
Artificial Intelligence Models to Estimate
Biomass of Tropical Forest Trees

Razer Anthom Nizer Rojas Montaño, Carlos Roberto Sanquetta, Jaime Wojciechowski, Eduardo Mattar, Ana
Paula Dalla Corte, and Eduardo Todt

Abstract—Artificial Intelligence Models (AI) were tested for
aboveground dry biomass estimation of 4,004 trees collected
in forests throughout the Tropics, and compared to a classic
Allometric model of literature. The data come from various
countries, in the Neotropics, Africa, Southeast Asia, and Oceania.
Statistical analysis of the data showed that they do not have
normal distribution and homocedasticity, which violates the
regression assumptions. Examination of bias, precision and
accuracy of the Allometric model and the AI models revealed
that KNN (K Nearest Neighbors), ANN (Artificial Neural
Network) and SVM (Support Vector Machines) have strong
estimation power of the biomass of tropical trees, comparable or
greater than the linear regression (Allometric model), which is
considered the state of the art. It was concluded that AI models
can be considered an interesting alternative to the regression
technique, especially when the data do not show normality
and homoscedasticity, which is the case of biomass of tropical
forest trees. In particular, SVM showed better accuracy for data
considered. Index Terms—machine learning, allometry, carbon,
data mining, neural networks, support vector machines

I. INTRODUCTION

Forests are considered important global carbon reservoirs,
storing about 296Gt of carbon. Carbon concentrations are
found in tropical forest of South America and Central
Africa, stocking about 120tC.ha−1, while the world average
is 75tC.ha−1 . However, tropical forests have been the
main victims of deforestation and degradation [1]. This has
led to increase of accumulated emissions of Greenhouse
Gases (GHG) by activities using land and forests, of 490 ±
180GtCO2 in 1970 to 680 ± 300GtCO2 2010 [2].

The largest fraction of carbon stored in the forests of the
world is in your living biomass, with 250GtC [1], and still
there is great uncertainty about these stocks, mainly due to
insecurity of estimation on large scale. A complicating factor
is that any model to be applied on a larger scale must be based
on direct measures, which are complex, costly and destructive
[3].

It is essential to develop precise and accurate models
of large-scale carbon stocks, but this is not a simple task.
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There are several variables that interfere in calculations,
such as composition and structure of the vegetation, specific
information such as density or specific mass of tissue, the
carbon content in tissue, the method for calculation of areas
and reliability of forest inventory, among others. One of the
most important of these factors is the modeling methodology
used to estimate the biomass or individual carbon from
dendrometric variables, such as the diameter and height of
trees.

Allometry is one of the best known indirect methods of
estimation of biomass and individual carbon, which is usually
materialized via simple input regression models - only with a
diameter at breast height (dbh) as an independent variable -
double entry, with dbh and height as independent variables
- or triple entry, including the density or specific mass of
the specie. Another robust methodological alternative, but less
flexible, is the application of so-called growth factors. These
modeling approaches are widely used and widely found in the
literature [4].

Despite the current and widespread use of allometric
models to estimate the biomass of trees, literature alerts that
regression should respect some basic assumptions, and you
should not use it indiscriminately without these assumptions.
These assumptions are four: 1. variables must be normally
distributed; 2. should have a linear relationship between
the dependent and independent variables; 3. variables must
be measured reliably; and 4. the variables must have
homogeneous variances [5]. Although these assumptions are
crucial to give validity to the estimates, they are rarely
investigated and/or reported in quantification studies of forest
biomass, which represents a risk to the estimation process.

The use of Artificial Intelligence (AI) techniques are a
completely different approach to allometry via regression
for individual biomass estimation. These techniques offer
flexibility, simplicity and versatility, having the potential to
estimate forest biomass in a way comparable to allometric
classic models usually employed. Perhaps the most important
feature in this context is the fact that the AI techniques in
principle not require to attend the regression assumptions [6].

AI techniques have been applied in different scientific fields
and sectors of human activities. In the last decade several
studies have been published on the use in forest science ([7],
[8], [9], [10], [11], [12]). One of the standard techniques of
AI (machine learning often used in data mining) was recently
explored [6], demonstrating its potential in quantification of
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individual tree biomass. Although data mining is a promising
technique, some issues became to solve: Are there other AI
techniques that can also be applied, or that are better than
allometry? Do these techniques respond positively in situations
where the data have high dispersion, as in case of biomass
species of tropical trees?

This study aims to analyze data of more than 4,000 trees,
collected in various regions of the tropics, including the
Neotropics, Africa and Southeast Asia, with respect to the
assumptions of regression models, and analyze AI techniques
K-nearest neighbor, artifical neural networks and support
vector machines, to estimate the variable of interest compared
with a tipical allometric model.

II. MATERIAL AND METHODS

The data used in this study were provided by Jerome
Chave, Director of Research at French Scientific Research
French Centre - CNRS, France. These data correspond
to 4,004 observations of diameter at breast height in cm
(dbh), total height in m (ht), total aboveground dry biomass
in kg (b), wood density (basic specific mass, ρ). These
data were collected in the following countries: Australia,
South Africa, Brazil, Cambodia, Cameroon, Central African
Republic, Colombia, Cost Rica, French Guiana, Gabon,
Ghana, Guadeloupe, India, Indonesia, Mexico, Madagascar,
Malaysia, Mozambique, New Guinea, Peru, Puerto Rico,
Tanzania, Venezuela and Zambia.

Data were randomly separated into two parts, 70% for
adjustment or training and 30% to validate the estimates.

The basic descriptive statistics for these data were calcu-
lated: arithmetic average, standard deviation, coefficient of
variation, and maximum and minimum of the variables b, dbh,
ht and ρ. It was also investigated the linear correlation between
these variables, using Pearson’s correlation coefficient. It was
held the normality test (Lilliefors and Shapiro-Wilk) of these
variables.

Four biomass estimation models (b) were evaluated
depending on the variables dbh, ht and ρ, having as a witness
the allometric model proposed by [13] and computed by
Equation 1.

A. Allometric Model

The allometric model used for comparison was proposed by
[13], based on Schumacher-Hall’s model [14], and described
by Equation 1.

lg(b̂) = β0 + β1 lg(dbh) + β2 lg(ht) + β3 lg(ρ) (1)

where:

– lg : decimal log of previous variables;
– β0, β1, β2, β3: model coeficients to be adjusted.

B. KNN (K-Nearest Neighbor)

KNN is a non parametric method used in data mining called
instance based learning, which employs the values of closest
neighbors to be estimated. This method applied to biomass
estimation is described in more details in [6]. In this work dbh,
ht and ρ were applied as proximity variables, to have a direct
comparison of its estimated power with allometric model. We
used the Euclidean distance (Equation 2), which showed the
best results in experiments compared with Squared, Manhattan
and Chebychev, and inverse distance weighting [15], [6]. Such
choices depend on the performance of adjustment, that is,
several simulations were made using the amount of neighbors,
types of distance and types of weighting, and we choose the
best performance. This procedure is indicated in the study of
Bradzil [16], where estimates are made from one to five closer
neighbors.

d(p, q) =
√

(dbhp − dbhq)2 + (htp − htq)2 + (ρp − ρq)2

(2)
where:
– p e q : trees variables;
– dbhp, dbhq: dbh of tree p and q;
– htp, htq: total height of tree p and q;
– ρp, ρq: specific mass of tree p and q.
The method uses a technique known as Cross-Validation

where each instance is compared to other from sample,
being selected the instance with shorter distance. The biomass
estimated for that instance is the biomass of the instance with
lowest distance from it. The method allows the use of n nearest
neighbors of the tree in question, and the value of the estimated
biomass is a balance between the biomass of trees with smaller
distances among vectors of weighting by the inverse of the
distance (1/d). This study employed three nearest neighbors
(Equation 3) and weighted by the inverse of distance:

b̂p =
b1w1 + b2w2 + b3w3

w1 + w2 + w3
(3)

– b̂p : estimated biomass of tree p;
– wn: 1

d(p,qn)
closest trees weighted, from tree p to tree qn;

– d(p, qn): distance from tree p to one of three closest trees
qn;

– b1, b2, b3: real biomass of three closest trees, mensured
by distance d(p, qn).

C. Artificial Neural Networks

ANN is a machine learning technique used for various
purposes, also recently used to address forestry problems [11].
It is a comutational system composed by simple processing
units, highly connected. These units, or neurons, compute
mathematical functions and their results are processed together
in the network layers. The connections simulate biological
synapses and have associated weights to inputs. These weights
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are adjusted as the whole set is trained, that is, learning
acquired knowledge [17].

There are several ANN configurations, the main ones are
Multilayer Perceptron (MLP), based on the Radial Basis
Function (RBF) and based on Vector Quantization (LVQ) [18].
Here we used the MLP networks, commonly used in studies
of forest area [19].

A neuron receives values and returns a result. The input
values are weighted, combined (added) and submitted to
a mathematical function fa. Thus, if the vector x =
[x1, x2, ...xm]t is the input of a neuron and the vector w =
[w1, w2, ..., wm]t is the weights applied to each input, the
result of the neuron f ′(x) is:

u =
∑m

i=3 xiwi

f ′(x) = fa(u)
(4)

The fa function is called activation function and it can be of
various types, the most used are: linear, threshold and sigmoid.
In this case we used the sigmoid, the most used according to
[18]. Neurons are arranged in one or more layers, and one
neuron receives as input the outputs of the previous layer’s
neurons, and its output is put in the next layer. The input
layer receives data to be processed, and the layer that gives
the result is called output layer. The other layers are known
as hidden.

To solve nonlinearly separable problems we should use
one or more hidden layers [20]. In this work we employed
Multilayer Perceptron (MLP) with sigmoidal function in their
hidden layers. In the case of regression problems, the output
can not be discretized, and a decimal value is returned. For
the ANN training we used back-propagation algorithm [21]. It
consists of two parts: forward and backward. In phase forward
the object is presented to the network, neurons calculate their
values to the specific weights and the activation function
produces its output value. This is done until the output neurons
have their calculated values. The computed result is compared
with the expected result and this difference is the error on
the network. The error value is then used in step backward to
adjust the weights of neurons.

There are several parameters to be configured to find
an ANN that gives acceptable estimates and comparable to
allometric model. Since the amount of layers, how many
neurons in each layer, learning rate (multiplicative value for
weights adjustment in the learning process), number of epochs
(number of times network is presented to the input data),
among others. In this work, the data were entered into multiple
networks containing a hidden layer of neurons ranging from
5 to 100. The learning rate was tested between 0.1 and 0.9,
with steps of 0.2. The momentum varied between 0.001 and
1. Using a training set with 30% of population. These data are
used to verify the mistake of training, in which the increase
of error can stop the process without all the expected number
of times to run.

D. Support Vector Machines

Support Vector Machines (SVM) is a machine learning
technique used in many situations for pattern recognition,
obtaining results superior to those achieved by other learning
techniques in various situations, such as categorization of texts
in image analysis and bioinformatics [22]. The technique is
grounded by statistical learning theory, developed by [23],
[24]. SVMs can be applied to problems of classification and
regression, with potential use in various forestry issues.

Like other methods, several parameters must be set to obtain
a SVM model comparable to other tested models. The main
parameters are the cost (C), which gives balance between
accuracy and complexity of the model, and the kernel function
used to design values for a larger, where data have more
probability to be linearly separable [25]. The type of kernel
function used here was RBFKernel, which has the gamma
parameter, that controls the shape of the peaks when the data
is passed to another dimension. Small values indicate pointed
peaks, that is, small bias and high variance, which may cause
overfitting when the model learns only the entered values
and lose the ability to generalize, giving poor results for new
entries. Large values result in soft forms, with high bias and
low variance and can harm the learning process.

They were tested more than 150 combinations of C and
gamma, to find the combination with best correlation and
residual values. The C parameter was varied from 1,000 to
10,000, initially with steps of 1,000. When a promising region
was identified, the steps were reduced to 500, 100, 50 and 10.
The gamma value was varied from 0.01 to 0.09 with steps of
0.02, and varied from 0.1 up to 0.9, with steps of 0.2, in each
test performed.

E. Quality Assessment of Estimates

The performances of the estimates obtained with the
four techniques were evaluated according to three numerical
indicators on the average [26], [27], that is, bias, precision and
accuracy.

Bias is given by:

ē =

∑n
i=1(b̂i − bi)

n
(5)

ē% =
ē

b̄
100 (6)

Precision is given by:

se =

√∑n
i=1(b̂i − ē− bi)2

n− 1
(7)

se% =
se
b̄

100 (8)

Accuracy is given by:

mb =

√∑n
i=1(b̂i − bi)2

n− 1
(9)
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mb% =
mb

b̄
100 (10)

where:
– b̂i: estimated biomass (kg);
– bi: real biomass (kg);
– b̄: average of real biomass (kg);
– n: number of observations.
In addition, it was calculated R2

adj and Syx for the allometric
model:

R2 = 1 −
∑n

i=1(bi − b̂i)
2∑n

i=1(bi − b̄i)2
(11)

R2
adj = 1 − n− 1

n− k
(1 −R2) (12)

Syx =

√∑n
i=1(bi − b̂i)2

n− k
(13)

where:
– k: number of coefficients of the model.
The closer to zero (in module) is ē% the smaller is bias

and better is the performance of the model. The smaller is
the dispersion expressed by se%, the greater is accuracy. The
smaller mb% the more accurate and closer to the target are the
estimates. The interpretation of these indicators can be seen
in Figure 1, making an analogy with shots at a target.

Estimates were also appreciated by the linear correlation
between the estimated and actual values and the absolute
residual distribution graphs (real value - estimated value).

III. RESULTS AND DISCUSSION

A. Basic statistics of data

Examining the four variables analyzed (b, dbh, ht and ρ),
it appears that none of them presents normality by testing
Lilliefors and Shapiro-Wilk, as in their original form as the
log-transformed. Therefore, thus it is shown that the first
regression assumption [5] is not attended.

The data shows wide dispersion of the variables considered
in the modeling (Table I). Correlations between biomass
(b) and the independent variables dbh and ht were 0.79
and 0.61, respectively, which were significant to 95% of
probability. On the other hand, the correlation ρ was -0.05,
which are regarded as null. Therefore, changes in biomass
may be significantly explained by their respective variations
in diameter and height, but the specific mass alone does not
explain the variations in biomass. Considering logarithmic
transformation of variables, Pearson’s correlation coefficients
of biomass were 0.96, 0.86 and 0.07, respectively, which
indicates the degree of association of variables increases with
such transformation.

The relation of the dependent variable (b) presented
curvilinear behavior, with greater dispersion in large trees, that
is, large trees showed significant variation in their biomass.

Something similar occurs with the height variable, that is,
taller trees show greater variation in biomass. There is
no direct relationship between density and biomass. When
the logarithmic transformations of variables are considered,
dbh and ht show a linear relationship with biomass, not
occurring with ρ. Thus, it appears that, given the logarithmic
model presented in [13], two variables follow the regression
presupposition of variable linearity assumption [5], and one
not.

The adjustment of allometric model of 2,802 data by the
method of ordinary least squares resulted in the following
equation:

lg(b̂) = −1.21356+2.01484 lg(dbh)+0.888954 lg(ht)+0.83138 lg(ρ)
(14)

With results R2
adj = 0.9730 and Syx = 0.1518.

Given this equation, it was possible to verify the normality
and homoscedasticity of its residual. The results of the tests
Lilliefors and Shapiro-Wilk stated lack of normality at 95%
probability and graphical analysis of residues (Figure 3a)
showed absence of heteroscedasticity along the estimate line.
However, when the residuals of logarithmic variable are
converted into biomass values it is noticed that there is
variation of dispersion over adjust line, indicating that they do
not behave homogeneously (Figure 3b). Therefore, it is evident
that the assumptions of normality and homoscedasticity of
residuals are not attended when adjusting allometric model.

B. Avaliation of AI Models

The results of the three AI models, alternatives to the
allometric model proposed by [13] showed that KNN, ANN
and SVM provide estimates with about the same degree of
bias, accuracy and precision (Table II). In training with 70%
of the data it was found bias below 10% for all models,
which indicates that the estimates do not exhibit pronounced
trends over or underestimation. Low bias was also observed
in validations, which is a positive aspect, considering that the
application of models to independent data to those used in
training is consistent and trends free.

Given the high variability of the observed data, considering
they refer to occurring trees throughout the Tropics and of
different species and sizes, all models showed low precision
and accurary indexes, although they have not shown bias, high
correlation between the observed values and estimated was
detected by the Pearson coefficient. The performance of the
models was similar in training base, but SVM model excelled
in accuracy (that joins bias and accuracy) which showed the
smaller percentage values for both, the set of train data and
test data. In testing base, ANN presented better correlation,
althogh precision and accuracy are not the best.

Observing the graphic distribution of residuals, it is
understood that estimates behave more evenly along the
estimation line in comparison with test. It also appears that
there is a tendency of heterocedasticity of residual along
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Fig. 1. Precision and Accuracy, where the goal is the center of the target

TABLE I
MEASURES

Variable Average Standard
deviation CV% Minimum Maximum

Biomass (b in Kg) 1,134.14 3,917.97 345.46 1.23 76,063.52
Diameter at breast height
(dbh, in cm) 23.99 24.09 100.41 5.00 212.00

Total height (ht, in m) 16.04 10.77 67.17 1.30 70.70
Specific mass (ρ in g.cm−3) 0.63 0.16 25.94 0.09 1.20

TABLE II
RESULTS

Data Model Bias% Precision% Accuracy% r

Train (n = 2802)

Allometric -2.22 100.09 100.10 0.9570
KNN 1.30 91.13 91.16 0.9479
ANN 7.75 91.71 92.04 0.9566
SVM -3.12 86.43 86.49 0.9619

Test (n = 1202)

Allometric 4.29 84.87 129.71 0.9580
KNN 6.60 116.69 178.36 0,9092
ANN -0.04 133.01 133.01 0.9626
SVM -9.86 152.31 152.62 0.9426

the x-axis, increasing the variability for big trees. In the
distributions corresponding to the validation it is more evident,
with large dispersion of residual, in addition to detect trend of
underestimation in large trees.

Native forests, particularly tropical, have high structural and
dimensional variability. The major cause of this variability,
especially in their biomass, is the occurrence of large trees.
There was a direct linear relationship between the density
of trees with dbh above 70 cm and its biomass in tropical
forests [28]. The authors evaluated the importance of large
trees in the stock biomass of tropical forests and rated intrinsic
and extrinsic aspects related to changes that occur in different
regions of the tropics. In this study it is evident that the major
cause of loss of accuracy and bias is the increased variability in
biomass of large trees. Calculating the biomass of trees above
70 cm dbh, it is found that, although few in number compared
to smaller trees (about 6%), these individuals represent about
67% of the biomass.

Models to estimate the biomass of trees should seek to

reduce uncertainties. These uncertainties are due to the nature
of the data and aspects inherent to modeling. In this article we
didn’t emphasize the intrinsic or extrinsic variations in biomass
of trees, but the modeling itself. However, it is important that
these variations are clarified, since the accuracy of the models
is highly dependent on the behavior of the data, especially the
dispersion of biomass in large trees, a fact also reported in
this study.

Regarding the models evaluated here, the main concern is
that in many cases the conditions or assumptions of regression
might not be attended. Data with large variations, such as
those analyzed here, can cheat the requirements for application
of regression models, as reported in the related literature.
The diametric distribution of tropical forests is decreasing,
which implies on non-normality of biomass data. The great
variability in the biomass production of large dimensions
trees implies heterocedasticity. Due to the nature of forest
biomass data, these assumptions may lead to uncertainties in
the inferences and the estimated potential of regression models
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(a) Biomass vs dbh (b) Biomass vs lg dbh

(c) Biomass vs ht (d) Biomass vs lg ht

(e) Biomass vs ρ
(f) Biomass vs lg ρ

Fig. 2. Relation among biomass and dbh, height and specific mass of 4,004 individual trees at tropical forests.

[6]. Therefore, other modeling approaches need to be sought.

In this study we tested some AI methods, K-nearest
neighbor, artificial neural networks and support vector
machines, as alternative to allometric ones. They are
mathematical and computational methods using different
principles of statistical regression. The KNN technique showed
comparable accuracy to the allometric model. This technique
is used in other areas and its application to estimate carbon
in trees was recently introduced [9]. The estimation procedure
of this technique is based on the average of the known values
of the closest neighbors of a point to estimate, and in this
case we analyzed three neighbors, but other options could be
considered. Comparative modeling studies to quantify biomass
in restoration plantings in the Atlantic indicated that this

technique can generate accurate estimates and the setting of
the number of neighbors affects the results [6]. The authors
concluded that 3 to 5 neighboring enable better performance
technique and as the number of neighbors increases no loss of
accuracy. The amount of data also influences the performance
of this technique in predicting biomass, requiring a large mass
of data for the technique to work properly [15].

ANN also provided biomass estimates with the same degree
of accuracy and precision that models based on regression.
Although the technique already known and reasonably used
in forestry, its application in quantification of forest biomass
is more restricted to applications of geotechnology, such as
remote sensing. Estimates of biomass stocks in a fragment
of natural forest with satellite images IKONOS employment,
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(a) Residual vs lg b (b) Residual vs b

Fig. 3. Residual of estimation of log decimal variable of biomass with allometric model (Equation 14) and related residual of variable biomass in function of
estimates of 2,802 individual trees of tropical forests.

were held recently and with excellent performance [29].
Similar research conducted in tropical forests in Indonesia
have also indicated that the estimated biomass ANN applied
to Landsat 5 TM satellite images resulted in appropriate and
strongly correlated with estimates forest inventory data [30].

SVM is a technique that is poorly explored in forestry,
particularly in quantifying forest biomass. Studies on
quantification of biomass Juniperus pinchotii in the United
States with images derived from its top and SVM as classifier,
produced promising results [31]. A review of the different
machine learning techniques for applications in estimating
biomass pointed to the potential of this technique for this
purpose, highlighting its flexibility and ability to properly
process large amounts of data is presented in [32].

AI models need to be more widely known and tested
in forestry applications. In general, techniques such as
KNN, SVM and ANN have the potential development and
application in any field, such as forest inventory, forest
planning, harvesting and forestry supply systems, etc. These
techniques present auspicious prospects in the quantification of
biomass and carbon in trees and forests, either as individual
estimation strategy or per unit area, with forest inventories
or remote sensing data. This potential needs to be further
explored, especially when large amounts of data need to
be analyzed and interpreted and there are restrictions to the
application of conventional techniques such as regression.

IV. CONCLUSIONS

In this work, several machine learning algorithms were
applied to estimate biomass of tropical forest trees. We trained
KNN, SVM and ANN with more than 4,000 trees and results
were compared to regression models.

Also, AI methods are presented as a suitable alternative to
the state of art allometric techniques, since results obtained
here are compared to allometric ones.

The main considerations are:
– Artificial Intelligence Models have strong estimation

power for biomass of tropical trees, comparable or

superior to regression (allometric model), which is
considered state of the art;

– Analysis of a large amount of biomass data tropical
forest trees shows that the assumptions underlying the
use of regression models are frequently violated and often
simply neglected;

– AI models constitute an attractive alternative to the
regression technique, especially when the data do not
show normality and homoscedasticity, which is the case
of biomass of tropical forest trees.
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(a) Residual - Training data (b) Residual - Training data

(c) Residual - Training data (d) Residual - Training data

(e) Residual - Test data (f) Residual - Test data

(g) Residual - Test data (h) Residual - Test data

Fig. 4. Graphical distribution of residual of four models to estimate dry biomass above ground, dbh, total height and specific mass of 4004 individual trees
at tropical forests.
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