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Abstract 1 Introd uction

The security of elliptic curve cryptosystems is based in
the intractability of the elliptic curve discrete logarithm
problem. The best classical algorithm known until dQte to
solve this problem is fully exponential in time. This is the
rea.son why the elliptic curve public key cryptography is
considered the most secure known until date. We present
in this paper an algorithm that running on a quantum
computer, can solve in polynomial time the elliptic curve
discrete logarithm problem. Then, if a functional quantum
computer isever build, all the elliptic curve cryptosystems
would become insecure.

Keywords: Quantum algorithms, elliptic curve cryp-
tosystems, public key cryptography

fJ = a'(mod p) (1)

The integer 1 is called the discrete logarithm of fJ to the
base a.

Diffie and Hellman proposed the well known Diffie-
Hellman key agreement scheme [Diffie,1976] based on the

*This work was supported in part bya ANUIES-SUPERA fel- difficulty of the DLP. Since then, many other crypto-
lowship. graphic systems whose security is based on the DLP
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The security of modern public key cryptographic systems
is based in the difficulty to solve efficiently some kind
of mathematical problems. Since the invention of the
public key cryptography by Diffie and Hellman in 1976
[Diffie,1976], many public key cryptographic systems have
been proposed, of these some have been broken and others
have been demonstrated to be impractical. Today, only
three type of systems are considered enough secure and
efficient. Such systems are based in one of the following
mathematical problems:

1. Integer factorization problem (IFP).

2. Discrete logarithm problem (DLP).

3. Elliptic curve discrete logarithm problem (ECDLP).

Although none of these problems have been proven to
be intractable, are considered as intractable because years
of study has failed to yield efficient algorithms to solving
them.

The integer factorization problem (IFP) consist of the
following: given a composite number n that is the prod-
uct of two large primes p and q, find p and q. llivest,
Shamir and Adleman [Rivest,1978J developed the RSA
public-key cryptosystem based on the difficulty ofthe IFP.
Another public-key cryptosystem whose security is based
in the intractability of the IFP was developed by Rabin
and Williams [Rabin,1979],(Williams,1980].

The discrete logarithm problem (DLP) is the following:
given a prime p, a generator a of Zp , and a non zero
element .B E Zp, find the unique integer 1, O ~ 1 ~ (p -2),
such that
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have been proposed, such as: the U .S. government digital
signature algorithm (DSA) [Johnson,1997], the EIGamal
encryption and signature schemes [EIGainal,1985], the
Schnorr signature scheme [Schnorr,1991], and the Nyberg-
Rueppel signature scheme[Nyberg,1996].

The elliptic cun;e discrete logarithm problem (ECDLP)
can be defined as follow: If q is a prime power, then Fq
denotes the finite field containing q elements. In applica-
tions, q is typically a power of 2 (2m) or an odd prime
number p. Given an elliptic curve E defined over Fq, a
point P E E(Fq) of order n, and a point Q E E(Fq),
determine the integer k, between O and n- 1, such that
Q = kP, provided that such an integer exists.

Based on the intractability of this problem, Neal Koblitz
[Koblitz,1987] and Victor Miller [Miller,1986] indepen-
dently proposed using the group of points on a elliptic
curve defined over a finite field to implement the various
discrete log cryptosystems. Elliptic curves have been ap-
plied to modify public-key cryptographic system, such as
the DSA [Williams,1980]. Currently there are underway
initiatives for the standarization of elliptic curve cryptog-
raphy [ANSI X9.62], [ANSI X9.63],[FIPS 186],[ISO/IEC].

With each of the three problems, there are special-
purpose classical1 algorithms that solve the problem in
polynomial time for certain special instances. For integer
factorization, there is a polynomial algorithm in the case
that the integer has small prime factors [Lenstra,1987].
Similarly, for the discrete logarithm problem modulo p,
there is a polynomial algorithm provided p -1 only has
small prime factors. And the ECDLP can be solved rel-
atively easy for a small class of elliptic curves, known as
supersingular elliptic curves [Menezes, Okamoto,1993] and
also for certain anomalous elliptic curves. However, in
each case, the special instances of the problem are easily
identified, so an implementation merely checks that the
specific instance selected is not one of the class of easy
problems. This approach avoids attacks employing these
special purpose algorithms.

Of the three problems, the IFP and tbe DLP
both have general-purpose classical algorithms
that run in subexponential time [Gordon,1993],
[Lenstra,1993],[Pomerance,1985]. These subexponen-
tial time algorithms mean that the problem should still
be considered hard, but not as hard as those problems
which admit only fully exponential time algorithms.
Precisely, the running time for the best general classical
algorithm known for both of these problems is:

O(exp((c + o(I))(ln n)1/3(ln In n)2/3)) (2)

for a constant c. On the other hand, the best general
classical algorithm for the ECDLP is fully exponential in

(Xl,yl) + (X2,y2) (X3,Y3)
I For purposes, of this paper, a classical algorithm is designed to

run in a classical computer, instead of a quantum computer where
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time [Pollard,1978]. Its running time is:

O( ..¡¡¡) (3)

This is the reason why the ECDLP is considered to be
harder than either the IFP or the DLP. With a 160
bit modulus, an elliptic curve systems offer the same
level of security as DSA or RSA with 1024 bit moduli
[Menezes,1993] .

In 1994, Peter Shor found quantum algorithms to solve
the IFP and DLP in polynomial time[Shor,1994]. Another
polynomial quantum algorithm for the same problems was
formulated by Kitaev [Kitaev,1995]. Both approaches are
based in the assumption of the feasibility of the quantum
computer. These results implies that if a fully functional
quantum computer is ever build, all the cryptographic
methods based on IFP or DLP would become insecure.
Although it was showed before [Boneh,1995] that quan-
tum computers could be used also to solve the ECDLP, in
this paper we will show in a explicit way how the Shor al-
gorithm can be easily extended to solve also the ECDLP,
so we can conclude that all the current classical public key
cryptographic systems would be insecure once we have the
first fully functional quantum computer .

2 Background on Elliptic Curves

For simplicity, wEj shall restrict our discussion to elliptic
curves over Zp where p is a prime, although elliptic curves
can be defined more generally over any finite field. In
particular, the characteristic two finite fields F2m are of
special interest because they give us the most efficient
implementations of elliptic curve arithmetic.

An elliptic curtJe E over Zp is defined by an equation
of the form

y2 = X3 + ax + b (4)

where a, b E Zp, such that 4a3 + 27b2 # 0 in Zp. The set
E(Zp) consists in all points (x, y) E Zp x Zp, which satisfy
the defining equation, together with a special point 0,
called the point at the infinity.

E(Zp) forms an abelian group with the addition opera-
tion defined as follow:

1. 0 + 0 = 0

2. (x, y) + 0 = (x, y), 0 is the identity

3. (x, y) + (x, -y) = 0. The inverse of one element is
obtained changing the sign of the second component.

4. To add two different elements, which are not one in-
verse of the other, we apply the following rule:
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.1,'3 = >.2 -.1,'¡ -.1,'2,

P=(XI.Yl) -~

y3 = >.(Xl -X3) -Yl,

>. = (Y2 -yl)/(X2 -Xl)'

5. To add a point with himself, we apply the rule:

2(Xl,Yl) = (X3,Y3)
R = (x], Y3)

where:

.1:3=>..2-2.1:1, Figure 2: Geometric description 9í the doubling oí an elliptic
curve point 2P = R

Y3 = >.(Zl -Z3) -Yl

>. = (3z~ + a)/(2yl).

The last two operations have a straight geometric inter-
pretation. As it is depicted in the figure 1, if p = ( Zl , Yl )
and Q = (Z2,Y2) are two distinct points over the elliptic
curve, then the sum of p and Q, denoted as R = (Z3, Y3),

is constructed in the following way: the line which pass
through p and Q, intersects the elliptic curve in a third
point. Taking the reflection of this point over the z axis,
we obtain the point R .

y

x

Figure 1: Geometric description of the addition of two elliptic
curve points p + Q = R

As is depicted in the figure 2, if P = (Xl, yl) is a point
over the elliptic curve, the tangent line to the elliptic curve
at P, intersect the curve in a second point. The reflection
of this point over the horizontal axis, is the double of P ,
denoted as R = (X3, Y3).

If P E E(Zp) is a elliptic curve point and n E Z, then we
denote as nP the result of adding n times P with himself;
P + ...+ P. To multiply P by -n, means adding n times
Q with himself, Q + ...+ Q, where Q is the inver~ of P .
As usual, we denote the inverse of P as -P. We shall
emphasize that all the operations defined on E(Zp) could
be reduced to operations in the underlying finite field Zp.

Example 1 Consider the elliptic curve defined by E :
y2 = x3 + x + 1. over Z23. The points in E(Z23) are O and

the following:

Q = (X2, ~.~./...

~/.

-~

p = (XI, yl)

R = (X3, Y3)

~
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(0,1) (0,22) (6,4) (6,19) (13,7) (13,16)
(1,7) (1,16) (7,11) (7,12) (17,3) (17,20)
(3,10) (3,13) (9,7) (9,16) (18,3) (18,20)
(4,0) (l1,3) (11,20) (19,5) (19,18)
(5,4) (5,19) (12,4) (12,19)

Note that eacl1 point is grouped with his inverse addi-
tive. (The point (4,0) is his own inverse). The number
of points in E(Z23) is 28. For example, if P1 = (3,10)
and P2 = (9,7) then P1 + P2 = (17,20) and 10P1 =
2(2(2P1) + P1) = (6,4).

One important result of the elliptic curve theory, is
known as the theorem of Hasse, which states that:

p+ 1- 2VP :$IE(Zp)1 :$ p+ 1 + 2VP (5)

where IE(Z p) I is the number of points on an elliptic curves,
and is called the order of the elliptic curve. In other words,
the order of IE(Zp)1 is roughly equal to the size p of the
underlying field. Sc~.vot lSchoof,1985], found a polynomial
time classical algorithm to count the number of points on
an elliptic curve. Some improvements on practical aspects
of the algorithm have been made recently [Lercier,1995].

If P E E(Zp) is a elliptic curve point, we define the order
of P as the least positive n, such that nP = O, where 0
is the point at the infinity, as we introduced before.

The security of elliptic curve cryptosystems, such as
the ECDSA [Johnson,1997], is based on the apparent in-
tractability of the elliptic cunle di8crete logarithm problem
(ECDLP) stated as follow: given an elliptic curve E de-
fined over Zp, a point P E E(Zp) of order n, and a point
Q E E(Zp), determine the integer k, O :$ k :$ n -1, such
that Q = kP, provided that such an integer exists.

There is a classical algorithm, due to Pohlig and Hell-
man [Pohlig,1978] that reduces the determination of k to
the determination of k modulo each of the prime factors
of n. Hence, in order to achieve the maximum attainable
security level, n should be a large prime.

The best classical algorithm known until now for the
general ECDLP is the Pollard rho-method [Pollard,1978],
which is of order:

0( ,frnfi) (6)
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Menezes, Okamoto and Vanstone [Menezes,
Okamoto,1993] showed how the ECDLP can be re-
duced to the DLP in extension fields of Zp, for which
subexponential time cla8Sical algorithms are known.
However, this reduction algorithm is efficient only for a
special class of curves known as supersingular curves.
Such kind of curves can be easily detectOO, so can be
avoided in practical implementations.

As an example of the intractability of the ECDLP, if
10,000 classical2 computers each rated at 1,000 MIPS are
available, and n ~ 2160 then an elliptic curve discrete log-
arithm can be computed in 96,000 years [Certicom,1997].

~~

3 Quantum Implementation of El-

liptic Curves

In order to solve the ECDLP on a quantum computer,
we must show first that elliptic curve arithmetic could be
efficiently implemented on this quantum computer. First
of all, we must note that all the operations defined over
E(Zp) can be reduced to operations in the underlyiilg field
Zp. These operations can be implemented by quantum
gates as was showed by Beckman et.al. [Beckman,1996],
so we can expect that the elliptic curve points operations
can be reduced efficiently to elementary quantum gates.

If p = (x, y) is a point over the elliptic curve E(Zp),
we can represent such point using two registers of our
quantum computer in the states:

Ix, y) (7)

but for sake of clarity we represent these states as only
one:

IP) (8)

We must reserve a special pair of states to represent the
point at the infinity. In all the operations we must check
when it is involved as operand, or gives as result, this
special point, so all the elliptic curve operations are well
defined in terms of operations in Zp.

Since we can build unitary operators who implements
all the operations in Zp, using the representation men-
tioned before, we can have unitary operators for each one
of the operations defined on E(Zp). Then, if a E Z, and
p E E(Zp), we have the unitary operator:

(9)UI8> : la,P} ~ laP}

~

which give us the multiple oí the elliptic curve point p .
Similarly, we have the unitary opei:ator to add two elliptic

curve points:

~

u$ : IP,Q) -t IP+Q) (10)

~

2Classical computer as opposed to quantum computer

In this way, we can always define a unitary operator to
compute the linear combination of a pair of elliptic curve
points, as a transform of the kind:

la,b, P, Q) -+ laP -bQ) (11)

This particular operator will be U8ed in our quantum
algorithm to solve the ECDLP. Also we will need to make
use of the quantum Fourier transform, in a very similar
way as the main quantum algorithms formulated until now
[Josza,1997]. H we have a number a with O ~ a < q, for
some q, the Fourier transform converts the state la)" into

q-l1 "'\:"""' .
~ L,., Ic)exp(27r~ac/q) (12)
v q c=O

Although in this transformation q is of exponential 5ize,
actually it can be done in polynomial time if q is a smooth
number, that is, it has only small prime factors [Ek-
ert,1996]. Matter of fact, it can be implemented using
only one bit-gates and measurements of single bits [Grif-
fiths,1996].

4 Algorithm

Given a point P E E(Zp), of order n, and a point Q E
E(Zp), we want to find k E Zn 8uch that Q = kP .

We must consider first the case when n, the ordér of P ,
is a smooth number, i.e. have only small prime factors,
and once we have explained our algorithm, we will show
how can be extended to the general case in a similar way
to Shor algorithm for the DLP [Shor,1994].

In the first step of our algorithm we put the first two
registers in the quantum computer in the uniform super-
position of all states,

n-ln-l
.! E E la, b) (13)
n a=O b=O

We can do this by application of the Fourier transform to
the registers in the ground state. Next, using the unitary
operator of the linear combination of two elliptic curve
points, such as we have seen in the preceding section, we
compute aP -bQ and then, the state of our quantum
computer will be:

n-ln-l'1
-E E la,b,aP -bQ) (14)
n a=O b=O

Then we use the Fourier transform to convert

la,b) -t ~~Eexp (~(ac+ bd) ) Ic,d) (15)

245
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Therefore the state oí the quantum computer is to obtain the following expression for the amplitude

1 n-l n-l
ri:2 L L exp

a,b=O c,d=O

f 27ri

m

kb+r

n
~(ac + bd)
n

Ic,d,aP- bQ) (16) bd + bkc + cr -cn

(25)
Finally we observe the state of the quantum computer. Without loss of generality, we can ignore the constant

The probability of observing a state Ic,d,R} with R = term exp(27ricr/m). Splitting the exponent in two parts
aP -bQ is: and factorizing b, we obtain

1 n-l (2 .
)-~ exp ~bT exp

m.nL.,¡ m
b=O (~v) (26)(17)

where
where the sum is Qver all (a, b) such that

(27)

a = kb + r (mod n) (18) and

v = (~ -l ~ J) {cn}m (28)since for these (a, b) we have that aP -bQ is the same
point over the elliptic curve, rQ, for some r. We use the
above relation to reduce the probability to

~2 1 n-l 2 .

~ ;¡2 ~ exp ( ~(rc + b(d + kc» ) (19)

In the case that d + kc # O ( mod n) the above sum is over
a set of nth roots of unity over the unit circle, and thus
the probability reduces to O. Then, the probability is not
zero only if d + kc = 0 (mod n). Therefore, for ariy result
Ic, d, R} we can obtain k as -d/c in Zn.

In the general case, we first find a smooth number
m such that n ~ m ~ 2n (for the proof of this, see
[Shor,1994]). Then, once we have our quantum computer
in the state

(29)

(20)
ln-ln-l
n L L la, b, aP -bQ)

a=O b=O

we apply the Fourier transform FT m to get

Ic,d,aP- bQ) (21)

Id+ n

Notice that k is the only unknown. Also observe that m
divides [cn -{ cn }m]. Then dividing both sides by m, we

get

k[cn-{cn}mJ I < ~
-2 (31)

The probability oí observing a state Ic, d, R) with R =

aP- bQ is:

1 1 L ( 211"i -exp -(ac + bd)

m.n ma,b
a=hb+r

I d kl l 1
(22) -+ -$ -(32)

m n 2m

where 1 = [cn -{ cn }m]/m. Rounding d/m to the closest
multiple of n, called e/n, we can make the approximation
e/n = -kl/n and then k = -e/1. Thus, we can approxi-

(23) mate k as -nd/[cn -{ cn }m] in Zn.
As Shor have demonstrated [Shor,1994], we have a con-

stant, high probability to found pairs c, d that satisfy both
( ) conditions, so we can determinate the value of k after a
24 few run trials.

where the sum is over all (a, b) such that

a = kb+r (mod n)

Then we use the relation

kb+r
n

a = kb + r -n
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where {z}m is the residue ofz (mod m).
At this point, we get a expression for the amplitude

of the state very similar to the obtained in the Shor al-
gorithm for the DLP [Shor ,1994] .Then we can follow
the Shor method in order to obtain the integer k. For
the details of the subsequent discussion see Shor's paper
[Shor,1994].

As in the Shor algorithm, we have some "good" outputs,
from which we can deduce the value of k. These outputs
satisfy the following two conditions. First,

m
{cn}m ~ i2

and Ii.

The first condition implies that IVI :::s: N, and then

we have that exp( ~ ) differs from 1 no more than
exp(7ri/6). From the second condition we can deduce the
value of k. To do this, first we can reformulate this con-
dition as
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Example 2 Consider E(Z23) as was introduced in the
example 1. Let P = (0,1) and Q = (18,20). We want to
found k such that Q = kP. The order of P, denoted by
n, is 28. As we have seen IE(Z23)1 = 28 , and then P is
a generator of E(Z23). In the first step of our algorithm,
we put the first two registers of the quantum computer in
the state

1 27 27

28LLla,b) (33)
a=Ob=O

which is a superposition of 282 = 784 states. Next, we
apply the unitary operator to compute aP -bQ, and the
state of our quantum computer will be

5 Concl usions

As we have seen in this paper , the basic idea behind Shor's
quantum algorithm to solve both the IFP and DLP, also
can be used to solve, in polynomial time, the ECDLP.
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