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Benemérita Universidad Autónoma de Puebla,
Facultad de Ciencias de la Computación, Puebla,

Mexico

{alberto.reyesp, edgar.padillal}@alumno.buap.mx

Abstract. Convolutional Neural Networks (CNNs)
have shown remarkable performance in object detection
tasks, especially when trained on large and diverse
datasets. However, in specialized domains such as
materials synthesis laboratories, generic datasets may
not capture the specific objects of interest or the
unique challenges of the environment. This paper
presents the development of a custom image dataset
tailored for object detection in a materials synthesis
laboratory. The dataset includes annotated images
of equipment, chemicals, and other objects commonly
found in such environments. We also describe the
process of collecting and labeling the dataset, including
the challenges faced and the strategies used to address
them. To demonstrate the utility of the dataset,
we trained a CNN model using the popular YOLO
(You Only Look Once) architecture and evaluated its
performance on a test set. The results show that our
custom dataset enables the CNN model to accurately
detect objects in materials synthesis laboratories,
highlighting the importance of domain-specific datasets
for enhancing the performance of object detection
systems in specialized environments.

Keywords. Object detection, convolutional neural
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1 Introduction

Computer vision focuses on training computers to
acquire, process and analyze digital images to
extract meaningful information and perform a wide
range of tasks [11] such as image classification,

object recognition, object tracking, object location,
image segmentation, image retrieval, pattern
recognition to name a few.

To perform these tasks, various methods can be
employed. Among them are convolutional neural
networks (CNN), which have shown great success
in object recognition. Their ability to capture
relevant patterns and features at different spatial
scales has been the key to their success and
applicability in various areas [10].

In object recognition, one of the main
challenges is the scarcity of labeled data.
Obtaining large data sets can be costly and
laborious. Also, objects can change in terms
of size, shape, orientation, illumination, and
background, which makes the task of recognition
models difficult. In addition, models must
be trained on data sets that are diverse and
representative of real-world situations, which can
be difficult to obtain.

Problems such as those described above
can be encountered in a materials synthesis
laboratory which has highly specialized equipment
and materials, so the scarcity of labeled data
limits the ability to train models to help within the
laboratory. This paper presents the development
of a set of images containing 7 particular objects
which are: beaker, flask, vial, cuvette, sample
holder, precision pipette and 3-mouth flask as
seen in Figure 1.
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(a) Beaker (b) Flask (c) Vial (d)Cuvette

(e) Sample holder (f) Precision pipette (g) 3-mouth flask

Fig. 1. Material synthesis laboratory instruments
selected for the development of the customized
image set

Fig. 2. Examples of images from the LabPics set

Fig. 3. Examples of images from the CLAD setx

In addition, the usefulness of the image set is
demonstrated by training a CNN with it, managing
to identify the specialized objects.

2 Related Work

Datasets with large amounts of images that are
commonly used for CNN training such as Common
Objects in Context (COCO) [8] which contains 330
000 images with 80 object categories, another set
used is Objects365 [9] which contains 365 object
categories with more than 2 million images.

On the other hand Roboflow 100 [2] is a
dataset that covers a wide range of domains and
contains real world images representing everyday
scenarios. ImageNet [3] is a massive dataset
containing over 14 million carefully selected and
annotated images, the images cover a wide range
of categories. While these sets offer a wide
range of categories, they do not specifically cover
laboratory instruments used in materials synthesis.
There are specialized databases in the literature
that focus on these types of instruments.

“LabPics V1” contains 2187 images in 61
categories of chemical experiments with materials
inside mostly transparent containers in various
laboratory settings and under everyday conditions.
Each image in the data set has an annotation of
the region of each material phase and its type
[5]. For its second version the “LabPics V2” dataset
contains 10 528 annotated images.

The images are divided into two sets: a training
set with 8 422 images and a test set with 2
106 images. The images in the “LabPics V2”
dataset were obtained from a variety of sources,
including images from real laboratories, images
from laboratory simulations among others. [6],
some examples of the images contained in the set
are shown in the figure 2.

A more recent work is “Chemistry Laboratory
Apparatus Dataset” (CLAD) which contains 21
different types of chemical laboratory instrument
images, with no less than 200 images of each
type, mainly glass instruments are carefully
labeled with chemistry student information. Each
image may contain one or more images of
chemical instruments [4] as the images shown
in the Figure 3.
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Table 1. Type of images contained in each set as well as the number of categories

Laboratory equipment imaging datasets

Name Type of images Number of
images

Number of
categories

COCO
Animals, people, vehicles, furniture, kitchen utensils,
musical instruments, sports, cities, landscapes, fields, food,
wild animals and domestic objects.

330000 80

Objects365 Real-world objects in various conditions of illumination,
pose, size, shape, and background 2 millones 365

Roboflow 100
Images of airplanes, drones, cells, tissues, sea creatures,
documents, radar fields, animals, plants, objects, people,
places, events, transportation, art, fashion, food and text.

232000 828

Imagenet
Wide variety of images, including animals, plants, objects,
people, places, events, transportation, art, fashion, food,
text and much more.

14 million 22000

LabPics V1* Materials and vessels in chemistry laboratories. 2187 61
LabPics V2* Materials and vessels in chemistry and medical laboratories. 10528 61

CLAD* Chemistry laboratory instruments. 2246 21
*These are sets specialized in laboratory objects

Table 2. Objects that are recognized by the sets of images found in the literature

Image set Selected objects of a materials synthesis laboratory
Flask Vial Sample holder Precision pipette Cuvette Beaker 3-mouth flask

COCO* 55 55 55 55 55 55 55
Objects365* 55 55 55 55 55 55 55

Roboflow 100 55 55 55 55 55 55 55
Imagenet 55 55 55 55 55 51 55

LabPics V2 51 51 55 55 55 51 55
CLAD 51 55 55 55 55 51 51

After reviewing the image sets found in the
literature, it has been found that there is no
set that includes the 7 selected objects from a
materials synthesis laboratory as shown in the
table 2. Therefore, the creation of an own image
set becomes necessary.

3 Development

The elaboration of a set of customized images
involves a series of steps ranging from image
collection and labeling, to data augmentation and
final evaluation of the set.

The first task performed was to capture color
images of the selected objects using a 2D
camera with a capture resolution of 1080×1920
pixels obtaining a total of 673 images. However,
the set of images generated was very small,
since only 673 images for CNN training do not
ensure optimal results.

Therefore, we resorted to using data
augmentation techniques, the study conducted
by [7] shows the different data augmentation
techniques and that the use of these
techniques can improve the accuracy between
2.83% and 95.85%.
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(a) Random crop (b) Horizontal flip (c) Vertical flip

(d) Grayscale (e) Random
rotation

(f) Random blur

(g) Random noise
insertion

(h) Random color (i) Color inversion

Fig. 4. Images generated using geometric and color
space transformations from the original image

Fig. 5. Labeled with the software Label Studio

3918

1119

560

Training 70%
Validation 20%
Test 10%

Fig. 6. Distribution of images for training

Of the techniques shown in this study
we use geometric transformations and color
space transformations.

These techniques were implemented in Python
with the help of the albumentations library [1],
the operations that were performed are random
crop, horizontal and vertical flip, random rotation,
grayscale, random blur, random noise insertion,
random color and finally color inversion. With
this implementation, 5597 images were obtained;
Figure 4 shows the transformations used. Once the
images were captured, they were manually labeled
using the open source software Label Studio [13],a
very helpful tool for labeling images in a simple way
as shown in figure 5.

4 Experiments and Discussion

To demonstrate the usefulness of the set of
images generated, the retraining process of
an existing CNN was carried out in this case
YOLO-NAS, which is a new YOLO model launched
in 2023, YOLO-NAS developed by Deci manages
to improve the speed and accuracy of the previous
versions [12]. For training, the set was divided
with the distribution that is normally used, 70% for
training, 20% for validation and 10% for test.

The distribution of the images is shown in graph
6. Later, the obtained detection was compared
between the model without the retraining process
and the retrained model using our custom dataset.
There was a noticeable difference, as seen in
figure 7, where some predictions did not match
the actual objects despite having a high confidence
level. In contrast, our model correctly identifies
the selected objects and achieves a mean Average
Precision mAP@0.50 of 0.93.

The confusion matrix shown in figure 8
reveals values greater than 0.75 on the
diagonals, indicating high classification accuracy.
Furthermore, the values of false positives (FP) and
false negatives (FN) are very low, which confirms
the reliability of our model.

5 Conclusions and Future Work

In this work, a set of images was generated that
allows a CNN to identify particular objects such as
chemical instruments used in materials synthesis
laboratory environments.
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(a)

(b)

Fig. 7. Predictions using the model without retraining (a)
and using the retrained model (b)

Fig. 8. Confusion matrix obtained from the evaluation of
the model generated with the customized data set

Initially, 673 images were obtained, but with the
implementation of data augmentation techniques,
5597 were obtained.

Images, thus managing to adequately retrain
a CNN and obtaining a mean Average Precision
mAP@0.50 of 0.93. The importance of creating
custom image sets for application to specific
problems should be highlighted. CNNs trained
with custom image sets perform better than CNNs
trained with generic image sets. This advantage
is due to the greater precision in the identification
of specific instruments, avoiding confusion such as
identifying a beaker and a flask as a “bottle” using
generic sets of images.

A methodology has been proposed for creating
customized image sets that adapt to the specific
needs of the problem. As future work, it is
proposed to create an identification system with the
generated set and test it in real environments. It is
worth mentioning that this set will be a fundamental
piece if at some point it is necessary to automate
processes within a materials synthesis laboratory,
for example the spectroscopy process, since to
achieve this these objects must first be identified.
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