazetteer Sources 
First name http://hiren.info/indian-baby-names 

http://indiaexpress.com/specials/babynames 
http://www.modernindianbabynames.com/ 

Surname http://surnamedirectory.com/surname-index.html 
http://en.wikipedia.org/wiki/Indian_name 
http://en.wikipedia.org/wiki/List_of_most_common_surn
ames 

Location http://indiavilas.com/indiainfo/pincodes.asp 
http://indiapost.gov.in 
http://maxmind.com/app/worldcities 
http://en.wikipedia.org/wiki 

A. Transliteration 
The transliteration from English to Hindi is very difficult. 

English alphabet contains 26 characters whereas the Hindi 
alphabet contains 52 characters. So the mapping is not trivial. 
We have already mentioned that Ekbal et al. [7] has 



developed a transliteration system for Bengali. A similar 
approach can be used to develop a Hindi-English 
transliteration system. But it requires a bilingual transliteration 
corpus, which needs huge efforts to built, is unavailable to us.  
Also using this approach the word agreement ratio obtained is 
below 70%, which is not a good value for the task. 

To make the transliteration process easier and more 
accurate, we propose a 2-phase transliteration module. As our 
goal is to make decision that a particular Hindi string is in 
English gazetteer or not, we need not transliterate the Hindi 
strings in English or English strings into Hindi. Our idea is to 
define an intermediate alphabet. Both the English and Hindi 
strings will be transliterated to the intermediate alphabet. For 
two English-Hindi string pair, if the intermediate alphabet is 
same then we can conclude that one string is the transliteration 
of the other.  

First of all we need to decide the alphabet size of the 
intermediate state. When several persons write a Hindi name 
in English, all the English string may not be same. For 
example a Hindi name “surabhii” when written in English, 
may be written as several ways, like surabhi, shurabhi, suravi, 
suravee, shuravi etc. So, it is very difficult to transliterate 
properly. Preserving the phonetic properties we have defined 
our intermediate alphabet consisting of 34 characters. To 
indicate these 34 characters, we have given unique character-
id to each character which ranges from 51# to 84#. As special 
characters and digits are very rare in person and location 
names, all the special characters are mapped to a single 
character with character-id 99# and all the digits are mapped 
to 98#. 

B. English to Intermediate Alphabet Transliteration 
For transliterating English strings into the intermediate 

alphabet, we have built a phonetic map table. This map table 
maps an English n-gram into an intermediate character. A few 
entities of the map table are shown in Table IV. 

 
TABLE IV. 

A PART OF THE MAP-TABLE 
English Intermediate English Intermediate 
A 51# EE, I  53# 
OO, U 54# B, W 55# 
BH, V 56# CH 57# 
R, RH 76# SH, S 77# 

 
The procedure of transliteration is as follows. 
 

Procedure 1: Transliteration  English-Intermediate 
Source string – English, Output String – Intermediate. 

 
1. Scan the source string (S) from left to right. 
2. Extract the first n-gram (G) from S. (n = 4) 
3. Search it in the map-table. 
4. If it is found, insert its corresponding intermediate 

state entity (I) into target string M. M  M + I. 
Remove G from S. S  S – G. 
Go to step 2.  

5. Else, set n = n – 1. 
Go to step 3. 

Using this procedure, English string ‘surabhii’ will be 
transliterated to 77#54#76#51#56#53#. If we check the 
transliteration for ‘shuravi’, it is transliterated into 
intermediate string in the same manner. 

C. Hindi to Intermediate Alphabet Transliteration 
This is done in two steps. At the first step, the Hindi strings 

(which are in Unicode) are transliterated into itrans. Itrans is 
representation of Indian language alphabets in terms of 
ASCII. Since Indian text is composed of syllabic units rather 
than individual alphabetic letters, itrans uses combinations of 
two or more letters of English alphabet to represent an Indian 
language syllable. However, there are multiple sounds in 
Indian languages corresponding to the same English letter and 
not all Indian syllables can be represented by logical 
combinations of English alphabet. Hence, itrans uses some 
non-alphabetic special characters also in some of the syllables. 
The difficulty in converting the Unicode Hindi string to itrans 
is that the conversion mapping of Unicode to itrans is many to 
one. A map table2, with some heuristic knowledge, is used for 
the transliteration. Our example Hindi word ‘surabhii’ is 
converted into ‘sUrabhI’ in itrans. 

At the next step, the itrans string is transliterated into the 
intermediate alphabet using a similar procedure of 
transliteration. Here we use a similar map-table containing the 
mappings from itrans to intermediate alphabet. This procedure 
will transliterate the example itrans word ‘sUrabhI’ to 
77#54#76#51#56#53#. 

D. Accuracy of the Transliteration System 
The transliteration system is evaluated by using a bilingual 

corpus containing 1,070 English-Hindi word pairs most of 
which are names. 980 of them are transliterated correctly by 
the system. So, the system accuracy is 980×100/1070 = 
91.59%.  

This transliteration approach is applicable for some other 
languages also. 

V. USE OF GAZETTEER LISTS IN MAXENT BASED HINDI NER 
We have prepared the gazetteer lists directly from the 

corpus or from the web using the transliteration process 
discussed in the above section.  The lists collected from the 
web are transliterated and stored in the intermediate form. One 
way of using the gazetteer information is to directly search a 
token if it is in the list. If it is present then we make the 
decision that the word belongs to that particular class. But this 
cannot resolve ambiguity as a particular token may present in 
more than one list and confusion arises. We have used the 
gazetteer information as a feature of MaxEnt. In the following 
we have described the prepared gazetteer lists and the 
corresponding features in details. 

 
2 www.aczoom.com/itrans 



 

A. Gazetteer Lists 
− Month name, Days of the Week 

If the word is one of January, February, . . ., December, 
(baishakh, jyashtha, . . ., chaitra (month names of Hindi 
calendar)), then the feature MonthName is set to 1. If it is one 
of Monday, Tuesday, . . ., Sunday (sombar, mangalbar, . . ., 
rabibar,..) then the feature DayWeek is set to 1. 

− Corporate Suffix list  
Corporate Suffix List (CSL) contains most frequently 

occurring last words of organization names collected from the 
training data. CSL is made up of limited, corp., inc, institute, 
university etc. The size of the list is 92 entries. For a word wi, 
if any of the words from wi+1 to wi+ n is in CSL, then a feature 
CorpSuf is set to 1. 

− Person Prefix List 
It contains the designations and qualifiers that occur before 

person names and are collected from the training data. 
Examples of some prefixes are, sri (Mr.), kumari (mrs.), 
mantri (minister), adhyaksha (chairman) etc. The list contains 
123 prefixes. 

Note that person prefix words are not the part of the person 
names, while corporate suffixes are part of the organization 
names. For a word wi, if any of the words from wi-m to wi-1 is 
in person prefix List, then a feature PerPref is set to 1. 

− Common Location 
This list contains the words denoting common locations. 

Common location words like jila (district), nagar (town/city), 
roda (road) etc. have high probability to occur at the end of a 
location name. 70 such words are collected in the Common 
Location List (CLL). Then the binary feature ComLoc is 
defined as, it takes value 1 for a word wi if its next word 
presents in CLL. 

− Location List 
17,600 location names are gathered in the Location List 

(LL). LL is converted using the transliteration and stored in 
intermediate form. LL is processed into a list of unigrams 
(e.g., Kolkata, Japan) and bigrams (e.g., New Delhi, New 
York). The words are matched with unigrams and sequences 
of two consecutive words are matched against bigrams to get 
the feature value of the binary LocList feature. 

− First Name List 
This list contains 9,722 first names collected from the web. 

Most of the first names are of Indian origin. The feature 
FirstName is defined as, if the word wi is in the list, then the 
feature is set to 1, otherwise 0. 

− Middle Name List 
A list is compiled containing the common middle names in 

India, for example, kumar, chandra, nath, kanta etc. This list 
contains 35 entries. 

− Surname List 
This is a very important list which contains surnames. As 

our objective is to develop a Hindi NER, we are most 
interested in Indian surnames. We have prepared the Surname 
List (SL) from different sources containing about 1,500 Indian 
surnames and 200 other surnames. A binary feature SurName 
is defined according to whether the word is in SL. 

B. Evaluation 
In Table V, we have shown the results of the NER system 

after incorporating the gazetteer lists. To observe the 
effectiveness of the prepared gazetteer lists in Hindi NER, we 
have added the lists with the baseline system. 

 
TABLE V.  

RESULTS OF MAXENT BASED SYSTEM USING GAZETTEER LISTS 
Feature Per Loc Org Date Total 

Baseline: words, tags, 
suffix (≤4) 70 76.92 59.18 88.9 73.5 

words, tags,  suffix, 
CorpSuf 70 78.1 72.3 88.9 76.92 

words, tags, suffix, 
DayWeek, monthName, 70 76.92 59.18 95.83 74.16 

words, tags, suffix, 
PersonPrefix 72.5 76.92 59.18 88.9 74.09 

words, tags, suffix, 
SurName, PerPref,  

FirstName, MidleName 
77.2 78.1 59.18 88.9 76.34 

words, tags, suffix, 
LocList, ComLoc 70 82.81 61.05 88.9 75.41 

words, tags, suffix, all 
gazetteers 75.86 81.29 74.8 95.83 80.2 

Baseline: words, tags, 
nominalPSP, suffix 

(≤4), digit 
72.5 80.74 58.7 93.02 75.89 

words, tags, 
nominalPSP, suffix, 
digit, all gazetteers 

77.2 82.81 76.35 95.83 81.12 

 
To observe the changes in accuracy, we have selected two 

feature sets from the baseline system (as in Table II): {current 
word, surrounding words, previous NE tags, suffix≤4} and 
{current word, surrounding words, previous NE tags, 
suffix≤4, digit information, nominal PSP}. The first feature 
set achieves F-value of 73.5 and the second one achieves F-
value of 75.89, which is the best baseline feature set.  

After adding the gazetteer lists, F-value has increased to 
80.2 for the first feature set and 81.12 for the second. Also 
from the table we observe that the addition of a gazetteer list 
for a particular class (Cj) mostly increases the accuracy of Cj. 
For example, when the person gazetteer lists (e.g. person 
prefix list, surname list, first name list etc.) are incorporated, 
F-value of the person class has increased to 77.2 from 70. 
Change in accuracy of the other classes is minor. The highest 
F-value achieved by the developed Hindi NER system is 
81.12. 

VI. EXPERIMENTS ON BENGALI NER 
The proposed two-phase transliteration approach is used 

successfully to make the English gazetteer lists useful in the 
Hindi NER task. The proposed approach is also applicable to 
other resource-poor languages. To study the effectiveness of 
the approach in another language we have chosen Bengali. As 
Hindi and Bengali alphabets are very similar, we needed a 



little effort to transfer the transliteration module from Hindi to 
Bengali.  

Our primary objective is not to develop a ‘good’ Bengali 
NER system, but to experiment the effectiveness of the 
transliteration approach in Bengali NER task. We first 
developed a Bengali NER system using a small training 
corpus which is used as baseline. Then the transliteration 
module is modified to make the collected English gazetteer 
lists useful for the Bengali. These gazetteer lists are 
incorporated in the system and the improvement in accuracy is 
observed. 

A. Training Corpus 
The training corpus used for the Bengali NER task is much 

smaller than the Hindi corpus. The corpus contains only 68 K 
words. Three named entity classes are considered: Person, 
Location and Organization. The corpus contains 1,240 person 
names, 1,475 location names and 490 organization names.  

B. Transliteration Module 
Collected English gazetteer lists are then transliterated into 

Bengali. English to intermediate alphabet transliteration of the 
gazetteer lists is already done during the experiments in Hindi. 
Using a Bengali map-table, the Bengali words are 
transliterated to itrans. We have already mentioned that the 
alphabets of Bengali and Hindi are similar, so the Hindi 
module for the transliteration from itrans to intermediate is 
used for Bengali without any modification. 

The accuracy of the Bengali transliteration is measured 
using a smaller bilingual test corpus containing 400 word 
pairs. The accuracy of transliteration for Bengali is 89.3%. 

C. Features for Bengali NER 
The feature set used for the Bengali NER development is 

mentioned in the following. 
− Surrounding words (two previous and two next), 
− NE tags of previous words, 
− Affix information (all affixes up to a fixed length and 

list based), 
− Root information of the words, 
− POS information. 

Most of the features are used in similar ways as used in the 
Hindi NER task. The feature root information is not used in 
Hindi NER development, but it is very important in Bengali 
NER. In Bengali, several affixes are often added to the names 
inflecting them. For example, a person name “Sachin” is 
inflected in Bengali as, sachinra (plural, the group in which 
Sachin belongs to), sachiner (of Sachin), sachinke (to Sachin), 
sachinda (brother Sachin), sachinbabu (Mr. Sachin) etc. As 
these affixes are added to the names, sometimes identification 
of inflected names becomes very difficult. To identify the 
inflected names we have extracted the ‘root’ information of 
the words and used them as features of MaxEnt. In Hindi, 
such affixes generally present separately from the names as 
‘postpositions’, so root information is not much useful.  

D. Experimental Results 
MaxEnt classifier is used for the experiments. The training 

corpus and the mentioned features are used to develop the 
baseline system. The system is evaluated using a test corpus 
containing 10 K words. The baseline system has achieved the 
highest F-value of 62.81. After that the transliteration based 
gazetteer lists are incorporated. Then F-value of the system 
has increased to 69.59. The results are summarized in Table 
VI. 

 
TABLE VI. 

RESULTS OF THE BENGALI NER SYSTEM 
Feature Per Loc Org Total 

words, tags 56.9 56.13 56.67 56.55 

words, tags,  affix 58.01 59.05 57.28 58.24 

words, tags, affix, root 
information 62.21 60.46 57.94 60.6 

words, tags, affix, root, POS 
information 64.39 62.5 60.2 62.81 

words, tags, affix, root, POS 
information, all gazetteers 70.42 69.85 67.58 69.59 

VII. DISCUSSION 
Named entity recognition is an important task. ML based 

approach for NER task requires sufficient annotated data to 
build the system. Gazetteer lists are often used to increase the 
performance of a NER system. For resource-rich languages, 
such resources are available, but for resource-poor languages 
these resources are scarce. Useful gazetteer lists are not 
available in these languages, though sometimes they are 
available in other languages (like English). If such lists are 
transliterated from other language into the target language, 
they become useful. We have proposed a two-phase 
transliteration methodology for the task.  

Direct transliteration is difficult, so we have proposed a 
two-phase transliteration. Here an intermediate alphabet is 
defined. The strings from both languages (say, Hindi and 
English) are transliterated into the intermediate alphabet to 
make the decision that a string (Hindi) is in the gazetteer lists 
(English) or not. The main advantages of the proposed 
approach are: 

− This is a character-gram mapping based (using map-
tables) approach, where no training data (bilingual 
corpora) is required. 

− The approach is very simple and fast. 
− This is easily transferable to other language. 
− The accuracy of transliteration is high. 

The disadvantages of the approach are: 
− The English strings are not transliterated to the target 

language. Here only the decision is taken whether a 
target word (Hindi) is in the English name list or not.  

− The module is specially built for the NER task. It is 
not widely applicable to other NLP tasks. 

The accuracy of transliteration is 91.59% for Hindi and 
89.3% for Bengali. The major cases where the transliteration 



 

approach fails are, presence of homophones (pronounced 
similarly but one word is name but the other is not-name), 
word level changes (e.g., India is written as ‘bharat’ in Indian 
languages, New Delhi as ‘nayi dilli’), dropping of internal 
vowels (‘surabhi’ is sometimes written/pronounced as 
‘surbhi’ – ‘a’ is dropped) etc.  

Suitable features are identified and MaxEnt is used to build 
the baseline NER systems for Hindi and Bengali using the 
identified features. Baseline accuracies for Hindi and Bengali 
are F-value of 75.89 and 62.81 respectively. A few gazetteer 
lists are collected from the web, which are in English, are 
incorporated in the system using the transliteration module 
and performance improvement is observed. F-values are 
increased to 81.12 for Hindi and 69.59 for Bengali. The 
accuracy for Bengali is much lower compared to Hindi 
because the training corpus size for Bengali is only 68 K 
words, whereas in Hindi the corpus contains 243 K words. 

VIII. CONCLUSION 
ML based approach requires annotated data and other 

resources to build a NER system. We have identified the 
suitable features for the Hindi NER task. We observed that 
some relevant gazetteer lists, which are very useful for 
improving the performance of the NER system, are available 
in English. To make the English name lists useful for Hindi, 
we have proposed a two-phase transliteration methodology. 
The available English gazetteer lists are used successfully in 
the Hindi NER system using the proposed transliteration 
approach. We have also examined the effectiveness of the 
transliteration approach on Bengali NER task.  

Use of larger training data would increase the overall 
accuracy of the system. Also we hope that use of larger 
gazetteer lists will increase the accuracy of the system. 
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