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Abstract. This paper aims to address the need for
efficient classification of scholarly articles into their
respective fields considering the growing volume of
scientific research. We address this by exploring
the application of Semantic Web resources, such as
DBpedia, to represent classes in deep learning models
using knowledge graph embeddings. We construct
a dataset comprising publications from 123 fields of
research using openly available resources. Models
are then trained using different ways to semantically
represent class labels via an automatic entity linking
approach to DBpedia. We assess the impact of different
publication metadata combinations, including titles,
abstracts, authors and publishers, on the performance
of these models. We find that general pre-trained
knowledge graph embeddings suffer from a noise
problem when applied to research classification tasks,
with textual descriptions of DBpedia entities emerging
as a more effective means of representing classes.
Notably, we notice that titles and abstracts alone, without
additional metadata features such as authors and
publishers, provide the best-performing representation
for publication metadata. This study fills a gap in
the literature by demonstrating the efficacy of deep
learning methods and Semantic Web resources like
DBpedia in the classification of scholarly articles across
various fields of research. Our findings underscore
the importance of considering the impact of different
metadata features on model performance, as well
as using textual descriptions of DBpedia entities as
class representations.

Keywords. Field of research classification, knowledge
injection, scholarly article processing, scientific text
processing, knowledge graphs, semantic web.

1 Introduction

We have been experiencing an exponential surge
in scientific research recently, as the volume of
academic publications is doubling every 15-17
years [12, 4]. Consequently, there has been
a concerted effort to develop repositories and
digital libraries to capture and organise scientific
contributions. Examples include the Semantic
Scholar Academic Graph (S2AG) [20], Crossref
[14], and the Open Research Knowledge Graph
(ORKG) [17].

An essential task for such repositories is
classifying scientific artefacts into their respective
fields of research (FoR), which can be then
utilised in downstream applications such as
bibliometric analyses and scientific search
engines. Classification is usually done using
supervised or unsupervised models.

The first relies on annotated articles or
journals, while the second clusters (meta-)data
of publications according to pre-defined criteria
without needing labelled datasets. Many current
FoR classification systems are limited.

In terms of supervised methods, limitations are
usually manifested in the used FoR vocabulary,
which does not cover fine-grained hierarchical
fields, while unsupervised methods often exhibit
noise problems and fail to capture the correct
labels [9]. For example, S2AG classifies articles
into ca. 25 FoR in a general, flat list and bases its
method on classifying the publication venue, rather
than the article itself [20]. The Microsoft Academic
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Fig. 1. Dataset construction pipeline

Graph [37], now discontinued, based its system
on semantic clustering of scholarly papers and
Wikipedia to get human-readable labels without
any human intervention, and the ORKG does
not have a FoR classification system at the time
of writing. Recent research has been exploring
methods of knowledge injection by using Semantic
Web resources to augment the representation of
text in machine learning (ML) and deep learning
(DL) [27, 15, 23, 16, 5].

These methods make use of knowledge
resources, e. g., knowledge graphs (KGs) like
DBpedia [2], that describe millions of entities.
Such rich symbolic resources can be transformed
into a uniform low-dimensional vector space using
advances in KG embedding (KGE) methods.

These embeddings represent KG entities along
with their relations and can be directly used
in ML/DL pipelines. Recent FoR classification
efforts have attempted to use such methods for
representing classes, providing richer embeddings
than simply using the FoR label that consists of one
or two words without context [5, 16].

This paper explores FoR classification
by focusing on the semantic enrichment of
classes. First, an extensive dataset of 59,344
instances is constructed from two resources with
human-labelled scholarly articles: the ORKG and
the arXiv repository1.

Each article in the dataset is labelled with one
FoR from a subset of the ORKG taxonomy of
research fields2 consisting of 123 FoR covering
four hierarchical levels. To semantically enrich
FoR classes, taxonomy labels are automatically
linked to scientific entities on DBpedia, which are
embedded using RDF2Vec [26].

Several models with various settings of
FoR class features are trained, aiming to
observe whether injecting external knowledge
from DBpedia into the pipeline yields better
classification results. Additionally, we experiment
with different configurations of publication features
using titles, abstracts, authors, and publishers.
Our work contributes in three key ways:

1arxiv.org
2orkg.org/fields
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Table 1. Sample of three instances from the final dataset

Title Author(s) DOI Label

Sea–air CO2 fluxes in the Indian
Ocean between 1990 and 2009

[’V. Valsala’, ’M. Ramonet’, ’E. Dlugokencky’,
’I. D. Lima’, ’S. Doney’, ’P. K. Patra’,’N. Metzl’,
’R. M. Law’, ’A. Lenton’, ’V. V. S. S. Sarma’]

bg.copernicus.org/
articles/10/7035/2013/ Oceanography

Modeling the Energy Evaluation
for an Electric Machine [’Valerian Croitorescu’] link.springer.com/chapter/

10.1007/978-3-319-45447-4 33 Mechanical Engineering

1. The introduced dataset can serve as a
benchmark for future research employing
different classification methods, and has been
used for training and testing a shared task on
FoR classification [1].

2. We present a method for automatically
linking FoR to DBpedia entities using
existing resources.

3. We expand research on knowledge injection
methods for FoR classification by leveraging a
large dataset, a more comprehensive set of
FoR labels, and experimenting with additional
metadata combinations for classification.

The rest of the paper is structured as
follows. Section 2 explores related work in this
domain. Section 3 delves into the taxonomy and
specifies how the dataset was constructed and
validated. Section 4 explains the methodology for
representing publications and FoR classes.

In Section 5, we introduce the model
architecture and present our results, which
are then discussed in Section 6. Afterwards,
Section 7 details the limitations of our research,
and Section 8 concludes the article.

2 Related Work

Previous efforts have tackled the problem of
classifying scholarly publications using different
techniques. With the continuous expansion of
research and the dynamic emergence of new
FoR, there is a growing need for scalable
systems capable of handling the increasing
number of daily publications and classification
labels. Therefore, some researchers argue that
unsupervised classification systems that do not
require manually curated and expensive training
data are ideal in this scenario [30, 32, 33].

However, relying on such error-prone methods
is not enough and typically requires manual
validation [9]. Thus, we follow other research
efforts that work with existing datasets of research
publications labelled with FoR based on existing
taxonomies, preferring a supervised learning
approach that trains a model on more accurate
data [40, 39, 10]. Supervised learning approaches
can be performed using different methods and
model architectures.

Research that mainly focuses on the
representation of publication (meta-)data
(i. e., without focusing on enriching FoR class
representations) varies from using convolutional
neural networks [28, 10] to deep neural networks
[18]. Alternatively, other research explores
representing FoR classes along with publication
(meta-)data representations by jointly learning
both in the same latent space [40, 6, 39] or by
maximising mutual text-class information [11].

Additionally, some research has been done
to explore the impact of incorporating external
knowledge sources into class representations.
[16] link 21 FoR classes to external KG entities
on DBpedia, employing pre-trained KGEs for
representation. They use computer science
publications from arXiv, creating representations by
Word2Vec embeddings of abstracts.

Their binary classification model achieves
a micro F-measure of 30.7%. [5] compare
knowledge injection approaches on a dataset
constructed using AIDA KG.3 The dataset is
balanced and includes 12K articles for three FoR
labels: artificial intelligence, software engineering,
and human-computer interaction. Different models
are trained, each employing a distinct knowledge
injection approach.

3w3id.org/aida
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Fig. 2. Available metadata in the final dataset; the red line denotes the number of scholarly articles (n = 59, 344)

They explore direct text injection, appending
text from the computer science ontology [30] to
input text, as well as models like K-BERT [22]
and BERT followed by a multilayer perceptron
(MLP). The best-performing method with a large
training size was BERT-MLP, which concatenates
BERT embeddings of articles with KGEs of labels,
achieving an F1 score of 88%.

However, the aforementioned research on
knowledge injection approaches applied to FoR
classification has limitations. First, the manual
linking of FoR to KGs like DBpedia is not scalable
given the expanding nature of scientific FoR.

Additionally, both studies use a limited set
of FoR labels within specific domains, hindering
a comprehensive representation of research
diversity and limiting conclusions on knowledge
injection scalability and applicability to larger
scientific repositories.

Moreover, in terms of textual embeddings, [16]
rely on fixed embeddings (Word2Vec), while [5] use
general-purpose BERT embeddings. However,
studies on scientific text processing suggest that
contextualised embeddings from science-specific
language models, like SciBERT [3], often yield
superior results [3, 24, 8].

3 Taxonomy and Dataset

3.1 Taxonomy

The existing taxonomy of research fields provided
by the ORKG4 is used in this study. At the time
of writing, this taxonomy consists of more than
700 hierarchical FoR with up to five levels. The
ORKG research fields taxonomy describes general
scientific fields and was created based on:

1. The national academies of science,
engineering, and medicine5.

2. The German research foundation 6.

3. The arXiv category taxonomy 7.

We decided to use the ORKG research
fields taxonomy because each paper is uploaded
manually to the platform, and the uploader
chooses the relevant FoR by selecting one from
the available labels or suggesting a new one.
Additionally, the taxonomy is large, hierarchical,
and has a high level of granularity.
4orkg.org/fields shows the complete taxonomy.
5www.nationalacademies.org/home
6www.dfg.de/en/dfg profile/statutory bodies/review boards/su
bject areas/index.jsp

7arxiv.org/category taxonomy
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Fig. 3. Entity linking pipeline

However, the taxonomy subset used in this
study does not encompass all labels in the ORKG.
When retrieving data, approximately 320 unique
FoR were assigned to papers, but around 50% of
labels had only a single associated paper. Those
labels were merged with their parent nodes, and
labels without assigned papers but with papers
linked to their child nodes were merged with them.
In total, the final taxonomy comprises 123 labels
organised in up to four hierarchical levels8.

3.2 Dataset Construction

The dataset used for training and testing is
constructed from several open-source repositories.
First, data from the ORKG was gathered by
accessing their rdfDump and extracting papers that
link to a specific FoR, which resulted in (meta-)data
of ca. 10,000 papers. However, since the ORKG
does not store abstracts for scholarly papers, three
services connecting to general data repositories
were used:

1. Crossref API [14], available via a CC BY
4.0 license.

2. S2AG API,9 available via an
ODC-BY-1.0 license.

3. OpenAlex [25], available via a CC0 license.

8huggingface.co/spaces/rabuahmad/forcI-taxonomy/blob/main/
taxonomy.json

9www.semanticscholar.org/product/api

To augment the dataset, scholarly publications
from arXiv10 were included, which was chosen due
to its manually curated FoR labels by volunteer
moderators and its open accessibility under a
CC0 1.0 license. Various preprocessing steps
were applied to merge publications from both
resources, detailed below. Figure 1 illustrates the
overall pipeline11. Importantly, FoR labels were
intentionally sourced exclusively from the ORKG
and arXiv, as these repositories manually upload
papers and curate FoR from their respective
taxonomies. Unlike other repositories, they
do not rely on automatic classification systems
for labelling scholarly papers, aligning with our
objective of avoiding duplication of previous
classifiers in this work.

3.2.1 The ORKG Dataset

The ORKG (meta-)data was fetched by extracting
all triples that include the property research
field with the uniform resource identifier (URI)
orkg.org /proper ty /P30. For each resulting
paper ID, a call to the API was performed to
gather the following metadata fields: DOI, author,
publication month, publication year, title, publisher,
and URL. In order to fetch abstracts, we queried
the DOI of each publication using Crossref API,
S2AG, and PyAlex.12

10arxiv.org
11The dataset construction code is available at github.com/DFK

I-NLP/nfdi4ds-forc
12pypi.org/project/pyalex
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"Cosmology, Relativity, and Gravity": {

"http://dbpedia.org/resource/Cosmology":1,

"http://dbpedia.org/resource/General_relativity":1,

"http://dbpedia.org/resource/Theory_of_relativity":2,

"http://dbpedia.org/resource/Special_relativity":1,

"http://dbpedia.org/resource/Gravity":1

}

Fig. 4. Sample of an ORKG taxonomy label linked to
DBpedia entities

This resulted in completing the abstracts
of 83% of the publications retrieved from the
ORKG (7,719 publications). In addition, the
Crossref API and S2AG were used to validate
metadata information obtained from the ORKG.
More specifically, we validated and updated the
publication year because a default date of January
2000 was used for many publications.

Several cleaning steps were performed to
reduce the amount of noise in the data as much as
possible. Publications with title lengths of less than
20 characters were removed, as were publications
with null values for all of the following metadata
fields: title, URL, DOI, abstract, and author.

Further cleaning steps included removing extra
spaces and code snippets, standardising DOI
formats to not include the prefix doi.org/, and
standardising formats of author names. Finally, a
step of deduplication according to titles and DOIs
was performed. If two publications with the same
title and DOI were found, the one with fewer null
values in its metadata was kept.

The ORKG taxonomy includes the broad label
Science, which lacks specificity for accurate
publication classification. To address this, ca.
1,300 publications in the dataset originally labelled
as Science were reassigned labels based on
metadata from the Crossref API and S2AG.

FoR provided by these resources were
employed by using manual mappings of the
Crossref API and S2AG fields to the ORKG
taxonomy.13 This process replaced the labels for
830 publications. For the remaining publications,
manual annotation by the first author was
conducted to assign appropriate labels.

13github.com/DFKI-NLP/nfdi4ds-forc/tree/main/data processin
g/data/mappings

3.2.2 The arXiv Dataset

In order to obtain publications along with their
metadata from arXiv, a snapshot was downloaded
in November 2022 that contains ca. 2,000,000
publications with the following metadata fields:
arXiv ID, submitter, authors, title, comments,
journal-ref, DOI, abstract, versions, and categories.

Publications in arXiv that already exist in the
ORKG dataset were removed based on their DOI.
Since arXiv publications are labelled according to
the arXiv Category Taxonomy,14 they were mapped
to the ORKG taxonomy in order to match the
ORKG dataset. This was done by extracting all
unique labels present in the arXiv dataset and
manually mapping them to a corresponding label
in the ORKG research fields taxonomy.15

Although the arXiv dataset contained more than
2,000,000 publications along with their metadata,
50,000 publications were sampled in order to keep
a logical proportion with the ORKG dataset.

Only publications with a single FoR label were
considered since this study deals with single-label
classification according to the ORKG taxonomy
and dataset. The distribution of labels was
calculated, and random publications were sampled
from the dataset in a manner that kept the original
distribution of each label.

3.3 The Final Dataset

The two datasets were concatenated, and as
a final preprocessing step, publications with
non-English titles and abstracts were dropped
by utilising the fastText language identification
model.16 The workflow explained above resulted
in a dataset consisting of 59,344 instances of
scholarly articles with their metadata. 9,331 of
which originate from the ORKG, and the remaining
49,929 from the arXiv repository. The available
metadata fields are title, abstracts, author, DOI,
URL, publication month, publication year, and
publisher. Table 1 displays a sample of two data
instances with partial metadata fields, and Figure 2

14arxiv.org/category taxonomy
15github.com/DFKI-NLP/nfdi4ds-forc/blob/main/data processin

g/data/mappings/arxiv to orkg fields.json
16fasttext.cc/docs/en/language-identification.html
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Fig. 5. t-SNE representation of the 123 ORKG taxonomy labels’ embeddings; different colours denote the high level
parent in the taxonomy

depicts the availability of each (meta-)data field17.
Upon inspecting the distribution of FoR in the
dataset, it becomes evident that the data is heavily
imbalanced. Since most of the articles were taken
from arXiv, the high-level label “Physical Sciences
and Mathematics” possesses the most amount of
articles. The three labels, “Physics”, “Quantum
Physics”, and “Astrophysics and Astronomy”, are
the most frequent, with 6,610, 5,209, and 3,716
scholarly articles, respectively. On the other end
of the spectrum, the label “Molecular, cellular, and
tissue engineering” is the least frequent, with eight
scholarly articles. The average number of scholarly
articles per field is 482.5, and the median is 175.

4 Metadata and Class Representations

4.1 Metadata Features of Publications

In the constructed dataset, every paper instance
has a title, and most (ca. 97%) have an abstract,
which makes them the primary representation of
each paper.

17The full dataset is available at zenodo.org/records/10777735

We embed them using SciNCL [24], a language
model (LM) developed for training representations
of scientific documents, outperforming similar
models on several scientific text processing
tasks. We take the representation of the last
hidden state as the contextual embedding for each
input. Author names in the dataset exhibit noise
and inconsistency due to manual curation from the
ORKG and arXiv.

Variations include random use of initials or
omitting first names, stating only the last name
of the first author followed by “et al.”, and diverse
affiliation representations. To ensure consistent
preprocessing, we employ the Python nameparser
module,18 designed for parsing human names into
structured components.

While disambiguating authors with identical
names remains challenging, we focus on last
names and the first letters of first names, assuming
identical names refer to the same person. This
approach results in 121,507 distinct authors. To
embed them, we link authors to the papers they
wrote, representing them as the average of all

18pypi.org/project/nameparser
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Fig. 6. Model architecture of the proposed approach

paper embedding (i. e., contextual embeddings of
titles and abstracts using SciNCL). The author
representation for each publication is the average
of its listed authors. Publications without affiliated
authors are represented by a vector of zeros. The
publisher in the constructed dataset denotes the
journal, proceedings of a conference, or website
that published the associated scholarly paper.
Similar to authors, the documentation of publishers
in the ORKG and arXiv is inconsistent.

For example, some papers include the full
name of the publication (e. g., “Journal of Marine
Systems”), while others include abbreviations and
a specific publication year and/or volume or
pages numbers (e. g., “Mech. Res. Commun. 47
(2013), 69-76”). We apply a similar approach
to publishers as to authors. We preprocess
the texts by lower-casing and removing digits,
punctuation, and white spaces, which results in
7,827 unique publishers.

We link each publisher to all of its affiliated
papers and represent it as the average of its paper
embeddings, using contextual text embeddings
from SciNCL. Since each scholarly paper only
has one publisher, it is represented as its
created embedding. As with authors, a paper
with no affiliated publisher is represented by a
vector of zeros.

4.2 Semantic Representation of Classes

Manually linking taxonomy labels to
equivalent DBpedia entities is a laborious and
time-consuming effort, especially if the taxonomy
consists of a large number of labels. Because of
this, we implement an automatic linking pipeline
that relies on previous entity linking work of
short natural text to their corresponding DBpedia
entities. Figure 3 displays this pipeline, each step
of which will be addressed in detail below.
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Fig. 7. BCE loss per global training step combined (smoothing of 80% is applied for easier comparison)

Since the labels in the ORKG are inconsistent
and can describe multiple FoR (e. g., “Molecular,
cellular, and tissue engineering”), we divide
them into two categories, complex and
non-complex labels. Complex labels are classified
by checking if a comma or the token “and” exists
in the text. This division results in 51 complex and
72 non-complex labels. Since complex labels have
to be linked to all of their relevant DBpedia entities
(e. g., “Social and Behavioral Sciences” has to be
linked to both “Social Sciences” and “Behavioral
Sciences”), we parse them using the dependency
parsing module offered by the spaCy library19.

We iterate over all complex FoR labels and
extract their dependency relations, creating new
non-complex labels by taking different relations
into account (e. g., compound, noun/adjective
modifier). This method correctly parses 43 out of
the 51 complex labels (84%)20. DBpedia is one of
the largest KGs containing more than 850 million
triples.21 Because of this, it is sensible to assume
that linking the FoR labels to all DBpedia entities
will be computationally expensive and result in
many false positives.

19spacy.io/usage/linguistic-features\#dependency-parse
20github.com/DFKI-NLP/for-classifier/blob/main/results/dep-p

arsing.json (full results)
21The number is taken from the 2021-06 snapshot release

announcement www.dbpedia.org/blog/snapshot-2021-06-rel
ease/

This is especially problematic for polysemous
labels such as “Tissues”, which could be
mistakenly linked with the entity http://dbpedia.org/
resource/Tissue paper rather than dbpedia.org/pa
ge/Tissue (biology). In an effort to avoid this, we
extract a list of all DBpedia entities that appear as
objects to the predicate dbpedia.org/ontology/aca
demicDiscipline.

This list is extracted using a SPARQL query that
is executed on the DBpedia SPARQL endpoint. In
addition to extracting the entity URLs, we add each
entity’s English label (www.w3.org/2000/01/rdf-sch
ema#label) and comment (www.w3.org/2000/01/r
df-schema#comment). At the time of writing, this
query results in 5060 entities.

To start linking labels to DBpedia entities
from the list of academic disciplines, we gather
the results of parsed ORKG labels with the
non-complex ORKG labels, encompassing all
unique FoR labels. We use existing APIs for linking
short text to DBpedia entities, starting by querying
WAT API22 with each one of the labels.

If an exact match exists for a FoR label (i. e.,
the label of the linked DBpedia entity is an exact
match of the FoR text after lower-casing and
stemming), and the entity exists in the list of
dbo:academicDisciplines, it is used as the linked
DBpedia resource of that FoR.

22sobigdata.d4science.org/web/tagme/wat-api
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Table 2. Experimental results

Publication Features Class Features Precision Recall F1 Accuracy

Baseline

Titles + Abstracts Categorical Encoder 0.0 0.0 0.0 74.85

Embedding Class Labels with SciNCL

Titles + Abstracts ORKG Labels Text 93.54 93.80 93.67 96.83

Injecting DBpedia Class Features

Titles + Abstracts DBpedia Text 93.55 94.11 93.83 96.91

Titles + Abstracts KGEs 75.83 29.39 42.36 80.00

Titles + Abstracts DBpedia Text + KGEs 93.18 93.19 93.18 96.60

Adding Publication Metadata

Titles + Abstracts Authors DBpedia Text + KGEs 93.20 92.02 92.61 96.32

Titles + Abstracts Publishers DBpedia Text + KGEs 92.25 93.52 92.88 96.43

Titles + Abstracts Authors Publishers DBpedia Text + KGEs 93.28 92.51 92.90 96.43

The same is done for results from DBpedia
Lookup23 and FALCON API [29]. The exact order
of APIs was chosen after testing all three by
checking how many exact matches they have with
the FoR labels. WAT API resulted in ca. 68%,
DBpedia Lookup in ca. 65%, and FALCON API
in 53%. It is important to note that WAT API
only returns the single top result for a query, while
DBpedia Lookup and FALCON API were both set
to return the top five results.

For the remaining labels that do not have an
exact match, we gather all three API results and
only keep the entities that exist in the list of
dbo:academicDisciplines. We link the FoR label
with all those entities while taking their frequency
into account. For example, if a DBpedia entity
showed up in the results of all three APIs, it
was given a weight of 3, denoting its frequency
in the results.

The idea is to use the weights in order to
represent the FoR label with the weighted average
of all its linked DBpedia entities. Any remaining
FoR were linked based on a fuzzy matching
algorithm between the FoR label text and the labels
of the entities in the dbo:academicDisciplines list.

23github.com/dbpedia/lookup

FoR labels that were linked either by exact or
fuzzy matches get a weight of 1. After linking all
FoR entities, complex labels were connected to the
results of all their parsed labels. A sample of the
final linking results is depicted in Figure 424.

In order to obtain KGEs of the DBpedia entities
that were linked to the taxonomy, we use publicly
available RDF2Vec pre-trained embeddings [7].

We link the embeddings of each parsed label
back to the original ORKG taxonomy labels.
To do that, we use the weights gathered in
the linking process to represent each ORKG
label as the weighted average of its linked
entities’ embeddings.

Equation 1 denotes how the representative
embedding of each label from the ORKG taxonomy
is calculated, where n is the overall number
of linked DBpedia entities, i is individual linked
entities, e is the embedding of each linked entity
obtained from the pre-trained RDF2Vec dataset,
and w is its weight. Figure 5 uses t-SNE [36] to
display the final representative embeddings of the
123 class labels from the ORKG taxonomy:

24Full results are available at github.com/DFKI-NLP/for-classif
ier/blob/main/results/orkg-taxonomy-linking.json
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ORKG label =

n∑
i=1

wiei

n∑
i=1

wi

. (1)

Additionally, we use textual representations of
each DBpedia entity by extracting the English
objects of the label and comment properties.
To represent each ORKG taxonomy label, we
construct a string of all the labels and comments
that represent all DBpedia entities linked to a
certain ORKG class. Separate elements are
separated by the [SEP] token since the objective
is to embed the full textual representation of each
ORKG label using SciNCL25.

5 Implementation and
Experimental Results

We extend previous work on knowledge injection
applied to FoR classification [16, 5] by employing
the rule-based process outlined earlier for linking
taxonomy labels to DBpedia. The resulting entity
embeddings are then concatenated to augment the
semantic representation of classes.

Additionally, we embed the linked DBpedia
entity label(s) and comment(s), extracted from
rdfs:label and rdfs:comment respectively, using
SciNCL. We include representations of titles,
authors, and publishers as features for each
scholarly article, exploring different combinations
for optimal classification results.

The concatenated layer is then processed
through SciNCL layers, two MLP layers, and a final
Sigmoid layer that outputs the probability of the
scholarly article belonging to a specific class. The
architecture of the proposed knowledge injection
model is illustrated in Figure 6.

To run the classifier, the constructed dataset is
processed to suit a binary classification task by
iterating over its rows and creating one positive
sample and three negative ones. Positive samples
consist of the scholarly publication with the correct

25The full results are available in JSON format at github.com/D
FKI-NLP/for-classifier/blob/main/results/orkg-taxonomy-text.
json

FoR class attached to it, while negative samples
attach a random incorrect FoR class from the
taxonomy. This dataset consists of 237,376 data
points with 25% positive samples (i. e., 1) and 75%
negative samples (i. e., 0). Each instance in the
binary dataset has the following format:

(title and abstract, author(s) embedding, publisher
embedding, ORKG class textual representation,
DBpedia textual representation, DBpedia KGE,

binary label)

We present the outcomes of various
experiments involving different metadata
configurations. All model runs share identical
hyperparameters and utilise the NVIDIA RTX
A6000 GPU. The data is shuffled with a random
seed of 42, split into 80/20 for training/testing, and
trained for three epochs with a batch size of 32.

Default hyperparameters from the HuggingFace
Trainer class26 are applied for all other settings.27

Figure 7 illustrates the cumulative training loss
using binary cross-entropy (BCE) over global
training steps, and Table 2 consolidates the
evaluation results for each model, presenting
precision, recall, F1, and accuracy scores.

Categorical Baseline As a baseline for the
following experiments, we run a model that
receives the title and abstract of each publication
as input and encodes the classes categorically
using LabelEncoder28 without any method of
semantic representation for the class labels.

ORKG Labels Representation We run a
pairwise text classification model that only uses
the title and abstract of each paper paired with
the ORKG taxonomy label it is tagged as. We do
not include any external knowledge from DBpedia
in textual format or entity embeddings. Texts are
tokenised and embedded using SciNCL through
the HuggingFace Transformers library, specifically
the BertForSequenceClassification class,29 with
the number of labels assigned as 1.

26huggingface.co/docs/transformers/v4.34.1/en/main classes/t
rainer

27The code for all models is accessible at github.com/DFKI-N
LP/for-classifier/tree/main/models

28tinyurl.com/nw2hh356
29huggingface.co/docs/transformers/model doc/bert\#transfo

rmers.BertForSequenceClassification
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DBpedia Textual Representation We run a
model of textual pairwise binary classification using
the text representation of each publication by
fine-tuning SciNCL on the textual representations
extracted from DBpedia entities.

Since BERT tokenisers use a maximum length
of 512 tokens per text, we use the extracted
label and comment for each linked entity, as
they tend to be used for short human-readable
descriptions of the entity. This setup is identical
to the one described for ORKG labels, with the
difference being using DBpedia text extracted from
the entities instead of the ORKG label itself.

DBpedia KGEs We run the same experiment
described above without using the textual data
extracted from DBpedia entities’ labels and
comments. Instead, we only use titles and
abstracts of each scholarly publication and the
KGEs of their associated DBpedia entities from
pre-trained RDF2Vec embeddings.

DBpedia KGEs and Texts We add the
representations of KGEs to the model by
implementing the architecture depicted previously
in Figure 6. To do that, we define a class which
builds a layer of the pre-trained SciNCL model
using the HuggingFace Transformers AutoModel
class.30 In the first experiment, we only use title
and abstract metadata for each publication.

Adding Authors and Publishers We
experiment further by running the following
combinations of additional metadata: 1. Adding
author representations; 2. Adding publisher
representations; and 3. Adding both author and
publisher representations.

6 Discussion

The categorical baseline results (Figure 7) reveal
that the binary classifier fails to learn the effective
classification of titles and abstracts into FoR using
numerical categories alone. The BCE training loss
consistently hovers around 0.6, indicating a lack of
learning. Evaluation metrics, including precision,
recall, and F1 scores, are all 0.0, suggesting an
inability to accurately predict positive instances,
with the accuracy aligning with the distribution of

30huggingface.co/docs/transformers/model doc/auto

positive and negative classes (Table 2). Replacing
categorical encoding with KGEs results in a
modest improvement (Figure 7). The training
loss decreases initially and plateaus around 0.47,
showcasing a positive trend. However, KGEs
do not offer the optimal semantic representation
compared to other models.

This limitation is most likely attributed to the use
of pre-trained DBpedia embeddings, introducing
knowledge noise due to an abundance of unfiltered
triples, which results in a diversion of entity
embeddings from their correct meanings [41, 22,
31]. Large-scale KGs, lacking sufficient human
supervision and error detection mechanisms,
have been shown to amplify this knowledge
noise issue [21].

However, the noisy KGEs revealed an intriguing
observation in the ORKG taxonomy of research
fields. The t-SNE representation of the taxonomy
(Figure 5) reveals a sparse and inconsistent
distribution across the embedding space that
deviates from the hierarchical structure in the
ORKG. Ideally, KGE representations of classes
should form clusters aligning with their high-level
taxonomy labels.

The scattered arrangement highlights the
taxonomy’s complexity and inconsistency,
stemming from the interdisciplinary nature of FoR.
Notably, instances like “Computational Linguistics”
positioned as a child node of “Linguistics” under
“Social and Behavioral Sciences” without a
connection to “Computer Sciences” exemplify
this interdisciplinary challenge. Additionally, the
automatic linking method to DBpedia produced
some false positives, which could have also
contributed to this representation.

The results clearly demonstrate that the most
effective method for representing semantic
information of classes is to embed their
representative text using a large LM (LLM).
Surprisingly, the length of the text does not
significantly impact the performance, whether
it is a short label from the ORKG or a longer
description from DBpedia entities. This is evident
in the aligned training loss trajectories of both
model variants in Figure 7 and the marginal
difference in evaluation scores shown in Table 2.
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The slight superiority of DBpedia textual
representations is likely inconsequential for the
given task. The similar outcomes of both models
can be attributed to the use of SciNCL, a
model specifically trained on scientific text, which
effectively embeds short and longer texts alike.
However, further experimentation with a general
LLM, such as BERT, would be beneficial to confirm
this hypothesis.

Combining DBpedia textual models with their
KGEs results in a slightly inferior performance due
to the discussed knowledge noise problem. This
setting is employed to compare various metadata
combinations for publications. The four models
utilising DBpedia text and KGEs exhibit similar
training loss trajectories (Figure 7). The best final
loss score (0.145) is shared by two models:

1. Using only titles and abstracts.

2. Using full metadata.

When comparing author and publisher
embeddings, adding publishers shows a marginal
advantage with a final loss score of 0.15 compared
to 0.16 when only adding author embeddings.
However, this difference may be attributed to noise
and does not necessarily indicate the superiority
of publisher embeddings.

In terms of evaluation scores, the most effective
model appears to be the one solely relying on titles
and abstracts to represent publications. These
results align with the embedding methods for
authors and publishers. The author embedding
method, based on the assumption that last name
+ first letter of first name uniquely identifies
individuals, could benefit from experimenting with
author disambiguation approaches [19, 34].

Notably, the Open Researcher and Contributor
ID31, designed to provide unique identifiers
linked to researchers’ publications and affiliations,
presents a promising avenue for improving
disambiguation. Similar challenges are observed
in the publisher embedding method, where
ensuring the uniqueness of extracted entities and
preventing duplicates remains uncertain.

31orcid.org

7 Limitations

The approach detailed in the previous sections
demonstrates promising results, yet it has some
constraints. First, our reliance on manually
uploaded resources during dataset construction
introduces limitations. This is because label
annotation is conducted by a single individual
without assurance of authorship alignment with the
uploaded publication, potentially introducing biases
in label selection.

The absence of multiple annotators with no
inter-annotator agreement score to validate the
labels further compounds this issue. Moreover, the
language restriction to English, the predominant
research publication language [13], limits both
our dataset and the developed model’s scope, as
scientific LLMs like SciNCL predominantly train on
English datasets.

Additionally, while DBpedia serves as a vast
and comprehensive KG, it has been noted for
incompleteness, inaccuracies, and biases, due to
its automatic extraction process from Wikipedia
[35]. Given our reliance on this resource, such
deficiencies may directly impact the entity linking
process. Lastly, though our approach emphasises
scalability, direct practical implementation into
databases and generalisation to multidisciplinary
publications remain untested.

Further research addressing these aspects,
alongside ethical considerations, is warranted.
These include transparency, fairness, and biases
of the classification model, particularly concerning
FoR due to the dataset’s class imbalance, as well
as mechanisms for accountability encompassing
user feedback.

8 Conclusions

The research presented in this article addresses
the challenge of accurately classifying publications
into FoR using a novel dataset of 59,344 English
publications from open-source repositories. Our
approach employs a taxonomy of 123 FoR
labels across four hierarchical levels, automatically
linking them to DBpedia entities and utilising
pre-trained KGEs.
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The SciNCL-based model, featuring a
two-layered MLP, effectively combines textual
embeddings of publications with entity and
textual embeddings of classes. Our evaluation
highlights the effectiveness of utilising textual
representations of classes, irrespective of length.
Challenges associated with KGEs, particularly the
knowledge noise problem, are also emphasised.

Future work could explore different
configurations of walking and sampling strategies
in RDF2Vec, alternative embedding methods like
TransE [38], and knowledge injection methods
such as K-BERT to address knowledge noise.
Additionally, avenues for further research include
exploring publication features like authors and
publishers by investigating new methods for their
preprocessing, linking, and disambiguation.
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