
Raster data implemented in a FPGA device
J. Sandoval-Gutierrez, J.A. Alvarez-Cedillo, J.C. Herrera-Lozada, T. Alvarez-Sanchez and M. Olguin-Carbajal

Abstract—The instrumentation for image processing sends
the information through a communication interface, and the
applications are developed by two general methods: a Software
Development Kit as a PC-based programming language and a
hardware implementation. In the first method, the users are
limited by other processess that are being executed at the same
time, energy consumption, size of the system, mobility, and the
visual interface. Conversely, an embedded system provides more
efficient features than general purpose software. To confirm this
idea, in this paper VGA display is used as the output reference
to compare the results applying a set of raster data as portable
pixmap (*.ppm), graymap (*.pgm) and bitmap (*.pbm). Two tests
in a different field of study are comparing: pre-processing of an
image format with four operations: original, grayscale, binary
and inverted; the other test is a laser triangulation measurement
system. In the tests: RPLIDAR A1M1-R1 Development Kit,
ImageJ, GIMP and a Spartan 3E FPGA hardware 12 bits RGB
output image was used as a reference at 640x480 pixels in a
conventional computer monitor. The method proposed as an
image processing was compared with a conventional computer,
and the results in the visualization were similar in both cases, but
with less energy consumption, less size and capacity for mobile
systems.

Index Terms—FPGA, Imaging processing, Lidar, Netpbm for-
mat, VGA.

I. INTRODUCTION

IMAGE processing is a part of signal processing that uses
some segmentation that researchers are using in many

fields, such as measuring [1] [2] laser scaning [42] [43]
[44] [45], food [3], surgery[4], corrosion [5], industrial [6]
[7], particles [8] and others. A general framework image
processing according to [9] [10] [11] is:

• Image acquisition
• Pre-processing
• Segmentation
• Representation
• Classification

A. Image acquisition and pre-processing

There are two ways to obtain image data either cases (Elec-
tronic device or software) the result is a digital image storage
in an array of bits, within a memory using a particular format

Manuscript received Month DD, YYYY; revised Month DD, YYYY.
We would like to thank the Cátedras CONACYT for the financial support

of this work
J. Sandoval-Gutierrez is with the Universidad Autónoma Metropolitana at

Lerma, J.A. Alvarez-Cedillo, J.C. Herrera-Lozada and M. Olguin-Carbajal
are with the Centro de Innovación y Desarrollo Tecnológico en Cómputo
(CIDETEC), Instituto Politécnico Nacional (IPN), Juan de Dios Bátiz
s/n, C.P. 07700 D.F., México (e-mail: jacobosandoval@hotmail.com; jaal-
varez,jlozada@ipn.mx) T. Alvarez-Sanchez is with the Centro de Investigación
y Desarrollo de Tecnologı́a Digital(CITEDI), Instituto Politécnico Nacional
(IPN), Av. del Parque No. 1310, Mesa de Otay, Tijuana, Baja California,
México

file. In a review of various applications aimed at image pro-
cessing, the characteristics of an image were found in different
disciplines. Specifically an overview of the major file formats
currently used in medical imaging, define universal concepts to
all file formats such as pixel depth, photometric interpretation,
metadata and pixel data [12]. A particular software package
for image processing of electron, micrographs, interpretation
of reconstructions, molecular modeling and general image
processing generate a text file [13].

Some image file format provided by GIMP software are:
Animation .flic, Animation .mng, PostScript .ps, Icon .ico,
Digital Imaging and Comunications in Medicine .dcm .dicom,
BMP Image .bmp, Photoshop .psd, Encapsulated PostScript
.eps, GIF .gif, IRIS de Silicon Ghraphics .sgi, JPEG .jpg,
PBM .pbm, PGM .pgm, PIX .pix, PNG .png, PNM .pnm,
PPM .ppm, SUN .im1, im8 .im24 im32, TarGa .tga, TIFF .tif,
X BitMap .xbm,X pixMao .xpm, Zsoft PCX .pcx, KISS CEL
.cel, OpenRaster .ora, GIMP. pat, PDF .pdf and Flexible image
.fit. For example JPEG 2000 standard (Joint Photographic
Experts Group) file format is used widely on the internet,
color facsimile, printing, scanning, digital photography, remote
sensing, mobile, and others. It is processed with the block
tiles to produce a JPEG file [14] such as occurs with BMP,
PNG, TIFF, among others. All formats have implicit features
as image nature, resolution, number of colors [15] [16] even
a Holographic Data System applies a similar storage [17].

This paper focused on three file formats as mentioned
above: PPM, PGM and PBM [18] [19] [20] in order to share
the data with other devices. The Netpbm is a toolkit for
the manipulation of graphic images including conversion of
images from a variety of different formats. Also it is portable
to Unix-based systems, Windows, Mac OS X, VMS and
Amiga OS. Netpbm was developed to be a single source for
all the primitive graphics utilities [21] and in this paper on
hardware applications.

B. LiDAR

LiDAR is a distance sensor [42] that allows showing en-
vironmental visual information through a grid map or point-
cloud. Normally it is mounted on mobile systems such as ve-
hicles [42] [44], UGV [41], coordinate motion [45] and static
environment [43]. An RPLIDAR A1M1-R1 module tested
with the SDK was connected to USB from a conventional
computer and a set of points over a radar background is shown
on a screen as in Figure 6. The raw data sent by the LiDAR
is an array of values representing a distance and orientation
in digital bits. The hardware implementation proposed avoids
connecting the device to a computer, but allows drawing the
color of each pixel as an image pre-processing.

45 POLIBITS, vol. 56, 2017, pp. 45–51https://doi.org/10.17562/PB-56-6

IMPORTANT: This is a pre-print version as provided by the authors, not yet processed by the journal staff. This file will be replaced when formatting is finished.

IS
S

N
 2395-8618

(a) PGM Image
P2
test.pgm
19 7
15
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 15 15 15 15 0 0 11 11 11 11 0 0 5 5 0 5 5 0
0 15 0 0 15 0 0 11 0 0 0 0 0 5 0 5 0 5 0
0 15 15 15 15 0 0 11 0 11 11 0 0 5 0 5 0 5 0
0 15 0 0 0 0 0 11 0 0 11 0 0 5 0 5 0 5 0
0 15 0 0 0 0 0 11 11 11 11 0 0 5 0 5 0 5 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(b) PGM code

Fig. 1: PGM image representation

C. Visualization

After the digital image has been stored in any electronic
device by any format, the image is displayed using a screen
electronic device without specific software [6] [7] [28],
MATLAB R© [1] [2] [3] [5] [8] [43] [25] [26] , JAVA R© [1],
C language [26] [42] [44], ROS [43], Qt SDK [41] and also
alternative methods for MPI CUDA in HPC [27].

This process is a common task and known as visualization.
However, when a device with embedded screen (display size,
resolution, and color) shows the raw data in real time, there
is no possibility of knowing if the file format shared is the
same as the original. Since the process is a Black-box for the
users. An alternative solution is a visual direct manipulation as
a software [22]. In this paper, an FPGA-based implementation
is shown using a VGA display.

D. Netpbm kernel

PPM is a raw ASCII image format and is a suitable string
representation of an image in a file. Each pixel contains ASCII
information in an arbitrary size. In the first line, a P3 tag(color
file format) is used, in the second line the columns and rows
number must be added, in the third line an RGB maximum
number value, and in the other lines the rest of the data.

Another format is PBM, where each pixel is represented
with 0 or 1 (black and white); white space in the raster section
is ignored and the heading in the first line is P1 instead of P3
used by PPM [29].

PGM is a format consisting of four lines, providing a
maximum of 256 gray scale levels or 8 bit data per pixel
[30] [32].

A sample code of PGM file is shown with a P2 indicating
a gray level from 0 up to 15 values, 19 columns, seven rows
and ASCII information of one character is equal to one pixel.
In Figure 1 the result of this code is shown (test.pgm), and
the file was generated by ImageJ and GIMP Software.

E. VGA Display
The general considerations for VGA display controller

have been referenced by development in Verilog Hardware
Description Language [33] and VHDL [34] [36] [37].

In Table I VGA signal 640 x 480 @ 60 Hz Industry standard
timing is shown.

TABLE I: Timing

Horizontal timing (line)
Scanline part Pixels Time (µs)
Visible area 640 25.422045680238
Front porch 16 0.63555114200596
Sync pulse 96 3.8133068520357
Back porch 48 1.9066534260179
Whole line 800 31.777557100298

Vertical timing (frame)
Frame part Lines Time (µs)
Visible area 480 15.253227408143
Front porch 10 0.31777557100298
Sync pulse 2 0.063555114200596
Back porch 33 1.0486593843098
Whole frame 525 16.683217477656

The Spartan-3A FPGA Starter Kit board includes a VGA
display port via a DB15 connector with a red, green, and blue
signal. VGA display port provides 4-bit RED, 4-bit GREEN,
4-bit BLUE, (444 color), or 4,096 possible colors. In (1) the
color output is described.

colorout =
vga[3 : 0]

15
× color (1)

II. TEST DESIGN

This section specifies the characteristics utilized to produce
a VGA output on FPGA. The first step is to read a file with the
raw data saved in the RAM memory block. The RAM memory
has three parameters to set: the address vector (depth), width
vector (value) and writing in an enable signal.

Read after write is used to compute three functions through
a processing module: inverted function (2) gray (3) and binary
(4).

Invertedout = 2 vga[3:0] − colorout (2)

Grayout =

∑
RGB

(colorout)

3
(3)

Binaryout

{
1 if (2

vga[3:0]

2 > colorout)
0 else

(4)

This module reads all the addresses of the raw data, com-
puting (4), (3) and (2), and writing in a new RAM memory
section.

The VGA controller with 25 MHZ clock (clk2) reads all the
memory block and creates a synchronization with the data and
the addresses. The data must be written in the vector before
the horizontal and vertical requires it.

Finally, VGA output port receives four images of VGA
controller and shows the results on the computer screen. A
diagram of the design is shown in Figure 2.

46POLIBITS, vol. 56, 2017, pp. 45–51 https://doi.org/10.17562/PB-56-6

J. Sandoval-Gutierrez, J.A. Alvarez-Cedillo, J.C. Herrera-Lozada, T. Alvarez-Sanchez, M. Olguin-Carbajal

IMPORTANT: This is a pre-print version as provided by the authors, not yet processed by the journal staff. This file will be replaced when formatting is finished.

IS
S

N
 2395-8618

A. Reading a COE file

A memory coefficient (COE file) loaded in the initialization
with a single port A, 12-bit width, (25 600 deep RAM). The
syntax is:
memory initialization radix = 16;
memory initialization vector = 100, 200, . . . 100, 200;

B. VGA controller

A set of six signals selected is: address, data, clock 2,
synchrony, horizontal and vertical value for VGA controller.
The process begins when the horizontal value is greater than
144 and less than 784, and the vertical value is greater than
31 and less than 511 while another parallel process reads the
data with its corresponding address. The relation (5) describes
its values by section with two clocks (clkdiv = 25MHz and
clk = 50 Mhz).

[h][v]value × clkdiv = (dataaddress × clk)× sync (5)

C. Processing module

The data of RAM memory is divided into four sections.
The processing module reads and computes (4), (3) and (2)
address by address in a parallel process to the VGA controller.
The algorithm uses a single instruction multiple data streams
(SIMD) [38] [39].

D. VGA output port

The Spartan R© 3A FPGA Starter Kit board, includes an HD-
DB15 female connector with the horizontal sync signal (row),
the vertical sync signal (column); these two continuously
running counters from the address into a video display buffer
(RGB Values) [40].

VGA
output
port

red<3:0>

green<3:0>

blue<3:0>

hmsignal

vmsignal

hmvalue

vmvalue

Datam<11:0>

VGAm
controller

Rawmdata

Addressm<11:0>

M
on

ito
r

RAM
memory

FilemmPRawmdatak

Inverted

Gray

Binary

Datam<11:0>

Syncm

Processingm
module

Rawmdata

Addressm<11:0>

Datamoutm<11:0>

rwm

Dataminm<11:0>

clk

clk2

Fig. 2: Test design of FPGA implementation

III. TESTING

A. Image Proccesing Software

A Lena image has been tested and the result of ImageJ
software is shown in Figure 3a 12-bit RGB (1), 3a inverted
(2), 3b gray (3) and 3b binary (4).

(a) 12-bit RGB and inverted

(b) Gray and bin

Fig. 3: Lena image processing using ImageJ software

B. Image LiDAR

The original image has a set of 360 distances and angles
that are display in the demo application developed by the SDK
of the manufacturer. The on-line data is shown in Figure 4,
but it is not clearly visible to the human eye.

Fig. 4: LiDAR image by SDK’s manufacturer

The final tests are shown in Figures 5 and 6, the outputs
by software is shown on the left and the hardware output is
shown on the right.

IV. ANALYSIS AND DISCUSSION

In the first test a comparative table in II was filled out with
five features: hardware type, software or file format, energy
consumption, mobility and finally the system size. The four
cases were included in the proposed design having an FPGA
implementation with Mif file [33] and Hexadecimal file [35]. It

47 POLIBITS, vol. 56, 2017, pp. 45–51https://doi.org/10.17562/PB-56-6

Raster data implemented in a FPGA device

IMPORTANT: This is a pre-print version as provided by the authors, not yet processed by the journal staff. This file will be replaced when formatting is finished.

IS
S

N
 2395-8618

means that an embedded application requires a more suitable
format in order to be manipulated, but there is no problem
with the format file in PC-based processing. The computer
uses 1000 % more energy than FPGAs implementation, and
this wasted energy avoids reducing the size of the system and
consistently only static applications could be developed.

TABLE II: First test comparative features with the proposed
design

Application Hardware Software
/ File
Format

Watts Mobility Size

Proposed
design

FPGA +5 W Yes Small

Image [33] FPGA mif file +5 W Yes Small
Image [34] FPGA — +5 W Yes Small
Image [35] FPGA Hex File +5 W Yes Small
Image [3] PC Matlab +65 W No Normal
Image [4] PC Matlab +65 W No Normal
Image [5] PC Matlab +65 W No Normal
Image [6] PC SDK +65 W No Normal
Image [8] PC MatLab +65 W No Normal
Image [13] PC Bsoft +65 W No Normal
Image [22] PC Palimpses +65 W No Normal
Image [43] PC Matlab +65 W No Normal
Image [24] PC Java +65 W No Normal
Image [25] PC Matlab +65 W No Normal
Image [26] PC Matlab +65 W No Normal
Image [30] PC Java +65 W No Normal
Image [31] PC Matlab +65 W No Normal

In the second test a comparative Table in III as in TableII
was compared. The most similar applications are developing
with a low consumption energy technology [41] where the
software provides sufficent resources. The other applications
are a typical PC-based SDK with high wasted energy and
normal size that is not efficient for a mobile robot applications.

TABLE III: Second test comparative features with the pro-
posed design

Application Hardware Software Watts Mobility Size

Proposed
design

FPGA +5 W Yes Small

Robot [41] Intel Atom Qt SDK +9 W Yes Small
Measure [1] Pc Kinect +65 W No Normal
Measure [2] PC MatLab +65 W No Normal
Measure [42] PC i7 Open CV +95 W No Normal
Measure [43] PC ROS +60 W No Normal
Measure [44] PC i5 C++ +73 W No Normal
Measure [45] Pc core2 unknown +65 W No Normal

V. CONCLUSION

Raster data as Netpbm is a compatible file format that
could be implemented in embedded systems such as the
FPGA proposed design and other similar cited papers. The
compressed algorithm used by JPGE, PGN and others is
not a suitable format for the hardware applications. While a
444 RGB and 160 x 160 pixels *.jpg and *.ppm file use a
variable size from 10 KB up to 346 KB in the hard disk.

The memory in the FPGA uses a fixed size of 38.4 KB. The
most common applications in image processing are developed
using an SDK tool on the computer, but the problem is
that the energy consumption is more than a 100 times the
embedded application. The design proposed has capacity to be
implemented in a mobile robot platform, because it satisfies
three necessary conditions. A small size, less than 2×10−3m3,
low consumption around 5W (consequently avoids a cooler
system) and the electronic supports vibration. Only a smart
computer has similar characteristics, but this requires an OS
sharing the resources and a heat sink that avoids damaging
the components. Figure 5 and 6 compare the final VGA
output with their counterpart (personal computer). Another
characteristic is that it only takes a few seconds to boot the
embedded application; conversely the PC lost time booting the
OS.

APPENDIX A
PPM, PGM AND PBM FILE FORMAT TESTED

PPM file.
P3
160 160
5 1 4 . . .

PGM file.
P2
160 160
16
3 3 3 . . .

PBM file.
P1
160 160
1 1 1 . . .

APPENDIX B
TEST CODE FOR 8-BIT VGA IMAGE AND RAM BLACK OUT

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;

entity vga is
port(
sw : IN STD_LOGIC_VECTOR(1 downto 0);
Led : INOUT STD_LOGIC_VECTOR(0 DOWNTO 0);
wea1 : INOUT STD_LOGIC_VECTOR(0 DOWNTO 0);
addra1 : INOUT STD_LOGIC_VECTOR (14 downto 0);
dina1 : INOUT STD_LOGIC_VECTOR(7 DOWNTO 0);
douta1 : INOUT STD_LOGIC_VECTOR(7 DOWNTO 0);
clk : IN STD_LOGIC;
red_out : OUT STD_LOGIC_VECTOR(2 downto 0) ;
green_out: OUT STD_LOGIC_VECTOR(2 downto 0) ;
blue_out : OUT STD_LOGIC_VECTOR(1 downto 0) ;
hs_out : OUT STD_LOGIC;
vs_out : OUT STD_LOGIC_VECTOR
);

end vga;

architecture Behavioral of vga is

COMPONENT ram
PORT (
clka : IN STD_LOGIC;
wea : INOUT STD_LOGIC_VECTOR(0 DOWNTO 0);
addra : IN STD_LOGIC_VECTOR(14 DOWNTO 0);
dina : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
douta : OUT STD_LOGIC_VECTOR(7 DOWNTO 0)

48POLIBITS, vol. 56, 2017, pp. 45–51 https://doi.org/10.17562/PB-56-6

J. Sandoval-Gutierrez, J.A. Alvarez-Cedillo, J.C. Herrera-Lozada, T. Alvarez-Sanchez, M. Olguin-Carbajal

IMPORTANT: This is a pre-print version as provided by the authors, not yet processed by the journal staff. This file will be replaced when formatting is finished.

IS
S

N
 2395-8618

Fig. 5: Image processing ImageJ software (left monitor) and FPGA (right monitor)

Fig. 6: LiDAR SDK (left monitor) and FPGA (right monitor)

);
END COMPONENT;

signal clkdiv : std_logic := ’0’;
signal clkdiv2 : std_logic := ’0’;
constant hsyn : integer := 800;
constant vsyn : integer := 521;
constant pwh : integer := 96;
constant pwv : integer := 2;
constant bph : integer := 48;
constant fph : integer := 16;
constant bpv : integer := 29;
constant fpv : integer := 10;
constant x0 : integer := 320;
constant y0 : integer := 240;
signal hc : integer range 0 to 1024;
signal vc : integer range 0 to 1024;
signal hc0 : integer range 0 to 1024;
signal vc0 : integer range 0 to 1024;
signal hvc0 : integer range 0 to 32768;

begin

process (clk)
begin

if clk’ event and clk = ’1’ then
clkdiv <= not clkdiv;

end if;
end process;

process (clkdiv)

begin

if clkdiv’ event and clkdiv = ’1’ then
hc <= hc + 1;
if (hc = hsyn) then
vc <= vc + 1;

hc <= 0;
end if;

if (vc = vsyn) then
vc <= 0;
end if;

if (hc > pwh)

49 POLIBITS, vol. 56, 2017, pp. 45–51https://doi.org/10.17562/PB-56-6

Raster data implemented in a FPGA device

IMPORTANT: This is a pre-print version as provided by the authors, not yet processed by the journal staff. This file will be replaced when formatting is finished.

IS
S

N
 2395-8618

then hs_out <= ’1’; else hs_out <= ’0’; end if;

if (vc > pwv)
then vs_out <= ’1’;

else vs_out <= ’0’;
end if;

If (hc > (bph+pwh)) and (hc < (hsyn - fph))
and (vc >= (pwv+bpv)) and (vc < (vsyn - fpv))

then
if (hc < (bph+pwh+180)) and (vc < (pwv+bpv)+180)
then

hc0 <= hc-144;
vc0 <= vc-31;
hvc0 <= vc0*180+hc0;
addra1 <= conv_std_logic_vector(hvc0,15);
red_out <= douta1(7 downto 5);
green_out <= douta1(4 downto 2);
blue_out <= douta1(1 downto 0);
else red_out <= "111";
green_out <= "000";
blue_out <= "11";

end if;
else

red_out <= "000";
green_out <= "000";

blue_out <= "00";
end if;

end if;

end process;

your_instance_name : ram
PORT MAP (

clka => clk,
wea => wea1,
addra => addra1,
dina => dina1,
douta => douta1

);

with sw select

wea1<= "1" when "11,
"0" when others;

led <= wea1;

end Behavioral;

REFERENCES

[1] Omar Rodrı́guez Zalapa, Antonio Hernández Zavala y Jorge Adalberto
Huerta Ruelas. Sistema de medición de distancia mediante imágenes para
determinar la posición de una esfera utilizando el sensor Kinect XBOX,
Revista Polibits, Vol. 49, 2014, pp. 59–67.

[2] Hofer D. and Zagar B.G., Image processing for calibrating a coordinate
measurement set-up, Measurement Science and Technology, Vol. 25, No.
11, 2014, pp. 115003-115017

[3] Hosseinpour Soleiman, Rafiee Shahin, Aghbashlo Mortaza and Mohtasebi
Seyed Saeid, A novel image processing approach for in-line monitoring
of visual texture during shrimp drying, JOURNAL OF FOOD ENGI-
NEERING, Vol. 143, 2014, pp. 154-166.

[4] Lee Sang Hee, Lee Minho and Kim Hee Jin, Anatomy-based image pro-
cessing analysis of the running pattern of the perioral artery for minimally
invasive surgery BRITISH JOURNAL OF ORAL & MAXILLOFACIAL
SURGERY, Vol. 52, No. 8, 2014, pp. 688-692.

[5] Gamarra Acosta, Margarita R., Velez Diaz Juan C., Schettini Castro
Norelli, An innovative image-processing model for rust detection using
Perlin Noise to simulate oxide textures, CORROSION SCIENCE, Vol.
88, 2014, pp. 141-151.

[6] Deyong You, Xiangdong Gao and Katayama, S. Monitoring of high-
power laser welding using high-speed photographing and image process-
ing, Mechanical Systems and Signal Processing, Vol. 49, No. 1, 2014,
pp. 39-52.

[7] Lopez F., Maldague X., and Ibarra-Castanedo, Enhanced image pro-
cessing for infrared non-destructive testing, OPTO-ELECTRONICS RE-
VIEW, Vol. 22. No. 4, 2014, pp. 245-251.

[8] Charonko John J, Antoine Elizabeth and Vlachos Pavlos P., Multispectral
processing for color particle image velocimetry, MICROFLUIDICS AND
NANOFLUIDICS, Vol. 17, No. 4, 2014, pp. 729-743.

[9] Russ John C., The Image Processing Handbook, Sixth Edition, CRC Press
2011.

[10] Pinoli Jean-Charles, Mathematical Foundations of Image Processing and
Analysis 1, John Wiley & Sons, Inc. 2014

[11] Bernd Jähne, Practical Handbook on Image Processing for Scientific and
Technical Applications, Second Edition CRC Press 2004.

[12] Larobina Michele and Murino Loredana, Medical Image File Formats,
JOURNAL OF DIGITAL IMAGING, Vol. 27, No. 2, 2014, 200-206

[13] Heymann J. Bernard and Belnap David M., Bsoft: Image processing and
molecular modeling for electron microscopy, JOURNAL OF STRUC-
TURAL BIOLOGY, Vol. 157 No. 1, 2007, pp. 3-18.

[14] Skodras A, Christopoulos C. and Ebrahimi, T, The JPEG 2000 still
image compression standard IEEE SIGNAL PROCESSING MAGAZINE,
Vol. 18, No. 5, 2001, pp. 36-58.

[15] Wiggins RH, Davidson HC, Harnsberger HR, Lauman JR and Goede
PA, Image file formats: Past, present, and future RADIOGRAPHICS, Vol.
21, No. 3, 2001, pp. 789-798.

[16] Lins RD and Machado DSA, Comparative study of file formats for image
storage and transmission, JOURNAL OF ELECTRONIC IMAGING, Vol.
13, No. 1, 2004, pp. 175-181.

[17] Kim Do-Hyung, Jeon Sungbin, Park No-Cheol and Park, Kyoung-Su,
Iterative design method for an image filter to improve the bit error rate in
holographic data storage systems, MICROSYSTEM TECHNOLOGIES-
MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND
PROCESSING SYSTEMS, Vol. 28, No. 8-9,2014, pp. 1661-1669.

[18] Nadal J, Keeping the bits in place: A case study of raster image
migration, SOC IMAGING SCI & TECHNOL, Final Program and
Proceedings, 2005, pp. 249-252

[19] ZAMA C M S, System for converting word file into other format
e.g. JPEG file format using e.g. HTML software, has CPU to convert
individual characters from scanned image into comprehensible code in
other format using optical character recognition, patent: ZA200803391-
A.

[20] DARGELAS A M, Waveform image e.g. bitmap file, generating method,
involves providing localized rendering of temporally organized waveform
data based on user input and waveform viewer resolution, and loading
waveform images into waveform viewer. patent: US2011234600-A1.

[21] Home page for Netpbm: http://netpbm.sourceforge.net/
[22] Blackwell Alan F., Palimpsest: A layered language for exploratory image

processing, JOURNAL OF VISUAL LANGUAGES AND COMPUT-
ING, Vol. 2, No. 5, 2014, 545-571.

[23] Wang Z. and Bovik AC. A universal image quality index, IEEE SIGNAL
PROCESSING LETTERS, Vol. 9, No. 3, 2002, pp. 81-84.

[24] Pavel Surynek and Ivana Lukšová, Automated Classification of Bitmap
Images using Decision Trees, Revista Polibits, Vol. 44, 2011, pp. 11–18.

[25] Minh N. Do and Martin Vetterli, The contourlet transform: An efficient
directional multiresolution image representation, IEEE TRANSACTIONS
ON IMAGE PROCESSING,Vol. 14, No. 12, 2005, 2091-2106.

[26] Manjunath BS and Ma WY, Texture features for browsing and retrieval
of image data IEEE TRANSACTIONS ON PATTERN ANALYSIS AND
MACHINE INTELLIGENCE, Vol. 18,Issue. 8, 1996, pp. 837-842.

[27] Galizia, Antonella, D’Agostino, Daniele and Clematis, A Clematis, An-
drea, An MPI-CUDA library for image processing on HPC architectures,
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS,
Vol. 273, 2015, pp. 414-427.

[28] Ishigami Yuta, Waskitoaji Wihatmoko, Yoneda Masakazu, Takada Kenji,
Hyakutake Tsuyoshi, Suga Takeo, Uchida Makoto, Nagumo Yuzo, Inukai
Junji and Nishide Hiroyuki, Oxygen partial pressures on gas-diffusion
layer surface and gas-flow channel wall in polymer electrolyte fuel cell
during power generation studied by visualization technique combined
with numerical simulation, JOURNAL OF POWER SOURCES, Vol. 269,
2014, pp. 556-564.

[29] Pakhira M.K. and Dutta A., Computing approximate value of the
PBM index for counting number of clusters using genetic algorithm,
2011 International Conference on Recent Trends in Information Systems
(ReTIS), 2011,mpp. 241-5

50POLIBITS, vol. 56, 2017, pp. 45–51 https://doi.org/10.17562/PB-56-6

J. Sandoval-Gutierrez, J.A. Alvarez-Cedillo, J.C. Herrera-Lozada, T. Alvarez-Sanchez, M. Olguin-Carbajal

IMPORTANT: This is a pre-print version as provided by the authors, not yet processed by the journal staff. This file will be replaced when formatting is finished.

IS
S

N
 2395-8618

[30] Shiva Shankar R., Mnssvkr Gupta V, Murthy K.V.S. and Someswararao
C., Object Oriented Fuzzy Filter for Noise Reduction of PGM Images,
Proceedings of the 2012 8th International Conference on Information
Science and Digital Content Technology (ICIS and IDCTA), Vol. 3, 2012,
pp. 776-82.

[31] Philippot E., Belaid A. and Belaid Y., Use of PGM for Form Recogni-
tion, Proceedings of the 10th IAPR International Workshop on Document
Analysis Systems (DAS 2012), pp. 374-378

[32] Abdul-Jabbar I.A.-A, Jieqang Tan and Zhengfeng Hou, Face Recognition
Enhancement Based on Image File Formats and Wavelet De-noising,
International MultiConference of Computer Scientists (IMEC 2014).
Proceedings, Vol. 1, pp. 441-445

[33] Radi H.R., Caleb W. W. K., M.N.Shah Zainudin and M.Muzafar
Ismail, The Design and Implementation of VGA Controller on FPGA
International Journal of Electrical & Computer Sciences, IJENS Vol. 12,
No. 05, 2012, pp. 56-60.

[34] Ashish B. Pasaya and Kiritkumar R. Bhatt, Implementing VGA Appli-
cation on FPGA using an Innovative Algorithm with the help of NIOS-II,
International Journal Of Computational Engineering, Vol. 2, No.3, 771-
775.

[35] Guohui Wang, Yong Guan and Yan Zhang, Designing of VGA Character
String Display Module Base on FPGA, 2009 International Symposium on
Intelligent Ubiquitous Computing and Education, IEEE, 2009, pp. 499-
502.

[36] Ioan, A.D., Designing an optimal single chip FPGA video interface for
embedded systems, Electrical and Electronics Engineering (ISEEE), 2010
3rd International Symposium on, pp. 58-63.

[37] Van-Huan Tran and Xuan-Tu Tran, An efficient architecture design for
VGA monitor controller, Consumer Electronics, Communications and
Networks (CECNet), 2011 International Conference on, pp. 3917-3921.

[38] Elliott D.G., Stumm M., Snelgrove W.M., Cojocaru C. and McKenzie
R., Computational RAM: Implementing processors in memory IEEE
DESIGN & TEST OF COMPUTERS, Vol. 16, No. 1, 1999, pp. 32-41

[39] Tessier Russell, Betz Vaughn, Neto David, Egier Aaron and Gopalsamy
Thiagaraja, Power-efficient RAM mapping algorithms for FPGA embed-
ded memory blocks, IEEE TRANSACTIONS ON COMPUTER-AIDED
DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, Vol. 26, No.
2, 2007, pp.278-290.

[40] Spartan-3A/3AN FPGA Starter Kit Board User Guide 11 UG334 (v1.1)
June 19, 2008.

[41] T. Jian, C. Yuwei, A. Jaakkola, L. Jinbing, J. Hyyppa, and H. Hyyppa,
NAVIS-An UGV Indoor Positioning System Using Laser Scan Matching
for Large-Area Real-Time Applications, Sensors, vol. 14, no. 7, pp.
11805-11824, July, 2014.

[42] Y. Li, and Y. Ruichek, Occupancy Grid Mapping in Urban Environments
from a Moving On-Board Stereo-Vision System, Sensors, vol. 14, no. 6,
pp. 10454-10478, Jun, 2014.

[43] R. Wang, X. Li, and S. Wang, A laser scanning data acquisition and
display system based on ROS, Proceedings of the 33rd Chinese Control
Conference, pp. 8433-8437, 2014.

[44] Y. Yongtao, J. Li, G. Haiyan, W. Cheng, and Y. Jun, Semiautomated
Extraction of Street Light Poles from Mobile LiDAR Point-Clouds, IEEE
Transactions on Geoscience and Remote Sensing, vol. 53, no. 3, pp. 1374-
1386, March, 2015.

[45] H. Yuqing, and M. Yuangang, An efficient registration algorithm based
on spin image for LiDAR 3D point cloud models, Neurocomputing, vol.
151, pp. 354-363, 3, 2015.

51 POLIBITS, vol. 56, 2017, pp. 45–51https://doi.org/10.17562/PB-56-6

Raster data implemented in a FPGA device

IMPORTANT: This is a pre-print version as provided by the authors, not yet processed by the journal staff. This file will be replaced when formatting is finished.

IS
S

N
 2395-8618

