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Abstract

Ca--£n is a causal model bared dingrosis system that includes
a feruilt detection module and a failt Bsolation module, Both
are based on models of the system art different levels of
absiraciion. Mode! baved methods ohviously rely on the
quality of the models. This paper focuses on recent resulis
about the Ca~En underiying modefling methodology. Each
step of the modelling method s presenred: the aulomatic
generation of a causal structure from a componeri-oriented
equation roded and how to get the parameters of the cowusal
inflwences, then how fo automatically derive the operational
detection models. The method is applied to the gas fisel system
of @ Frome & turbine of National Power (UK,

Keywords: Model-based reasoning, disgnosis, interval models,
industrial applications

Resumen

Ca—En ey un sistema de diagnosis basado en modelos que
inclupe un midulo para la deteccidn de fallos y un mddulo
de aislamiento. Ambos se bavan en modelos del sistema o
diferentes atveles de abitraceidn, (Mviamente los méfodo
basadas en modelos se susiendan en la calidad de los modelos,
Este articulo s contra en resultados recientes del método de
modelizacidn subyacente en Ca-En La metodologla de
modelads se presenta con. la gereraciin qtomdtica de ung
estruciura cawsal @ partir de ecuaciones oriemiaday por
componentes ycomo obtener los pardmetros de lay infTuencias
cousales, ¥ a comtinugcidn ¢l cdmo de forma aulomdtica
deducir los modeios de deteccidn operacionales. Exte método
s ha aplficads o un sistema e imeecion de combustible en
tna turbing de gas tipe Frame 6 de Nationad Power (UK.

Palabras clave: Razonamiento basado en modelos, diagnosis,
madelos intervalares, aplicaciones industrinles.
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1 Introduction

Model based and qualitative reasoning technologies have
advanced to 8 mature state. They have been shown 1o be
capable of helping with many real complex problems (Struss of
al., 2000 (Travé-Massuyés and Milne, 1997). Several real
waorld products and advanced systems are now available and
many advanced prodotypes have been demonstrded (MOMET-
ILC, 1998) {Caovin ef af., 1998). The gaps betwesn research
and industry have been clearly identified and should help to
progressively closs them (Travé-Massuyés and Milne, 19981,

Diagnosis has been o major focus for the application of
mode] based and gualitative repsoning technologies, taking
significant advaniages from the twa main key ideas: the first
ong is the separate representation of process knowledge and
task knowledge, and the second is the representation of
process knowledge at a suflicient level of abstraction.

Although basing the reasoning on a model has many
aclvantages, it emphasis the key role of the modelling process.
As o matter of fact, modelling any nontrivial system & a complex
task and is never easy. Tools for automated model building are
still missing and today, modelling 15 often a specialised, hand
crafied process dependent on the model based environment
te be used. However one aspect of automated modelling which
constsls transforming o model inoa given form o another
form which i more adequate for solving the task at hand has
deserved a lot of attention inthe last few years. Just to mention
a few of them, causal ordering techniques allow one to derive
the cawsal structure of s model given as a 521 of algebraic and
differential equations {Iwasaki and Simon, 1994) (Trave-
Massuyds and Pons, 1997). The causal structure is then highly
valuable for explanation and diagnosis purposes. It has been
shown that automata models can be used to generate chronicles
representing faulty or normal situations {Bibas eral, 1996,
the chroniches can then be used as reference in & chronicle
recopnition approach (Towsson ¢f gf | 19937,

The Ca~En system modelling methodology takes advantage
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of automated modelling methods. Let us recall that the
extension of the causal ordering method (lwasaki and Simon,
1994 10 hybrid systems was proposed by (Travé-bassuyés
and Pons, 1997) as a reguirement for Ca—En modetling. In
addition to this method, other modelling features have been
added which are reported in this paper. Each step of the
modelling method is presented: the sutomatic peneration of a
causal structure from & component-oriented equation model
and how 1o get the parameters of the causal mfluences, then
how 1o automatically derive the operational detection models,

The method s applied to the gas fuel system of a Frame 6
turbine of Mational Power (LK), Part of this work was performed
within the framework of the TIGER and TIGER SHEBA

suropenn propecis

2 The Frame 6 Turbine Gas Fuel
System (GFS)
2.1 Description

The gas turbine control svstem controls the shaft speed,
moehifying the gas fuel flow reference. For this repson, one of
the critscal parts of the wrbing is the Gas Fuel System supply
(GFE). Indeed, the performance and efficiency of the turbine
highly depends on an accurate control of the fuel inpor, Tk
is just the task of the GFS.

The main components of the GFS are two actimtors: the
Stop Ratio Yalve (SR and the Gas Control Valve (GUVE These
valves are series connected and control the Mow of gas fuel

that enfers in the combustion chambers, The first of these
valves, the SRV, is controlled by a feedhack boop that maintains
constant the gas pressure at its outpyl (pressure between the
rw valves) fpel, This pressure being constant, the gas fuel
Mo is just determined by the position of the GCV. Hence. the
GLCY is o position controlled valve.

The SBRY and GCV valves, and their associated feedback
loops are shown in the figure |, Both valves have been
analysed from two different crteria; the hydraulic (h) and the
mechanical part (m]. The first one includes the valve seat and
related components which determine the fuel flow throw the
valve and the second one includes all the components which
coniral the valve position, e all the valve mechanical
components (diaphragm, spring, ..}, pneumatic servomoiar,
controlber oil supply and valve position controller, The list of
components is hence the following:

GCWh - Gas Control Valve {heedraulics)
SRYh - Stop Ratio Valve (hydraulics)

GO m = Gas Control Valve {mechanics)
SRV - Cias Controd Vabve imechonics)

Moraions: Yarinbles are denoted by low case letter symbols
wherens components are denoded by capital ketter symbols.

For the GFS, the user”s specifications state to consider faults
o0 components: GCm, GO, SRVm, SRV, imngectors and some
iransducers. The set of faults is hence given by F-:_._, ~GUYm,

GCVh, SRV, SRVR, Injt, T T, T, . T_}.
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Figure | Flow diagram af the GE Frame 6 turhine GFS
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2.2 GFS Component-Oriented
Equation Model

The table | below provides the component-oriented madel of
the GFS. For every component, the behavioural relations refer
1o generic component models { Travé-Massuyés and Escobet,
1995], The transducers are not included. The descriptions of
the varmble names wted in table | are given mtable 2

E = . g2
E B Equation 4
E |2 2§
] 1
Injectors | rl gy = x.-,.,.,me- cpd
2 do —Khingy =1
GCVE (B | qescdbii-m
GCVh | ord gy - Al iogy =0
SRV 12 | = {2 Pl
ik g3 — Kl jgg =0
GCVm | 7 g = g, bkl 96hgl |
SHVm | 8 fegr = J fagr96hgl] ehgl |
GCVm | 9 tag = | farowt S6hql) fsroa,
Oiihg |
SERVm [r10| figr = fLiprgows, fog296hgl) | fprgout
(SRVm Shg |
+SRYh) |rll Jee2 = F fprgon)
Table |. GFS companent=nriented model
cpid Comprsigor dischafge pressire
Gkl " Hydraulic pressure
eronl | GOV position vatpul
T fprgowt " BRV servo command

| .-'I""'Jf TGOV position reference
F.v,!.;r B

ARV position reference
Imtervalve gas fuel pressure inpul

Table 2. Listof variables

3 The Ca~En Diagnosis System

Ca—En 4 o cananl model baged dizgnosis system that neludes
a fault detection module and a fault isolation module. The
foult detection mechanism detects discrepancies betwesn the
system observed and predicted behaviour. [t is based on the
generation of sdaptive thresholds from mierval models o
wround the deciston problem, The fault isolation mechanism
then mterlinks the discrepancies to isolate the faulty
componenis on the basis of a femporal cawsal model.

3.1 The Ca~En Knowledge
Representation Formalism

The Ca—En formalism is based on a twio-lewel representation
scheme for the description of physical systems:

I. A causal masdel m which the links represent the causal
millsences existing among the variables, referred as the fo-
cod vl

2. An analytical equation level which allows one to represent
algghm.--d'rr'ﬁ:rmli:tl er.||.1u1'i|:'|n$._ referred & the global level,

Both levels can manage imprecise knowledge. A Ca~En
pregram represents a formal model of the physical svstem
built from knowledge about the physics underlving the
behavior of the system,

Cisumaal mflences allow for representing causal dependency
tvpe knowledge. The Ca-En formalism offers five tyvpes of
influcnces whose internal form is presented later:

= aymamic 1 arder, denoted by the symbol —D] =
between the influencing and the mfluenced variables;

" dymaric 2 peder, denoted by the svmbol —D2 =,

* integral, denoted by the symbol —[—;

" static, denoted by the symbol —S—;

= corifant, denoted by the symbol —C =k,

Caeeal influences are characterized by several parameters,
like o gain, a8 delayand 8 respanse ©ime for |* order dynmamic
influences. All parameters bul the delays can be given an
interval value when known with imprecishon or a real value
othervise, They abo allow for a parameter condition, which
specifies the logical conditions under which the influence is
active. This is the key for representing hybrid systems,
Influences are fabelled by the component{s] or process(es)
which underlie them.

The followiing Ca-En example states that the variable
Gra_roa2 s influenced by the variable s Fec2 through
a static influence, which is active when condition GFE ml=1



L. T Massuyés, T Escobet B Pons, 5, Tornil - The Ca-En Diagnosis Sysfem and its Automatic Modeliing Method

i true. The undertying components are SEVH (5top Ratio Valve
hyvdraulics), Tlyg (fe ransducer) and Glsp (Gas Fuel supply
gystem).

SRVh_TIqg GFsp!
condition IL-“'I.-'E_.r'.';-J. |
|GFS_FPG2 =8=> GFS_FQoG2:
gain in [-0,3630,-0,3411], dalay=5;}

Following a compenent-oriented modeling approach, the
Ca~En language allows the user to specify peneric models
(maded ), which can be invoked and mstancinted on reguest,
The definition of a medel incledes a list of formal argrmems,
then ench instanciation is given a namse, and a comresponding
list of aciua! argimenis. For example. o peneric model gen
can be defined os follows:

model gen |varisble X imn [D., 48}; booloan
paramater AR, constant G, Cconstant Bl |
wvariable ¥}
il condition
rospbima = R
init ¥'— 2;-)

tAR] H=D1-=>%:

. =
PFEL = fay

Model gen can then be invoked by:

gg: instance gan (XX, true, 4, 2|

The global constraint level 15 composed of functional
numeric constraints azepcinted with interval domaing, g
conadraints arising from phyvsical laws, In other words, a glo-
bal constraimi 15 any algebraic equation, which miy be non-
linear, in which each unknown is assumed to take on interval
valies, This allows us fo manage imprecise knowledge at this
level as well, The global constraings are expressed by means
of traditional arithmetic operators; +, - * / and ™%, These
operaiors are interpreted in the interval algebra,

As variables and parameters take interval values, one can
easily adapt the model's granularity to the requirements of te
Faults. Henee Ca~En has o wide coverage of faulis, from those
radically changing the behavior of the physical system to thoss
causing smooth deviations

The internal structure of Ca-En prasents two processing
madules corresponding o the main tasks o be performed In
faule diagnosis:

" A fault detection module based on a cousal interval
prediction mechanism;
. A fault isolution module based on on abstrection of
the maodiels m tarmy nflﬁnpﬂcnl casn] masdels.
The reader can refer to { Trevé-Massuyds and Jimerez, 2000 )
Tor more details about the algorithms.

3.2 The Fault Detection Module

In model-based systems, the fault detection task can be
accomplished through a prediction mechanism:

. the system maxbel prediction (whsch may be a simukation
i case of dynamle models) allows one 1o obtaim the sydem
cxpecied behaviour,

. decision abowt the existence of a foult is based on
comparng the expected and the observed behaviour and
evaluating the so-called residuals,

I this section, we present how the two-levels representation
of the physical system are used to simiulate the system
behavior and to obtain robust decisions about the existence
of faults, The semi-closed loop fault detection algorithm used
in Ca--En is illustrated with some examples which make clear
the trade-ofT between sensihility and robastness.

3.2.1 The Ca~En Prediction Module

The prediction algorithm performs an estimation of the
endogenoies variable volues acress time. I can operate in an
“open-loop mode™, Le, 85 a pure simulation, or in & “closed-
loopmode”, Le. by taKing o account in real time the measuned
warighle volues and performing a resel

The temporal unit of the prediction module is the same
as the data acquisition system. The input data are the
causal model - including initial conditions - and the
evolution of the exogenous and other measured
variables over time, The output of the system is the
trajectory of each process variable (Traveé-Massuyes
and Milne, 1997),

The prediction module can be used on its own or coupled
with the fault detection module, in which case it is used ina
Semi-Clozed Lowp (SCL) mode as explained In section 33,2

Predicting the varinble values is one of the most critical
steps in the ingerval model-based fault detection approach.
The predictions need to be fine encugh 10 be sensitive o
fnults, but not too fine so as 0 avoid generating false alarms
(Tormil e ., 2001

In Ca—En, two steps are executed to predict the variable
values: at the lecal constraing kevel and af the glabal constraing
level,

L3
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Influcnce | FcPEsentation ) Transfer Fulnr:tinﬂ - [Mscrete Transfer Function
Formalism (DNfE ar Algebraic equation) iCa-En imternal form)
Fis) Ko™
Dynamic 1 —Dl—=y X Ivm Mi+1) = apy Wby 5, (1) i1
. Yis) Ken'
Dynamic 2 —D2—y Y00 Fs EanT ME+) =al Wk +al, Mk -1)+M, adk) 82 ek -T)  (2)
Fis) K
Integral [y Xi5) T WL} = ap Wi+ By x, (1) i3}
- Fis) oo |
Static T —= A =K -
X ! s} M=K 5 (] -d) (4]
Constant >y Fisl={ l_'u[r' 1 =L (5]
Tahle 3, Different types of Ca—En influences and their intermal form
3111 Local Constraint Level: Computation of the Let us now generalize to a variable v influenced (actively)

Updated Varisble Values

From the superposition theorem that applies to the linear
case, the computation of the updated value of a variable ¥
consists of processing the sum of the activated influences

having exerted on the varable during the last time-interval.

Let's first consider the case in which v is influenced by one
variable only, say x, through an influence of a given type.
Depending on the type, table 3 provides the discrete intemnal
Form of the influence used by Ca~En as well as the continuous

eounterpart,
The symbols used in table 3 have the following meanings:

- I' i the sampling period parameter;

- K and T are the gain and the time constant of
the 1= order wransfer function. T corresponds
with good accuracy to T/, where T is the
responss time (parameter sesptime)

. £ and 0 are the damping ratio and the
undamped natural freqguency of the 2 onder
transfer function;

o ML LT .
x A =€ R by = K{l—ap )
" a; =] b, = KT,
= al e adpy bl 025,
L are the 2™ order discrede transfer function

parameters, whose expression depends on the
tvpe of function.

by a s nl'w.u-fr.n’:n'm,l.";rl, i=1,.m}, The nfluences !, i=/, . .n,
may be of different type, Let us define X, X, X, and X _aa the
subsets of variables of X influencing v through dynamic, inte-
gral, static and constant influences, respectively. Dynamic
fluences (§ € ), integral influences (/ & 1), static (l €
[ yand constant influences (£, € ) must be combined. Every
influence is first materialised by an intermediate variable which
stands for its associated marginal infiwence (this step is not
necessary for static and constant influences). The seds of
intermediate varighles are ¥, and ¥, for dynamic and integral
influences, respectively, The combination is then performed
by adding up all the marginal influences by means of static
influences, as illustrated in figure 2 wiere double arrows siand
for sets of influences.

X e D1 Vp
o '*'='.* % g
.JI.:- —— l =h- I"} ‘=|=ht|: E

XS|=:—=S

Xrﬁ

Frpare 2. Ca—En mifluences combinmion
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¢ E |

s updated according 10 (1) or (2) v table 3
dtpl:nq.lil'lg afi the arder of the trinsler lunctson, v & f'l is
updated sccordimg to (3), Finally, at each sampling instant, v

given by

Wi} Zr,lru ZTI[H
v el

JLLET

+ ¥ Kx(r—-d)+ Y, @

where & are the gains of the static influences and © the
constants of the constant mfluences.

Mote that the temporal features, caglured by the delays and
response timses, are automatical |y aken inte acoount, The resall
i% an interval
AL1.2  Global Constraint Level; Refinement of the Updaied
YVarmble Values

The numeric intervals obtained for the updated values
1EL|IJ3[i-:‘:-||. {19 are refined with the glebal comstraines h}'
performing afoberance propagaton iligomithm (Hyednen, 1997
on the set of variables. The effect of the tolerance propagation
alporithm s to filler (reduce) for consistency the values vy
using the global consiraints,

I'he semulation resulls prodhsced by the Ca--En |'|n_'-;l'ic|inn
module are envelopes (see Tigure 3 for te varkables of inlepesi
The enwelopes provide the upper and lower bounds of the
yarble values ol each '\,'il:l|'|FI||,:|;] msdamt. As o CONSEQUEnCE of
the interval-based reasoning wsed in Ca-En, the resulis ars
complete but not correct {Armengol er al, 20,

Figure 3 below is & screen from the TIGER system tlhag
illtrates the enveloppes predicted by Ca~En, which provide
staptive thresholds for the measered ~i:-|_:|'|i||:.'_

it g

Filfley Wark Ly bmidard]

Figure 3. Ca~En envelappes

3221  Ca~EnSCL Fault Detection Strategy
The Ca~En fault detection |:'||:'-:.*{'|.'d1|||.' 1% Based on models of
ngrmal behaviour, These are interval models, which capure
imprecise knowledge in the interval parameter values. The on
line |.'l|l.";iil.|il.'|r'|h abtained from these models 15 the basis of o
discrepancy detection procedure bosed on adaptive
Hresholay, whech allow s us to track the physical system. This
I |1|.'rI'|1m:|.'nI by comparing the prcﬂiq:lﬂd ond observed values
of variables across time so that statie as well as dynamic
discrepancics are detected. This is essential for contralled
systems such as turbines. The contraller indeed tends 1o
compensate Tor the faults in such o way that the fauh mighi
|1||.|_'. b abservabbe, and hence dotectahbe, |.I'.|'ri111_11h:- transienl
response of the wehine. The variables then generally stabilise
e ormeal walues. A classic limit checking diagnosis system is
often inelticient in this Kind of situation

The ultimate goal of Ci-En h-\:m_u o =olate the fanlts), a
|J|.'l.'|'&-|.|.|:-|||1|_: i performed al the level of every measured varia=
blez. This means that varsable measured valoes are abwayvs used
to determine the prediction for their causally downstream va-
rinhles. Forexample, for a static influence where K=K __ & _],
wi havg

poli+l)=Ke (=) @

e
Ihe sulfixes “pred and “mens”™ stond for “predicted™ and
“migasured” | respectively,

At each instant ¢ and Tor every mensured variable v, Ca—En
checks whiether the messared valoe 0 £ (a ren] numiber)

belongs or not 1o the predicted value ', () (an interval), 17

mol, variable 1% siid 1 he adorminge at time £ The set of
alarming varmhles is denoted by 40, This 1s equivalent to the

calculation of an interval residual:

L I L B i1 B}

e VLT

whiere 0 & r /i in the faully case and 0 C rn otherwise
Let’s define as_7 the set of variabdes such that 0 @ r 1), From
the graphical pont of view, thes s mlerpreted as the observed
trajectory gomg oul of the predicted curve envelope af time |
as shown in figure 4

PPredicted envelope

Measured output

-
¥ s MISD

Figare 4. Faul detection is hosexl on adopdive threshalds

£l
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In practice, noise in the measurements or other kind of

disturbances must be contemplated in some way. In these
situations, a local incompatibility between prediction and
observation of some instant ¢ does aot necessarily mean tha
the system i5 faley, In real applications, it is very important o
have a robust fault detection system because a system which
wold untimehy report faslts would rapidly lose the confidence
of the operator and engineering staff. Hence, we use & more
robust mdicatos than just alarming varsables. A fault is reported
when a variagble hos remained alarming during & whole tempo-
ral interval Tof length significantly greater than the sampling
period (ef. figure 4). The variable is then said 1o be
mishefrving. The length of Tmay be regarded as a multiple of
the sampling period, i.e. F=vT, and it should be adjusted
according fo the technology of the sensors (the cholce of v is
kit to the user). ¥ is calbed the alamiing-misbehaying threshold.

More formally, the set ML of mishehaving variables can

be defined as follows:
v & MISBal time ¢ ify & A6 since =¥,
e im0, .. OCr g ("

Within the above presented lramework, the Ca-En fault
detection strategy bs a mixed strategy which combines an
observer type strategy (closed-loop mode) with a simulation
strategy (open-loop mode) to determine the residuals and
further assesses varioble state, We call this strategy a Sewmi-
Clased LoopySCL) straregy {Escobet atal_, 2001}

The mode control (open-loop or closed-loop) depends on
whether the observed value of v is in the predicted envelope
{neorrmal situationy or out of the predicted envelope (alanming
situation) os illustrated below fora 17 order transfer function:

Ifw & Afthen closed-loop mode, then

yﬂw{t w=a,yv . (ebx  (t—d) oo
Ify & Afthen open-loop mode, then

_|"'lu..-.-.- E.} +1] = ”.'a-.}"lm-u {.I‘]-I- I!:"'Jl':'-m\.:n {I_ ul} (1}

where @, E{a,,“in,ﬂ,,_, ]am! b, € [!:,,m_' .br,m]

The two mentioned modes correspond o the schemas
figure 5a (closed-loop mode) and figure 5h{open-loop mode).
The intuition behind this mixed sirategy s related 1o two
[EETTT

® The closed-loop mode runs on one step shead
predictions only, obiaining this way a good
precision, which ks eritical when using interval
models  (Armengol er w2000
® Az zoon ns the variable becomes alarming,
running on a closed-loop mode would drive the
prediction to Follow the Fault, tuming the fault
detection procedure insensitive to the fauly

Wi Wi
— P

Figure £if, Closz loop mode

Wl x ¥
’ » proces’ 1

Figure 5h

Qpen loop minds

A comparison betwoeen open-loop and closed-loop maodes
i shown in figure 6. The plotted envelopes correspond 1o 3
dynamic influence with interval parameters K={{,75,1. 23] and
£=]1.75,2.25] (zampling period is 0.5 1t can be seen that closed-
foop mode (in continugus fline) produces less conservative
envelopes,

ra _-—__-____'__
e
-
i e e 2
rd ’ ) St ol e el S g P
[E l.'.) _'. 2
(¥ J'TI.' L =
|'I.' ' :
L] |:','
A s
EI-._- e iR
LR F,.l'?r -_.- i il i e R
Y - =
o e L] 1.

Figure &, Chosad-loop (contineows] ve apen-boop {dashed)
predictians

The Ca-En SCL strategy is compared with the closed-loop
sirategy in the fillowing fgures, In fgure T.a, noise is added
i the step response of a first order system with & = 1 and T =
2, The behavioir of the closed-loop and SCL strategies in this
moisy situation are shown in figures 7.0 and 7.g, respectively
(with K= [0.75, 1.25]and T=[1,75,2.25]}
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The upper subfigures of figures T.hand 7.¢ show the oucput
envelopes using imerval prediction and the SCL strategy,
respectively. The middle ones show the bmary signal that
indicates when the systern output goes outside the envelopes
{alarming signil). Fisakly, the lower ones show the mishehaving
signabs. [t can be observed that, using the Ca~En SCL strategy,
the system output can remain outside the envelopes up o 2
consecutive samples. This means that Talse alamms are avoided
using an alorming-mishehaving threshold equal te 3. 1t can
also be observed that a much higher threshold is needed 1o
avoid false alarms when closed-loop strategy is wsed, leading
i a higher detection time,

The SCL. stralegy used with v=1 produces better envelopes
and decreases the mumber of {nlse alarms.

Ll

T L

'E .
L] u 1] " i EL]

Flgure 7.a Moisy firs order stiep respanse

-
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Figure 7.h Clased-boop deleetion sirategy

When a fault is present, the SCL strategy is able to
discrimimate between nolde and the effect of the fault. In figu-
res Ba and Bb, the behoviours of the SCL strategy and
simulation are compared when an abrupt faul! occurs (3 1=3
sec), The snme alternatives are compared in figures %a and 9%
in the case of a “drifi-iype” fault. In both cases, it can be
phservied that the SCLIeads to lower detection times.
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Fipare 9.2 Simulnbien-based dateciion of a drift fault

3.3 The Fault Isolation Module

Having detzcted ome or more misbehaving variables, our
system searches Tor the original possible cause(s) and
elnborates a list of pedential diagnoeacs. A disenosis 15 & mmimal
set of components for which the invalidation of the normal
behaviour assumption yiclds (50, COMP, (BS) consistent,
where 550 15 a formal description of the system including
assumptions of normal behaviour for the set COMP of
components and the components in COMEP are the elementary
diagnasis units, In the Ca-En diagnosis approach, the causal
structure, including temporal aspects, acts as the S0 and the
influences themselves are the elements of COWE. Faubhy
influences are twmed back mio their corresponding faulty
companents. Temporal aspects include delay times, as well as
the dynemics introduced by the different operating modes
captured by the influénces activation conditions and
associated activation condition.

Diagnoses are compaited from the collection of conTice sers,
1.2 sets of components such that the ohservations mdicatle
that at least one of the components in the set must be behaving
abaormally, by an incremental hifting s algorithm {Levy, 1989).
They are given as sets of faulty components labelled by their
corresponding time of faifure.

The diagnedis process is initimted as so0n as a variable is
reporied as mishehaving. For this varable, sav X the conflict
generation procedure traces backward in the causal graph,
following the infuition that the influcnces which may be at the
origin af the misbehwvivur of ¥ are thoss relaed to the edpes
belonging to the paths reaching node X from the firs upsiream
measured variable nodes. This set of influences, called the
aseehdanr iluemces of X, is recorded as o conflic sei
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Figure b, SCL-based detection of a drifl Gl

Proposition 3.0, The set of awceddanr (gffvencer of a
mishehaving variable X is a conflict set.

The conflict sets charactertzed by proposition 3.0,
correspond 1o the discrepancies reporied as misbehaving vie-
Flakles.

Let us consisber the causal graph in figure 10 where all the
variables are messured but &), and Wbels 1, 1, 1, |, and I,
denote the influences corresponding 1o the concerned edaes
Assume that variable ¥ mishehaves and that ¥ is correct. Then,
actording to proposition 3.1, (1, 1,.1,] is a conflict set.

I

Iy
|
L
: //"
& — ]
I.'I- -}\ M
T - ¥

Fipure [t Vi misbelaving, 1is nol mishehaving,
L' is unmeisured

When generic fault models are considered, another tvpe of
conflict 528 can also be outhined by accounting for non-
misbehaving varisbles. Knowing that some variable is not
mishehaving may be informative for refining the dingnosis i
some specific assumplions can be made. However, not all the
non-mishehaving variables are useful; miuitivelv. only the
variables which have at leasi one causally vpstream
unmessured varintle in common with a miskehaving variable
must be considerad. This 15 indeed the case of ¥ with respect
0. in our example.
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I our domain, and grven the tvpe of influcnces that are
considered, the simgle foult exoneralion asswmprion is of
special interest. This is interpreted by the assertion thit one
and only ong Toulty influence alwavs manifests by the
misbehaviour of its downstream measured variobles. This is
also known as the single fault ARR-based! exoneration
pssumption (Cordier ef af., 20

Let us come back to owr example and assume mifuences 1
and I, te be functioning correctly, this implies that the fauley
influence is 1, Since L/ is not measured, this is detected by
means of the misbehaviour of X, Meanwhile, ¥ is comect, which
i5 ot consistent with the exoneration assumption if mluences
[, and I, are supposed to be comect. Therefore, 1, and 1, mus:
e Faukty for compensating the propagation of the abnormality
of 1. Hemce, il we assume | aird |, to be correct, then Lol
cannot be assumed to be so. Therefore, 1.0, 1, 1} isamother
conflice set, This repsoning can be gencralised with the
followiing propositaon;

Proposition 3.2, 1f a non-misbehaving varinble ¥ has at leasi
ome coesal ly upstream unmeasured variable in common with &
misbehaving variable X, then the symmetric difference? of the
sets of the ascendant mfluences of ¥ and that of ¥ is a conflict
8L

It summary, It has been shown that two tvpes of conflict
scts can be outlined when a variable mishehaves, Both conflict
sets are not based on the same concept. The first one is based
on the fact that the misbehaviour of o variable is explained by
at least one ascendant influence being Gl midependently

of any assumption, The second conflict set is supparted by
the fact that a faly influence mduces the misbehaviour of
downstream variables unless compensated by another faulty
influence. Note that, it could be possible that the fault is hidden
due 1o the unsoundness of interval computation, which can
generabs spurious behaviours (although the probability can
be considered wery low) This explains that the conflicts
obtained by tracing back i the causal graph from misbehaving
viarigbles are called Hord cowy@icis whereas the conflicts
accounting for non-mishehaving variables are called soff
confices

As will be explained later, this distinction provides the basis
for defiming a preference criterion for the generated diagnoses,

The dingnosis peneration is based on generating the minomal
hitting sets of the collection of conflicts generated by the
above algorithm. As new symploms for o given fault can
oppeir across me, it is important te diagnosis procedurs be
meremental. In Ca~En, we use Levy's algorithem {Levy, 1989)
which is an imcremental revised version of Reiter's original
one {Heiter, 1987). The diagnoses are classified according o
whether their elements belong solely to hard conflict sets or
not. Let us define a soff conflict element a5 one that belongs
b o soft conflict and does not belong (o any hard conflict,
Then, the preference cfass of o diagnosis set is defined as the
numiber of soft conflict elements that it contains. The smaller
the preference class of a diagnosis set, the more the concerned
aizgrnosis 15 preterred.

Figure 11 below is a screen from the TIGER SHEBA system
that illutrates the isolation procedure on the Frame 6 turbine
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4 The Ca~En Modelling
Methodology

The Ca—En system modelling methodology 1akes advaniage
of automated modelling methods, Let us recall that the
extension of the causal ordering method (Iwasaki and Simon,
1994 to hybrid systems was proposed by {Travé-Missuyes
and Pons, 1997 as o requirement for Co~-En modelling. In
addition to this method, other modelling features have been
added which are reported in this paper. Each step of the
muodelling method 13 presented: the automatic generation of a
causal structure from a component-oriented equation maodel
and how to get the parameters of the causal influences, then
how to automatically derive the operational detection masdels.

4.1 Generation of the Local Level
Causal Structure with Causalito

The problem of causal ordering has been approached by
several authors generally for providing an explanation of why
a device produces the behaviour it does. Among all existing
approaches, we focused on the causal ordering of Iwasaki
and Simaon {1994), We agree with their main sbea, that is to
derive the causal ordering from a structural analysis of the
equitions, Our software Causalite implements an extended
causal oedering alporithm { Travé-Massuyés and Pons, 1997

The first requirements for Ca—En come from the fisct that the
prediction at the basis of the faul detection mechanism is
performed along the cousal structure, Ca—En hence needs a
full causal skructure in the sense that any endogenous voria-
ble musi be reachable fromm the set of exopenous varables, 5o,
we nesd 1o delerming one possible interpretation around the
loops, Maotice that different interpretations require different
propagation functions, leading in fine to the same predictions.

The second requirement s that we must provide n cousal
ordering for multiple mode systems (hybrid systems), By
multiple mode systems, we mean systemns in which there are
some components like switches or valves that may be opencd
or closed, adding or retracting new beanches o the circuit.
The eguational model of such systems have conditions
associated 10 some of the equations. Instead of generating a
new causal structure for every mode, Causalito performs an
incremental generation of the causal structure. 1t first compu-
tes @ causal structure in a given mode, switches to another
e and computes the minimal changes in the causal structure
that represent the mode switching. Every possible
configuration of the circuit is considered. Hence the influences
of the final cousal siructure are labeled with an activation
condition reflecting the {discrete) state of the multiple mode
COMPORELS,
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Causalito takes as input the occurrence matis of the system in
which element m_is | or () if the variable X appears or not in
the equation £ Causalite builds a bipasite graph  in which
each variable X and cquation £ are represented by a npode,
and it exists an edge botween X and E i€ o is 1, Finding the
cormesponding cousal structure starts with computing a perfect
maiching in the graph (7. By orlenting the edges of the perfect
madching from the equation nodes to the variable moades and
the other edges from the variable nodes to the equation nodes,
we obtain o first cousal streciure i which the equations
{relations) appear explicitly. This structure is also known as
the Resolution Process Graph (RPG N Cassarand Staroswiecki,
1907}

This causal sructure states the flow of computations for
varinhles. It & made of alternated levels of variables and
relations. To solve a relation r, for its matched variable, all the
r,'s input variables have 1o he solved. Every relation is labelled
with its cormesponding companent.

The final causal influence structure is obtained by
aggregating the equation node and the variable node
associated by the perfect malching, Detailled procedures are
presented in {Travé-Massuyés and Pons, 1997).

4.2 Deriving the Operational
Detection Models

Whereas the compoment-orienied model (primary relations}
and its associnted cateal structure. that we will call the geweric
cawsed strwcture, 88 generabed above (. section d.1) are
suitable for fault solation, the models that can be used for
fault detection, ie. the operational defection modals, are
generally highly dependent on the availoble sensors, which
may vary from one system to another in the same class, e
gas turbines.

The methodolosgical study presenied in this section exami-
nes how 1o determine, for a given system, the operational
detection model structure ond the components 1o be associated
(o every operational relation, This is dene from the generic
(and unique ) component-eriented model snecture. This is then
illusirated i sectom 4.2, 1.2 onthe Frame 6 turbine GFS.
4.2.1 Methodology to Derive the Operational
Models

In Ca<En, the maode] prediction supporting fault detection
requires (o know the interval values of the parameters invelved
in the relations, In many applications, none of the parameters
involved i the primary relations of the component-oriented
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miodels is knowi; be, their valies are nid eved known 1 the
user, Hence, the only relations that can be operationally used
for fault detection are the ones whose porameters can be
estimaled from the data. This rests on the condition that the
viriables appearing in the relations are measured or can be
considered as constant,

Parameter catimation procedures state that the relations are
causal, ie the variables invelved in the relotions are either
input or output variables and the output vanables cosally
depend om the mput variables, Ca—En detection modeks hence
have an explicit representation of the underlying causal
structure. This causal structure can be putomntically derived
from the generic causal structure by on aggregation operation
I scweme cnses, it mighit be more suitable o use the apgregated
causal structure for fault isolation as well. In this case, the
companent labels to be associated to every operational
relation must also be refrieved. These two ateps are detailed
Db,

4211, Deriving the Causal Stracture of the Operational
Detection Models

Let us consider the generic causal struenire obtained from the
companent-ofiented model by applving the causal ordering
procedure of {Traveé-Massuyés and Pons, |97 Then the
operational detection mode] causal stricture is obinined by
the following aggregaiion process:;
For all the non measured variables, do:
Step [ Emipty the non measured variable nodes.
Step 20 Apgrepate the paths including an empty node
inte single cousal influences
Step 3 foptionall: Label the new influences with their
asaociated componenis.

The step | consists in removing in sequence the nodes
corresponding to non measured variables from the generic
causal structure, Cnoe these nodes are discarded, the causal
paths in which these nodes appeared must be restoned in step
2. That is, for each discarded wariable ¥, we have to replace
any causal path ¥ —» ¥ — Z by the causal influence X — Z,
In step 3, the component labels associated to the “new”
influences must be detesmined from the old ones. The old
influences that are common to several paths distribute their
associated component label to all the new influences replacing
these paths, as shown in fgures 1laand 11k

Figurs 1 la Causal stucture aggregation operation |

Figure 11b. Causal structure aggregaison apéralion 2
Mote that the component labels o be associnted 1o operstional
relationz can also be obtained from the generic cousal strcture
by iracing back from the relation’s outpat variable(sh o the
inpiit variable{s) and recording the components associated 1o
all the relations that are in between.
4.2,1.2. Application to the Frame 6 turhine GFS

In the GFS, there are 5 exogenous vanables (CPD, FSROUT,
FPRGOUT, P1, 96H jand 4 measured endogenous vargables
[FSG, FPG2, FOG, FSGR Y. The GFS genersc causal strscture is
presented in figure 12 Trave-Massuyds ef al, 2000 ).
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Figure |2, GFS causal strocture

The exogenous variables $96HOH and P are measured or
not, depending on the turbine. The isclation and detection
operational causal siructure given in figure 13 shows four
operational relations:

(GFS apl)  FSO=fFSROUT, 96HO)

{GFS_op?) FPG2Z=AFPRGOALIT)

{GFS opd)  FRGR-HFPG2, FFRGOUT, 96HO )

(GFS opd)  FOGIT=ROPD, FSG, FPG2)
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{GFS_opl), (GFS_opZ)and (GF5_op3) ane primary relations.
(GF5_opd) 15 o combined relation obtuined by combining
primary relations. This i3 valid upon the assumption that all
the primary relations are invertible or that they can be linearized
around some operating point. In this kater case, the validity
domain of the detection operational mode] is limited to the
neighbourhood of the operating point,

opd
row 1\\‘

%f‘_/;t.l’lr 7!‘!‘:

!

fprgow S

Figure 13, (GFS opsrational mode

To determine the component label for GFS_opd, the search
from FOG back to CPD, FSG and FPG2 i3 obtained applying
the aggregation operations on the AND-OR Graph. The same
procedure applied o (GFS_opl), (GFS_op2), and (GFS_op3)
leads us to conclude on the associations given i table 4

Operationnl Associnted Associated
reldations cperational companents
Il erwces
GFS _opl Influences on FSG | GLVm | Trsg
GFS_opl Influences on FPG2Z | SEVH | SRV m
TS _opd Influenices on Falik, | m| Ty
(S Tnfiucnces on FGR | SRVA | GCVRT Tl
| Tero | Teso | Trga

Table 4. Operatienol relotions and pssocinted influences and
components

5 Application Results

The presented methodology has been applied in the pgas
turbines application domain in the TIGER and TIGER-SHEBA
suropean projects (Travé-Massuyés and Milne, 1997 1(Milne
etal, 2001). The TIGER systemn is commercialized by 1A Lid all
arcund the workd, In the framework of the TIGER project {1992-
19946), Ca~En was succesafully tested on several subsystems
of a 28-MW General Electric Frame 5 gas turbine operating af
the Exocon Chemical Fife Ethylene Plant (UK yand of a Dressauk

Aviation Auxiliary Power Unit manufactured by MicroTurbo
{F). It was then fully integrated to TIGER within the TIGER
SHEBA project (1 998-2000) and nms on-line on the Frame §
gas turbine of the Mational Power's copeneration plant m
Aylesford (LK),

Figures 14 and 15 in next page illustrate the fault detection
and fault izolation resulis provided by Ca-En and reporied by
the TIGER SHEBA, system.

6 Conclusions

Maodel based technologies fully rely on the quality of the
mvichels aned hence call for automated modelling methods. These
methods should allow the users:

* o compose the model of a complex system from
misdel fragments on one hand

= to pewse and aotomatically transform existing
models;

®  toderive the model features from existing data,

This paper presents the diagnosis system Ca~En and its
autemated modelling method, which offers severn] imteresting
features, After the presentation of the main theoretical
principles involved in Ca—En, we show how a generic causal
structure canbe auiomatically generated from a component-
oriented equation model and e we can derive the operational
causal model used by Ca~En. This approach has been apphied
to many systems and the Frame & turbine Gas Fuel System is
presented as an example. The results obtained i the gas
turbine application domain are discussed.

In relation with this work, the imporiant issue of
diagnosability and sensor placement has alse been
approached. The method proposed in (Travé-Massuyes ef
af, 20017 is based on o causal model similar to the one wsed by
Ca~-En,

On=gaoing work s now considering the diagnosis of hybrid
syatems, Current developments integrate the Ca-En approach
for continuous svstems to a discrede automata reasoning level
1o provide disgnosis conclusions and perform system trcking.
This is applied fo the autonomows satellites domain {Benazera
el al, 2001},
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