



Abstract—Execution of business processes generates data,

which are commonly recorded in logs. Historical information of

execution cases may be used for recommending future execution

paths. This is useful when the control flow of the process is not

known by the user. We present TrazasBP, a framework for BP

indexing and searching based on execution cases. It indexes BPs

based on execution cases (traces) retrieved from log files.

TrazasBP not only takes into account the textual information of

BP elements, but also the causal dependence between these

elements. Furthermore, due to its low computational cost,

TrazasBP may be used as indexing mechanism in order to

reduce the search space. Experimental evaluation shows

promising values of graded precision, recall and F-measure

when compared with results obtained from human search.

Index Terms—Business process, execution cases, Logs,

repository, evaluation

I. INTRODUCTION

NNOVATON in products and services is mandatory for

competitiveness in today’s market. Commonly, tasks and

functions related to commercial activities of companies are

represented within Business processes (BP) [1]. A BP consists

of a set of logically-related tasks executed sequentially in

order to generate valid outputs for the business. BP

executions must follow guidelines given by internal policies,

standards, best practices and laws. For example, doctors

should only perform surgeries within the scope of their

specialty area. Furthermore, this surgery should be preceded

by an authorization from the patient and the hospital. Another

example, in sales processes, an order should be archived only

after customer confirms reception of ordered items [2].

Manuscript received on October 25, 2017, accepted on February 27, 2018,

published on June 30, 2018.

H. Ordonez is with the Research Laboratory in Development of Software

Engineering of the Universidad San Buenaventura, Colombia (e-mail:

haordonez@usbcali.edu.co).

A. Ordonez is with the Foundation University of Popayan, Colombia

(corresponding author, e-mail: jaordonez@unicauca.edu.co).

V. Buchelli is with the Foundation University of Valle, Colombia (e-mail:

victor.bucheli@correounivalle.edu.co).

C. Cobos is with the Foundation University of Cauca, Colombia (e-mail:

ccobos@unicauca.edu.co).

Execution of tasks and processes generates a set of data

which is recorded in logs [3]. Logs contain information of

executed processes, namely: roles, resources, participants,

interaction with other systems, transactions performed and

execution dates, among other data. When a BP is initiated, an

instance (execution) of the BP is created, therefore Logs store

information of many instances or executions of the same

process [4]. Specifically, historical execution traces

containing information of actually executed instances are

known as execution cases. These execution cases contain

information of the path followed by the control flow during

actual execution of a BP instance [5].

This paper presents TrazasBP, a framework for BP

indexing and searching based on execution cases. TrazasBP

indexes BPs based on execution cases (traces) retrieved from

log files. A log file is created when a BP is executed for the

first time, and it is updated by adding new execution cases as

executions are carried out. Execution cases register

information about a specific BP execution (i.e. what activities

were executed at a certain moment in time during BP

execution) [6]. Thus, a BP contains only one log file, but

multiple execution cases included in this file. TrazasBP

considers in addition to textual information of BP elements,

the causal dependence between these elements. Furthermore,

due to its low computational cost, TrazasBP may be used as

indexing mechanism in order to reduce the search space.

The main contributions of TrazasBP are twofold: i) it may

be used for indexing generation based on the execution cases,

and ii) TrazasBP allows ranking a set of executed BPs in

concordance with their similarity with a query BP. Historical

information of execution cases may be used for

recommending future execution paths. This is useful when the

control flow of the process is not known by the user, for

example, when the doctor doesn’t know about new treatments

or when a company cannot foresee the behavior of potential

customers [7].

The rest of the paper is organized as follows: Section 2

presents related works, section 3 describes TrazasBP

architecture, Section 4 shows the evaluation and results,

finally, conclusions and the implications of the results are

given in Section 5.

TrazasBP: A Framework for

Business Process Models Discovery

Based on Execution Cases

Hugo Ordoñez, Armando Ordóñez, Victor Buchelli, and Carlos Cobos

I

51 POLIBITS, vol. 57, 2018, pp. 51–57https://doi.org/10.17562/PB-57-5

IS
S

N
 2395-8618

II. RELATED WORKS

Several approaches for measuring similarity of BP are

available in the literature. These approaches are based on

different BP characteristics such as: linguistics [8], [9],

structure [10], [11] and behavior [12], [13]. As the approach

presented here considers similarity of execution cases,

therefore this section study approaches considering causal

dependency between activities, and common sets of execution

traces

Bae et al [14] present a dependency graph to compare two

BPs taking into account differences between arcs or edges

that links activities in both BPs. This approach does not

consider gateway types. Weidlich et al [15] define causal

behavioral profiles representing dependencies between

activity pairs. Similarity is calculated by identifying activity

pairs for which there are corresponding pairs of activities.

Then corresponding pairs sharing the same relations are

analyzed.

Dijkman et al [16] represent precedence relations between

activities as loopback links and causal footprints. Causal

footprints are in turn represented as vectors of index terms.

This approach builds vectors of high dimension, which

increase the computational cost of the method. Other existing

approaches consider direct precedence of activities

represented as Transition Adjacency Relation [17], n-grams

[18], and behavioral profiles [15]. In those cases similarity is

calculated analyzing correspondence between direct

precedence of activities in the trace.

Gerke et al [19] , Wang et al [20] compare the compliance

between BPs calculating the longest common subsequence of

traces, i.e., similarity degree of ordering rules of activities

between two BPs. However, this approach is computational

expensive when there are large sets of traces. Weerdt et al [6]

deal with real execution traces of BPs in order to discover

BPs, i.e., this method aims for inferring which BPs can

produce such traces. Medeiros et al [9] compare BPs by

studying frequency of traces obtained from actual or

simulated executions.

 TrazasBP integrate characteristics of the aforementioned

approaches by considering causal dependence between

activities of actual execution cases. Additionally, Due to

TrazasBP low computational cost, it may to be used as

indexing mechanism preceding other expensive algorithms

during BPs similarity calculation; the last is possible because

TrazasBP reduces the search space. Next section presents the

architecture of TrazasBP and describes its components.

III. ARCHITECTURE OF TRAZAS BP

 TrazasBP allows indexing and searching BPs stored in a

repository according to their similarity with a query

represented as a set of node pairs (PSq). Three kinds of query

options are supported: execution cases, minimal behavior, and

log-files (These types of queries are detailed later). TrazasBP

works both during indexing phase and querying phase.

During indexing phase (See Figure 1), logs are indexed and a

matrix Mec of execution-cases is generated. Then, during

querying phase (See Figure 3), a query (Execution case,

minimal behavior, or log-file) is received and processed in

order to obtain a set of node pairs. Finally, when the set of

node pairs are obtained, the query matrix is generated Mq and

the repository is ranked. Next both phases are described

3.1 Indexing phase

3.1.1 BP Repository

This repository stores a set of BPs, these BPs are executed

in order to generate the execution cases. The current

implementation of the repository includes 100 BPs modeled

with BPMN (Business Process Modeling Notation). Those

BPs were graphically designed by experts of the Telematics

Engineering Group of the University of Cauca (Colombia)

based on real processes provided by Telco operators in

Colombia and examples found in different web sites (e.g the

TM Forum2). A real repository of a Telco operator couldn’t

be used due to privacy and security policies of Telecom

operators.

3.1.2 Execution component

This component executes BPs and collects log-files

containing execution cases. The current version of this

component is implemented using the Bizagi BPM suite which

is a popular tool for BP modeling [19]. BPs were executed in

the lab (in order to simulate real executions) and log-files

were then stored in a second repository named “logs

repository".

Fig. 1. Components of the indexing phase

52POLIBITS, vol. 57, 2018, pp. 51–57 https://doi.org/10.17562/PB-57-5

Hugo Ordoñez, Armando Ordóñez, Victor Buchelli, Carlos Cobos
IS

S
N

 2395-8618

3.1.3 Log Repository

This repository stores all the log-files obtained from the

execution of BPs. Each BP contains only one log-file with

multiple execution cases. The current implementation of this

repository stores the log-files in the file system.

3.1.4 Parser

This component extracts and processes execution cases

from each log-file stored in the “logs repository". Here,

execution cases are represented as vectors (execution case

vectors) that associate execution cases with BPs. Afterwards,

each execution case vector is processed to form pairs of

adjacent nodes in order to keep causal relationships. Once

node pairs are formed, they are arranged together with node

pairs of other execution cases in the same BP in order to

create a new vector (node pairs vector). This procedure is

repeated for the entire BP repository obtaining one vector of

node pairs for each BP.

3.1.5 Index

This component processes node pairs vectors and generates

an index. First at all, node pairs from each vector are analyzed

with the Porter Stemming[10] algorithm that transforms node

labels to their lexical root (e.g. words “helping" and “helped"

are transformed to their lexical root “help"), later the same

algorithm removes special characters, void words, and

accents. Next, the indexer creates a “matrix of execution

cases" (Mec) whose rows are the BPs stored in the repository,

and the columns are the node pairs of all the BPs of the

repository but avoiding the pairs that are duplicated. The

matrix Mec is filled by counting the number of times that a

pair is found in each BP (i.e. in the vector of node pairs of

each BP).

Let R = {BP1 , ..., BPi , ...BPm } be a repository of BPs. Each

BPi ∈ R contains a log file li = {eci1 , ..., ecij , ...ecik } that is

updated each time the BPi is executed by adding a new

execution case ecij . Each execution case is composed of a

sequence of BP elements (nodes) which may be activities or

gateways (XOR (Join-Split), AND(Join-Split)). These

elements are ordered according to the execution flow

followed by the BP. The first step in the BP indexing

mechanism is to collect all the nodes of each execution case

ecij = {n1,, np} and form pairs of nodes keeping their

causal dependence (i.e., adjacent nodes in the execution case).

For example, in ecij the set of node pairs is PSij = {(n1 , n2),

(n2 , n3), ..., (ni−1 , ni),(ni , ni+1), ..., (np−1 , np)}.

After collecting pairs of the execution cases of the entire

repository, a matrix named “execution cases matrix” Mec is

created. In this matrix columns represent node pairs found in

the execution cases for the entire repository but avoiding

those repeated (i.e. there are not two columns representing

identical node pairs), and rows are all the BPs stored in the

repository. Therefore, the size of the matrix is m × k, where m

is the number of BPs in the repository, and k is the number of

all pairs found in execution cases avoiding those which are

repeated.

Finally, the matrix Mec is completed with the number of

times a pair is found in the execution cases of a given BP,

e.g., if a pair pj is found three times in the log li ∈ BPi, then

the number 3 is inserted on the cell (i; j) (Figure 2). Thus, the

index of execution cases is created and represented by the

matrix Mec. In the present approach, this matrix is similar to

the “term-document matrix" of the vector space model in the

Information Retrieval (IR) field proposed by Salton in 1989.

Therefore, the Mec matrix can be normalized in the same way

as the “term-document matrix", which is composed of cells wij

representing textual components (in their lexical root)

detected in a log-file. Then, each wij is weighted with the

equation 1, where Fij is the observed frequency in the

component j of the BPi; Max(Fi) is the highest observed

frequency of the BPi; N is the number of BP in the repository;

and nj is the number of BP in which the execution case j has

been detected


















1
log

)max(

,

,

ji

ji

ji
n

N

F

F
w (1)

3.2 Query phase

First This phase has two functions: firstly, it transforms

queries into node pairs in order to create a query matrix (Mq).

Mq contains information about the frequency of each pair in

the query. Secondly, this phase ranks BPs according to their

similarity to the query. (See Figure 3)

3.2.1 Query Processor

This module receives a query and transforms it into a set of

node pairs. The current implementation of the query module

supports the following 3 kinds of queries:

Execution case: the query is a textual string that represents

a BPs execution case. Therefore, the string must contain a

sequence of nodes (activities and gateways) that will be

transformed into a set of node pairs.

Minimal behavior of execution flow: the query is a list of

node pairs obtained from the execution cases of the BPs in the

Fig. 2. Example of execution cases matrix

53 POLIBITS, vol. 57, 2018, pp. 51–57https://doi.org/10.17562/PB-57-5

TrazasBP: A Framework for Business Process Models Discovery Based on Execution Cases
IS

S
N

 2395-8618

repository. Then a user can choose a combination of node

pairs to build a query.

Log file: the query is a log-file that is processed to identify

the execution cases and subsequently the sets of node pairs. In

this option, the user can choose one of the found sets of

execution cases in order to rank the BPs in the repository that

have executed similar execution cases. Once, the query is

transformed, the set of node pairs are processed with the

“PorterSteeming" algorithm as explained before. Then, the

duplicated pairs are counted and inserted in a query vector

which contains the number of occurrences of each pair.

3.2.2 Ranking

In this phase the query vector vq and the execution cases

matrix Mec are integrated in the query matrix (Mq) as

described in section 3.23. The Mq matrix is useful for

measuring similarity between each BP of the repository and

the query and to produce a ranking of BPs according to this

degree of similarity.

3.2.2 Querying the index of execution cases

To query the index of execution cases a query set of node

pairs (PSq) is required. The set PSq is processed in order to

find repeated node pairs, and to create a query vector vq that

registers the number of occurrences of each pair. For

example, let PSq = {pq1, pq2,… pqi,… pqt}, if pq1 = pq2 then the

number of occurrences of pq1 is 2. This value is then inserted

in the corresponding cell for the pq1. Figure 4 shows an

example of a query vector.

Subsequently, each pair of the vector vq is searched in the

index (matrix Mec) in order to obtain the number of times it is

found in each BPs stored in the repository. This number is

then multiplied by the corresponding value in the vector vq,

and the resulting value is inserted in a new matrix named

“query matrix" (Mq) where rows are the BPs of the repository

and columns are the node pairs of the query vector vq (See

Figure 5)

For example, the vector query of Figure 2 and the

execution cases matrix of Figure 1, suppose that pq1 =p1, pq3

= p2 , pqj = pj and pqt = pk. The pair pqj with an occurrence of

2 in the vector query vq is found three times in the execution

cases matrix, hence by multiplying those values we get 6; this

value is inserted on the cell (i; j) of the query matrix Mq.

Finally, in order to rank the BPs of the repository, the values

of each row are added obtaining a value of execution cases

similarity (ec-sim) for each BPs. Accordingly, the BPs are

ranked from the greatest value to the lowest one. The

complete resulting query matrix of the example is presented

in Figure 5 where the resulting ranking is r = {BPi(10),

BPn(7), BP2(6), BP1(4)…}.

3.3 A tool for implementing Trazas BP

The tool that implements TrazasBP was developed in Java

and integrates a user centered interface. This tool incorporates

some usability criteria defined by objective and subjective

attributes. Among the objective attributes, the tool integrates:

ease of learning and memorization, efficiency, effectiveness,

operability and ease of understanding, equally. Additionally,

subjective attributes (oriented to user satisfaction) supported

in the tool are: accessibility, functionality, usefulness and

credibility. The tool includes a simple interface with panels

Fig. 5. Example of the query matrix (Mq) plus the similarity for each BP

Fig. 4. Example of the query vector

Fig. 3. Components of the indexing phase

54POLIBITS, vol. 57, 2018, pp. 51–57 https://doi.org/10.17562/PB-57-5

Hugo Ordoñez, Armando Ordóñez, Victor Buchelli, Carlos Cobos
IS

S
N

 2395-8618

containing the functionalities of the model. Equally, the user

may choose a BP model from the result list in order to

visualize and thus check the validity of the query.

Figure 6 shows the results of one example query, in this

figure results are displayed (red square) when the user

performs the query. The results contain the more relevant BP

models according to the similarity between the query and the

BP in the repository.

IV. EVALUATION AND RESULTS

Because For the experimental evaluation, TrazasBP was

used for generating rankings of 20 BP according to the

similarity with the Query BP. This procedure evaluates the

relevance of the results retrieved in each search. The

evaluation was performed using the measured widely used for

evaluating information retrieval systems: Graded Precision,

graded recall and F-measure.

Relevance evaluation of results in TrazasBP includes two

phases: The first one evaluates relevance and quality of

ranking, in order to find the best query option between:

Execution case, Minimal behavior, and Log-file. The second

phase compares results obtained using TrazasBP with the

results of the manual evaluation performed on a closed test

set, which was previously described in [21]. This closed test

set was created collaborative by 59 experts. Moreover, the

ranking generated by evaluators and the ranking automatically

generated using the TrazasBP were compared using the

measure A(Rq) presented in [22]. A(Rq) measure was used to

determine the degree of coincidence of the position of each

BP in each one of the rankings generated by each request.

Figure 7 shows results of the first phase, where for each

querying option the Graded Precision (Gp), graded recall(Gr)

and F-measure (Gf) are calculated. Graded precision reached

values between 81% and 90% which means that the present

approach is less likely to retrieve non-relevant BPs (i.e. false

positives). Nevertheless, the lower values of recall from 19%

to 28% demonstrate that the approach doesn’t retrieve a high

number of relevant BPs (i.e. false negatives). With regards to

the F-measure, the approach obtained values from 30% to

42% for the different query options showing acceptable

values of harmony between the precision and recall measures.

Results of phase one show that query option based on Log-

file achieved the best results, this is because each log file

integrated many execution cases of the same BP, which

extends the possibility for finding BP with similar execution

cases in the repository. Consequently, the query option based

on log files was selected for phase two.

Fig. 7. Results of querying options comparison

Fig. 6. User interfaces for performing queries

55 POLIBITS, vol. 57, 2018, pp. 51–57https://doi.org/10.17562/PB-57-5

TrazasBP: A Framework for Business Process Models Discovery Based on Execution Cases
IS

S
N

 2395-8618

Results of phase two are shown in Figure 8. These results

show that Trazas Bp achieved a 94% of Gp, therefore search

results are precise and keep high similarity with the ranking

generated by human evaluators. In other words, TrazasBP

retrieves most of the BP that human evaluators considered as

relevant for each query.

With regards to Graded precision, TrazasBP reached a

value of 31%. This is due to TrazasBP generated rankings

limited to 20 results; and it left aside other BPs relevant for

the query. The results for graded F-measure evidenced

harmony in the results of Gp and Gr. The average value of Gf

is 47% which indicates that classifications generated by

TrazasBP presented high similarity with the human generated

ranking described in [21].

Figure 9 depicts the level of agreement A(Rq) between the

ideal ranking generated by evaluators and the automatic

classification generated using TrazasBP. Note that for each

query the proposed approach generated classifications that

match considerably with those generated by experts (ideal

classifications). For example, in query 1 (Q1) the similarity of

classification for the proposed method reached 85%. Finally,

in the classification of global similarity (considering all the

queries) TrazasBP reaches 81%. This result indicates an

increase in quality of the generated ranking when Log files

are used as query element. TrazasBP retrieves the most

relevant list for each query and avoids retrieving no-

relevant BP

V. CONCLUSION AND FUTURE WORKS

This paper presents TrazasBP, a framework for BP

indexing and searching based on execution cases. TrazasBP

indexes BPs based on execution cases retrieved from log files.

Additionally, it considers not only textual information of BP

elements but also causal dependence between BP elements.

TrazasBP was evaluated in two phases: The first one

evaluated relevance and quality of ranking using different

querying options, and found as the best ranking option the

one based on log-files. During the second phase, the present

approach was compared with results obtained by human

experts. Results obtained in this phase allow evidence that

TrazasBP generates rankings of results with high similarity to

the rankings generated by humans.

 Experimental evaluation evidenced high values precision

(90%) for different query options. Additionally, the F-

measure reached values around 42% which is an acceptable

value for the relation between precision and recall. Equally,

When comparing TrazasBP with a closet test created by

human experts, the Graded precision reached 94% which

shows that the ranking generated with TrazasBP is highly

similar to the ranking generated by human experts. Due to

TrazasBP low computational cost, it may be effectively used

as indexing mechanism and may precede other expensive

algorithms during BPs similarity calculation since it reduces

the search space. Additionally, TrazasBP approach can be

extended by adding new query options.

Future work includes incorporating new search options: i)

semantic options by adding domain ontologies that represent

user queries. ii) multimodal options which consider structural,

behavioral, and linguistic information in one search space.

Equally, future work will include integration of clustering

algorithms (like K-means, Clicks, Start, and C–means) to the

model and compare the created groups with other results

reported in the state of the art. On the other hand, it is planned

to develop an automatic evaluation module that generates

graphs and relevance measures. Finally, evaluation will be

expanded by applying new measures for the BP search.

REFERENCES

[1] H. A. Reijers, R. S. Mans, and R. a. van der Toorn, “Improved model

management with aggregated business process models,” Data Knowl.

Eng., vol. 68, no. 2, pp. 221–243, Feb. 2009.

[2] F. M. Maggi, M. Dumas, and F. B. Kessler, “Predictive Monitoring of

Business Processes,” In Proc. 26th International Conference, CAiSE

2014, Thessaloniki, Greece, pp.457-472.

[3] F. Rahimi, C. Møller, and L. Hvam, “Business process management and

IT management: The missing integration,” Int. J. Inf. Manage., vol. 36,

no. 1, pp. 142–154, Feb. 2016.

[4] I. Khodyrev and S. Popova, “Discrete Modeling and Simulation of

Business Processes Using Event Logs,” Procedia Comput. Sci., vol. 29,

pp. 322–331, 2014.

[5] W. M. P. van der Aalst, H. A. Reijers, A. J. M. M. Weijters, B. F. van

Dongen, A. K. Alves de Medeiros, M. Song, and H. M. W. Verbeek,

Fig. 9. Ranking concordance for each query (A(Rq))

Fig. 8. Results of the phase 2

56POLIBITS, vol. 57, 2018, pp. 51–57 https://doi.org/10.17562/PB-57-5

Hugo Ordoñez, Armando Ordóñez, Victor Buchelli, Carlos Cobos
IS

S
N

 2395-8618

“Business process mining: An industrial application,” Inf. Syst., vol. 32,

no. 5, pp. 713–732, 2007.

[6] J. De Weerdt, M. De Backer, J. Vanthienen, and B. Baesens, “A multi-

dimensional quality assessment of state-of-the-art process discovery

algorithms using real-life event logs,” Inf. Syst., vol. 37, no. 7, pp. 654–

676, Nov. 2012.

[7] I. Bider, K. Gaaloul, J. Krogstie, S. Nurcan, H. A. Proper, R. Schmidt,

and P. Soffer, “Enterprise, business-process and information systems

modeling,” in Lecture Notes in Business Information Processing, 2014,

vol. 175.

[8] J. Y. In P. Maglio, M. Weske and and M. Fantinato, “Discovering

business process similarities: An empirical study with sap best practice

business processes,” in Proc International Conference on Service-

Oriented Computing, pp. 515-526, 2010.

[9] A. K. Alves de Medeiros, W. M. P. Van der Aalst, and A. J. M. M.

Weijters, “Quantifying process equivalence based on observed

behavior,” Data Knowl. Eng., vol. 64, no. 1, pp. 55–74, 2008.

[10] R. Dijkman, M. Dumas, and L. García-Bañuelos, “Graph matching

algorithms for business process model similarity search,” Bus. Process

Manag., vol. Business P, pp. 48–63, 2009.

[11] Z. Yan, R. Dijkman, and P. Grefen, “Fast business process similarity

search with feature-based similarity estimation,” in Proc OTM

Confederated International Conferences, 2010, pp. 60–77.

[12] S. Goedertier, D. Martens, J. Vanthienen, and B. Baesens, “Robust

Process Discovery with Artificial Negative Events,” J. Mach. Learn.

Res., vol. 10, pp. 1305–1340, 2009.

[13] M. Segatto, S. I. D. De Pádua, and D. P. Martinelli, “Business process

management: a systemic approach?,” Bus. Process Manag. J., vol. 19,

no. 4, pp. 698–714, 2013.

[14] J. Bae, L. Liu, J. Caverlee, L.-J. Zhang, and H. Bae, “Development of

Distance Measures for Process Mining, Discovery and Integration,” Int.

J. Web Serv. Res., vol. 4, no. 4, pp. 1–17, 2007.

[15] M. Weidlich, A. Polyvyanyy, J. Mendling, and M. Weske, “Causal

behavioural profiles - Efficient computation, applications, and

evaluation,” in Fundamenta Informaticae, 2011, vol. 113, no. 3–4, pp.

399–435.

[16] R. Dijkman, M. Dumas, B. van Dongen, R. Käärik, and J. Mendling,

“Similarity of business process models: Metrics and evaluation,” Inf.

Syst., vol. 36, no. 2, pp. 498–516, Apr. 2011.

[17] H. Zha, J. Wang, L. Wen, C. Wang, and J. Sun, “A workflow net

similarity measure based on transition adjacency relations,” Comput.

Ind., vol. 61, no. 5, pp. 463–471, 2010.

[18] A. Wombacher and M. Rozie, “Evaluation of workflow similarity

measures in service discovery,” Serv. Oriented Electron. Commer., vol.

7, no. 26, pp. 51–71, 2006.

[19] K. Gerke, J. Cardoso, and A. Claus, “Measuring the compliance of

processes with reference models,” in Proc OTM Confederated

International Conferences, 2009, pp. 76–93.

[20] J. Wang, T. He, L. Wen, N. Wu, A. H. M. Ter Hofstede, and J. Su, “A

behavioral similarity measure between labeled Petri nets based on

principal transition sequences (short paper),” in Proc OTM

Confederated International Conferences, 2010, pp. 394–401.

[21] J. C. Corrales, C. Cobos, L. K. Wives, and L. Thom, “Collaborative

Evaluation to Build Closed Repositories on Business Process Models,”

in Proc ICEIS, 2014, pp. 311–318.

[22] M. Guentert, M. Kunze, and M. Weske, “Evaluation Measures for

Similarity Search Results in Process Model Repositories,” pp. 214–227,

2012.

57 POLIBITS, vol. 57, 2018, pp. 51–57https://doi.org/10.17562/PB-57-5

TrazasBP: A Framework for Business Process Models Discovery Based on Execution Cases
IS

S
N

 2395-8618

