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Abstract. In this paper, we present the molecular
structure of benzene as a regular hexagonal ring
and an isomorphic hexagonal lattice, a molecular
structure introduced by Merrifield-Simmons (MS) in
1989. The MS index, a topological index used in
mathematical chemistry, is the number of independent
sets of a graph G. This index plays a crucial role
in our understanding of complex molecular structures.
The strategy to compute the MS index involves the
construction of a Hamiltonian trajectory in the input
graph. These structures are discussed in fields such as
theoretical and computational chemistry. Therefore, we
propose a novel branch and bound method for counting
independent sets on polygonal benzenoid meshes,
highlighting its importance in the study of the analysis
of complex molecular structures and its applicability in
interdisciplinary scientific fields.

Keywords. Benzenoid, independent sets,
Hamiltonian path.

1 Introduction

The molecular form of benzene is represented as
a regular hexagonal ring, as shown in Figure 1, in
which each vertex contains a carbon atom. These
carbon atoms are bonded together by alternating
single and double bonds.

As a result, the benzene molecule is planar and
exhibits hexagonal symmetry [6]. An isomorphic
hexagonal grid is a grid structure formed by regular
hexagons connected to each other.

In a square or rectangular grid, where the
grid elements are squares or rectangles, in an
isomorphic hexagonal grid, hexagons are the basic
units of the grid, forming a polygonal grid, where
each polygon shares an edge with the adjacent
polygons, which creates a regular and symmetrical
structure, as shown in Figure 2.

Therefore, if we consider the molecular
structure to be a skeleton, we can represent it as
a graph G, where the carbon atoms represent the
vertices and the atomic adjacencies are the edges
of the graph or edges [9].

The Merrifield-Simmons index (MS) [13], which
in graph theory is known as the Fibonacci number
of a graph i(G), is a topological index used in
mathematical chemistry [7, 15] that represents the
number of sets in the graph G.

Independent sets are primarily studied in the
field of computer science because graphs are a
powerful tool for modeling real-life problems. The
aim is to count the independent sets in a set of
benzenes that form a polygonal mesh.
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Fig. 2. Hexagonal mesh
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Fig. 3. A benzenoid system Hr,t

Independent sets have potential applications
in various areas such as industries, from
telecommunications and logistics to finance and
strategic planning [16], in addition to improving
collaboration and data management. In adiabatic
quantum computing, solving the independent set
problem involves finding all the computational
ground states of a many-body Hamiltonian
HG(V ,E) [17].

Furthermore, independent sets improve
resource allocation and task distribution in
computer networks. An exact algorithm, such
as branch-and-bound, can solve large networks
accurately, as pointed out by [8].

2 Notation

Let G = (V , E) be a simple undirected graph with
a set of vertices V and edges E. I(G) = {S/S is
an independent set in G}, then I(G) is the set of all
independent sets of G. i(G) = |I(G)|, then i(G) is
the number of independent sets of G.

The connection between the vertices u and v
represent as uv. We also use the notation {u, v}
to denote the edge uv. We define N(x) = {y ∈ V :
{x, y} ∈ E} as the neighborhood of x ∈ V .

Let’s define some notation. N [x] = N(x) ∪ {x}
represents the closed neighborhood of x. We
use |A| to denote the cardinality of a set A.
Similarly, the degree of a vertex x is denoted as
δ(x) = |N(x)|, while the degree of the graph G is
∆(G) = max {δ(x) : x ∈ V }.

A set S ⊂ V (G) of vertices of G is an
independent set in G if, for any pair of vertices
(u, v) ∈ S, then (u, v) are not adjacent in G.
Let v ∈ V (G). Iv(G) = {S ∈ I(G) : v ∈ S},
I−v(G) = {S ∈ I(G) : v /∈ S}.

For the computation of the MS index, different
algorithms have been developed for counting
independent sets in flat grid structures that
facilitate counting by applying the traversal by rows
and columns or vice versa [3]. In our practical
proposal, the main element is to assign a charge
(αv, βv) to each vertex v of the graph.

This charge (αv, βv) will be computed while
visiting v during a traversal of G, ensuring a
straightforward and efficient process.

(αv, βv) = (|I−v(G)|, |Iv(G)|) denotes the
vertex charge v ∈ V (G). To process the number
of independent sets on any path Pn, we will use a
computing thread or simply a thread.

A compute thread is a sequence of pairs
(αvi

, βvi), i = 1, . . . , n, which is used during
the incremental calculation of i(Pn), i = 1, . . . , n,
where the n edges of Pn are tree edges, and each
pair (αvi , βvi) indicates the charge for vertex vi.
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Lp (1, 1) (2, 1) (3, 2) (5, 3) (8, 5) (8, 5)→ → → →
Ls (0, 1) (1, 0) (1, 1) (2, 1) -(0, 1) (8,4) i(G) 8+4 12→ → → = → = =

Fig. 5. Graph G with 5 vertices
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B -B -B

C -C-C C -C

D -D -D D -D -D D -D

-E E -E E -E -E E -E E -E -E E -E

Fig. 6. Binary tree of independent sets. Eliminate
vertices B and E, which are frond edges

We symbolize with → when the Fibonacci rule
is applied. In the Hamiltonian path in a graph, we
symbolize the start of the walk with |-, and the end
with >|. In the mathematical field of graph theory,
a Hamiltonian path is defined as a sequence of
consecutive edges in a graph where all vertices
are visited exactly once. If the last vertex visited is
adjacent to the first, it is called a Hamiltonian cycle.

3 Polygonal Topology for Counting
Independent Sets

We propose creating an innovative algorithm
designed to compute the Merrifield–Simmons
index in regular benzenoid systems Hr,t, which

consist of hexagonal grids with r rows and t
columns, as shown in Figure 3. This algorithm
starts with a linear-time Hamiltonian walk on
an isomorphic hexagonal grid of Hr,t, while
simultaneously incrementally computing the
number of independent sets. The time complexity
of this approach is lower than that of the transfer
matrix method when applied to the calculation of
the MS index on grid graphs [5].

3.1 Strategies for Calculating the
Merrifield–Simmons Index

3.1.1 Depth First Search

DFS, or depth-first search algorithm, is recognized
for providing the steps to explore all the graph
nodes without repeating any of them. Figure 4
shows the path DFS(G, v) in depth with the origin
node A. The idea is:

– The node v is marked.

– If all nodes adjacent to v are marked, then
TERMINATE; otherwise, a node w adjacent to
v that is not marked is chosen.

– The process DFS(G,w) is executed.

3.1.2 Hamiltonian Path

The first step of our method for counting
independent sets in a graph involves the
construction of a Hamiltonian path (Hc) over
the input graph G. During this traversal, Hc visits
each vertex of the graph exactly once, identifying
each edge of the graph as a tree edge or a
frond edge.

Although finding a Hamiltonian cycle in any
graph is a classic NP-Complete problem, in this
case, the constraints are relaxed by considering
paths instead of cycles, which avoids returning to
the same starting point.

This relaxation is most evident when examining
graph topologies such as meshes, where the
searching for an Hc becomes a linear time
complexity problem. An example is the case
of regular meshes, where Hc can follow a route
through rows, alternating directions in odd and
even rows.
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Table 1. Counting independent sets by the Fibonacci sequence

Thread A B C D E i(G)

(α1, β1) (α2, β2) (α3, β3) (α4, β4) (α5, β5)

Lp (1, 1) → (2, 1) → (3, 2) → (5, 3) → (8, 5) (8, 5)

Ls (0, 1) → (1, 0) → (1, 1) → (2, 1) −(0, 1) (8, 4) → i(G) = 8 + 4 = 12

A B C D E F

(α1, β1) →
(1, 1)

(α2, β2) →
(2, 1)

(α3, β3) →
(3, 2)

(α4, β4) →
(5, 3)

(α5, β5) →
(8, 5)

(α6, β6) →
(13, 8)

Fig. 7. Linear chain

Table 2. Independent sets of the linear chain graph

A B C D E F

(α1, β1) → (α2, β2) → (α3, β3) → (α4, β4) → (α5, β5) → (α6, β6)

(1, 1) → (2, 1) → (3, 2) → (5, 3) → (8, 5) → (13 , 8)

(F2, F1) → (F3, F2) → (F4, F3) → (F5, F4) → (F6, F5) → (F7, F6)
a

A

B C D E

F

Fig. 8. Simple cycle

Table 3. Independent sets of simple cycle graphs

Hilo A B C D E F

(α1, β1) → (α2, β2) → (α3, β3) → (α4, β4) → (α5, β5) → (α6, β6)

Lp (1, 1) → (2, 1) → (3, 2) → (5, 3) → (8, 5) → (13, 8) (13, 8)*

Ls (0, 1) → (1, 0) → (1, 1) → (2, 1) → (3, 2) → (5, 3) −(0, 3)**

F0 = 0, F1 = 1 (F2, F1) → (F3, F2) → (F4, F3) → (F5, F4) → (F6, F5) → (F7, F6) (13, 5)

*The final pair of the graph cycle αm and βm

**Subtracted rule applied to the edge {F , A}.

3.1.3 Fibonacci Calculation in Graphs

Counting the number of independent sets i(G) in
a graph G involves traversing the Hamiltonian path
Hc of G [4]. During this traversal, the first pair of
values starts with (αi, βi) = (1, 1). For the following
identified edges, one of two rules applies. The
Fibonacci recurrence rule:

1. When the visited edge is a tree edge or a
subtraction rule,

2. When a frond edge is recognized (or back edge
if referring to depth-first searches).

If we consider that vi belongs to the path
Pn, and vi+1 is the next vertex that will visit an
edge of the tree (vi, vi+1), then the following
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Fig. 10. Two hexagons joined by an edge

Table 4. Independent sets of the graph simple cycle and linear chain

Hilo A B C D E F G H I

“ ” (α1, β1) (α2, β2) (α3, β3) (α4, β4) (α5, β5) (α6, β6) (α7, β7) (α8, β8) (α9, β9)

Lp (1, 1) → (2, 1) → (3, 2) → (5, 3) → (8, 5) → (13, 8) →
Ls (0, 1) → (1, 0) → (1, 1) → (2, 1) → (3, 2) → (5, 3) →

(13, 5) → (18, 13) → (31, 18) → (49, 31)*
*End Counting Pair (αm, βm)

Table 5. Cycle 1

Hilo A B C D E F

(α1, β1) → (α2, β2) → (α3, β3) → (α4, β4) → (α5, β5) → (α6, β6)

Lp (1, 1) → (2, 1) → (3, 2) → (5, 3) → (8, 5) → (13, 8) (13, 8)

Ls (0, 1) → (1, 0) → (1, 1) → (2, 1) → (3, 2) → (5, 3) −(0, 3)*

(13, 5)**
*Applying subtracted rule to the frond edge {F , A}
**Cycle 1 closing pair

recurrence equation is applied to compute the
charge (αvi+1, βvi+1) as a function of the
charge (αvi , βvi):

(αvi+1
, βvi+1

) : αvi+1
= αvi + βvi , (1)

βvi+1
= αvi . (2)

We call the previous pair of recurrences the
Fibonacci rule recurrence because when they are
applied to a path Pn−th, we obtain the knowledge

identity i(Pn) = αvi+1+βvi+1 = Fn+Fn+1 = Fn+2,
where Fn is the n-th Fibonacci number:

(αw, βw)i = (αw, βw)− (0, βvw) = (αw, βw − βv, w). (3)

Let us illustrate our proposal with an example;
in Figure 5, we show how to compute the M − S
index of the graph. The Hamiltonian path used
to traverse G is A − B − C − D − E. A primary
thread Lp is opened, and the recurrence function
(1) is applied at the beginning of the computation
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Fig. 11. Three hexagons connected by vertices

Table 6. Cycle 2

Hilo G H I J K L

(α1, β1) → (α2,β2) → (α3, β3) → (α4,β4) → (α5, β5) → (α6, β6)

Lp (18, 13) → (31, 18) → (49, 31) → (80, 49) → (129, 80) → (209, 129)

Ls (0, 13) → (13, 0) → (13, 13) → (26, 13) → (39, 26) → (65, 39)

(209, 129)

−(0, 39)*

(209, 90)

*Applying subtracted rule to the frond edge {L, G}.

of i(G5) : Lp : (1, 1) → (2, 1) → (3, 2) → (5, 3) →
(8, 5). Note that temporary charges (αvi , βvi) can
be stored in the vertex vi and marked as visited.
For any pair of vertices (v, w) ∈ S, where S is an
independent set and v, w are adjacent, and if edge
(v, w) is identified as a frond edge, in this case
(E, B) is the frond edge, a secondary thread Ls
parallel to Lp is opened; that is, Ls : (0, 1) →
(1, 0) → (1, 1) → (2, 1) when the walk visits
vertex v and w have already been visited, then
the subtraction rule (2) is applied, which allows
the computation of the charge of vertex v based
on a charge of vertex u; and for each frond edge
that is encountered. Section 3.2.5 explains this in
detail. Therefore:

i(G) = |{∅}, {A}, {B}, {C}, {D},
{E}, {A, C}, {B, D}, {C, E}, {E, A},

{D, A}, {A, C, E}}| = 12.

(4)

S ⊆ V (G) is an independent set. If ∆x, y ∈ S,
{x, y} /∈ E. i(G) = S/S.

Continuing with our systematic approach, the
binary tree in Figure 6 presents all possible
combinations formed with the five vertices of graph
G, considering that none of its vertices is adjacent
to another [1]. The negative symbol indicates that
the vertex cannot be part of the combination.

At the end of the construction of the binary
tree, we can see that there are 12 independent
sets (and we eliminate vertices B and E, which
form the frond edge). Moreover, applying the
Fibonacci sequence count from Table 1, we
confirm that the results, which are of significant
importance, coincide.

3.2 Counting Independent Sets in
Basic Topologies

3.2.1 Linear Chain Graph

Let G = (V ,E) with ∆(G) = 2 being G a
chain graph with n nodes, therefore |V | = n and
|E| = m = n− 1.

Computación y Sistemas, Vol. 28, No. 4, 2024, pp. 2171–2182
doi: 10.13053/CyS-28-4-5300

Herlinda González-Vázquez, Cristina López-Ramírez, Pedro Bello-López, et al.2176

ISSN 2007-9737



Table 7. Counting of independent sets of Fig. 12

Element 1 Element 2 Element 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Lp (1, 1) (2, 1) (3, 2) (5, 3) (8, 5) (13, 8) (21, 13) (34, 21) (55, 34) (89, 55) −(0, 15) = (89, 40)

Ls ⊢ (0, 1) (1, 0) (1, 1) (2, 1) (3, 2) (5, 3) (8, 5) (13, 8) (21, 13) (34, 21) −(0, 6) = (34, 15)

c2Lp (0, 2) (2, 0) (2, 2) (4, 2) (6, 4) (10, 6) (16, 10) (26, 16) −(0, 6) = (26, 10)

c2Ls (0, 1) (1, 0) (1, 1) (2, 1) (3, 2) (5, 3) (8, 5) (13, 8) −(0, 3) = (13, 5)

c3Lp (0, 5) (5, 0) (5, 5) (10, 5) (15, 10) (25, 15) ×
c3Ls (0, 2) (2, 0) (2, 2) (4, 2) (6, 4) (10, 6) ×

c3c2Lp (0, 2) (2, 0) (2, 2) (4, 2) (6, 4) (10, 6) ×
c3c2Lp (0, 1) (1, 0) (1, 1) (2, 1) (3, 2) (5, 3) ×

(129, 89) (218, 129) (311, 218) (529, 311)

−(0, 36) −(0, 114)

= (218, 93) = (529, 197)

(49, 34) (83, 49) (114, 83) (197, 114) ⊣
−(0, 18) ×
= (83, 31)

(36, 10) (46, 36) ×
(18, 13) = (31, 18) ×

1 2 3 4 5 6 7

14 13 12 11 10 9 8

(frond) (frond)(frond)

Fig. 12. Grid of three hexagons connected by vertices

Let us order the nodes in G as
V = {v1, v2, . . . , vn} in such a way
that it is fulfilled E = {c1, . . . , cn−1} =
{{v1, v2}, {v2, v3}, . . . , {vn−2, vn−1}, {vn−1, vn}},
i.e. |v(ci)

⋂
v(ci+1)| = 1, i = 1, . . . ,n − 2. Gi,

i = {1, . . . ,n} being Gi the induced subgraph of G.

The basic technique for counting the number
of independent sets i(Gi) on Gi of G is an
incremental strategy [12, 11] that is based on
associating a pair of values (αi, βi) to each node
vi ∈ V , i = {1, . . . , n}.

The path starts at one of the ends of the node
v1 or the node vn, visiting its adjacent node linearly.
The first pair of values starts with (αi, βi) = (1, 1).

The recurrence relation considers that the value
is known (αi, βi) associated with the induced
subgraph Gi of G such that i(Gi) = (αi, βi).

The new pair of values (αi+1, βi+1) is
constructed based on (αi, βi) applying the
recurrence it generates to the Fibonacci numbers
αi+1 = αi + βi, βi+1 = αi.

Table 2 shows the counting of independent sets
obtained by applying the Fibonacci sequence in
the chain graph shown in Figure 7. Therefore,
(αi, βi) = (Fi+1, Fi) then i(Gi) = αi + βi =
Fi+1 + Fi = Fi+2, i = {0, . . . , n}, i.e., for n = 6,
i(G) = i(G6) = F7 + F6 = F8 = 21.
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14 13 12 11 10 9 815

16 17 18 19 20 21 22

Fig. 13. Regular hexagonal mesh HGm,n

3.2.2 Simple Cycle of a Graph

Figure 8 shows a graph containing a simple
cycle. Counting independent sets starts a
main thread (Lp); the value pair starts with
(αi, βi) = (1, 1), and the secondary thread
(Ls) starts the sequence recurrence with
(αi, βi) = (0, 1), where i = 1, . . . , m.

The last pair is (αm, βm) = (0, βm) so that the
series ((α1, β1) = (0, 1) → (α2, β2) = (1, 0) →
(α3, β3) = (1, 1) . . . → (αm, βm) → (0, βm)) gives
us the value of |S ∈ i(G′) : v1 ∈ S ∧ vm ∈ S |. The
above series corresponds to the following series
considering the Fibonacci numbers:

F0 = 0 and F1 = 1, (F0, F1) → (F1, F0) →
(F2, F1) → . . . → (Fm−1, Fm−2). (αm, βm) =
(0, βm); i(Gc) = ((αm, βm)− (0, βam)).

For computing the closing of the cycle [2], we
apply rule (2); the last pair (αm, βm) of the
secondary thread (Ls) is (αm, βm) = (0, βm),
where {vm, v0} ∈ E(G) represents the backward
edge that closes the cycle of G and is subtracted
from the last pair of the primary thread (Lp).

Therefore, ((αm, βm) − (0, βm)) = ((α6, β6) −
(0, β6)) = (13, 8)–(0, 3) = (13, 5), we obtain that
i(Gc) = 13 + 5, i. e., 18 is the total number of
independent sets. This count is shown in detail
in Table 3, where we can see the counting of
independent sets of G.

3.2.3 Cycle and Linear Chain of a Graph

Figure 9 shows a graph with nine nodes, where the
nodes A, B, C, D, E, F , and A form a cycle. The
exact process is followed to count the independent
sets in a cycle for a simple cycle graph, previously
studied in Section 3.2.2; the computation is shown
in detail in Table 4.

When node F closes the cycle, the inverse
edge rule (2) is applied, obtaining as a result the
pair (13, 5) → and continuing with the computing of
the linear sequence applying the Fibonacci rule (1)
on the nodes G, H, I until finishing the path of the
graph. The total number of independent sets i(G)
equals the sum of the last pair (49, 31) = 49 + 31,
i. e., 80 independent sets.

3.2.4 Hexagons Connected by Edges

Figure 10 shows the case of a graph with two
cycles connected by a bridge edge. Here, the
same process is performed for the simple cycles,
and once a back edge is found, the first cycle is
closed, equation (2) is applied, and we continue
to compute the independent sets according to the
Fibonacci rule. Tables 5 and 6 show that the
calculations of the total of the independent sets
i(G) that it is equal to the sum of the last pair
(209, 90) = 209 + 90 = 299 independent sets.

3.2.5 Hexagons Connected by Vertices

Algorithms have been developed for counting
independent sets in flat grid structures that
facilitate counting, applying the traversal by rows
and columns or vice versa [3]. Our algorithmic
proposal processes the frond edges in two
phases. Let v, w be a frond edge of a graph G.

In the first phase, when a walk (Lp) main thread
visits the first vertex v of the front edge, the number
of active threads and computing threads (Ls) must
be duplicated. Assume (αv, βv)i is the charge
associated with the active thread Li when visiting
vertex v. A new thread Lvwi

is created, which is
subordinate to the master thread Li, and with an
associated initial pair (0, βv)vw.
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1 2 3 4 5 6 7

14 13 12 11 10 9 815

16 17 18 19 20 21 22

(a) Selected vertex (v = 11) in HGm,n

1 2 3 4 5 6 7

14 13 12 11 10 9 815

16 17 18 19 20 21 22

(b) Neighborhood N(v). N(v) = {(12/{11, 12}), (10/{11, 10}), (20/{11, 20}) ∈ E}

1 2 3 4 5 6 7

14 13 12 11 10 9 815

16 17 18 19 20 21 22

(c) Closed neighborhood. N [v] = {12, 10, 20} ∪ {11}

1 2 3 4 5 6 7

14 13 12 11 10 9 815

16 17 18 19 20 21 22

Graph G

1 2 3 4 5 6 7

14 13 12 11 10 9 815

16 17 18 19 20 21 22

1 2 3 4 5 6 7

14 13 12 11 10 9 815

16 17 18 19 20 21 22

BASIC CASE BASIC CASE

(G-v) (G-N[v])

(d) Basic case

Fig. 14. Branching and pruning

Therefore, the label vwi of Lvwi is also a pointer
to its master thread Li. The second phase in
the frond edge processing (v, w) is when the
walk visits vertex w, and v has already been
labeled as a visited vertex. Thus, control is
maintained at vertex w. Suppose (αw, βw)i is the
charge of vertex w on the master thread Li.

Meanwhile, (αvw, βvw)vw is the charge of w on
the subordinate thread Lvwi

. Then, the subtraction
rule of equation (2) updates the charge of w in Li.
After the application of this rule, the subordinate
thread Lvwi is closed. In this way, any thread where
the particle vw appears must be closed, which
decreases the number of active threads.
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To compute the number of independent sets of
a grid is possible by taking the Hamiltonian path
Hc as a guide, although the time complexity is
of exponential order over the maximum number
of frond edges in any row of the grid, given the
number of cycles that are kept open during the
Hc path. The Fibonacci and subtraction rules
are sufficient to process one row of tiles from
a hexagonal grid, as shown in Figures 11, 12
and Table 7.

4 A Branch-and-bound Algorithm

4.1 Benzenoid System

The first stage in our method for computing the
Merrifield-Simmons index in benzenoids I(Hr,t)
involves inserting the benzenoid system Hr,t from
Figure 3 into a regular hexagonal grid HG resulting
as in Figure 13, where instead of conventional
squares, we consider hexagons.

Both graphs, the benzenoid system Hr,t and
the regular hexagonal grid HG, are isomorphic
and possess the same number of hexagons. We
designate the number of rows in HG as m and the
number of columns in the first row as n.

Therefore, HGm,n represents a hexagonal
mesh with m rows, where each row has n or n+ 1
columns. The first row in HGm,n has n vertices,
while rows 2 and 3 have n + 1 vertices. Row
4 again has n vertices, and the next two rows
have n + 1 vertices, and so on. The number of
hexagons is the same in each row of HGm,n, so
the hexagons in Hr,t are one-to-one related to the
hexagons in HGm,n.

The insertion of a benzenoid system Hr,t into a
regular hexagonal grid HGm,n can be performed in
linear time in r · t, thanks to the existence of linear
time algorithms that create insertion of a planar
graph into a grid [14]. Therefore, we can represent
the edges of HGm,n as straight line segments.
HGm,n has only vertices of degree two or three.

The edges are divided into two types: Horizontal
edges with vertices {(i, j), (i, j + 1)}, where
i = 1, . . . , m y j = 1, . . . ,n; and vertical
edges with vertices {(i, j), (i + 1, j)} or {(i, j),
(i+1, j +1)}, or {(i, j), (i+1, j − 1)} depending
on the row under consideration.

4.2 Branch and Pruning

1. Hamiltonian Path: The Hamiltonian path It can
be formed based on a path through grid rows
by changing the path direction from left to right
over odd rows, and with a path from right to
left for even rows. We start with constructing
a Hamiltonian path I

v
(G) that traverses each

vertex of HGm,n once.
For vertices of degree 2, δ(v) = 2 the walker

visits both edges and continues the path; for
vertices of degree 3, δ(v) = 3 the walker visits
all three edges and checks whether the degree
of its neighbors equals three. If δ(N(v)) = 3,
N(v) = 3, then v is the vertex selected to apply
pruning, as shown in Figure 14 subsection (a).

2. Counting Rules: Set of counting rules to
be applied to the edges (or vertices) during
the path [10]:

(a) Branching rule:

i(G) = i(G− v) + i(G−N [v]). (5)

(b) The vertex to be selected must be of
degree 3, that is, δ(v) = 3; for example,
in Figure 14 section (a), the vertex that has
been selected is shown.

(c) Its neighbors must also be of degree 3, that
is, δ(N(v)) = 3; in Figure 14 part (b), you
can see which are the neighbors of v, in this
case, they are {12, 10, 20}.

Implementing the branching rule (3) at vertex
v generates two nodes, v1 and v2, from the
current node in the calculation tree. The
subgraph associated with v1 is established as:
G1 = (G − v), while the subgraph associated with
v2 is established as G2 = (G − N [v]). We have a
similar problem for each subgraph Gi, i = 1, 2 that
we had with the original grid HG.

If we solve the problem recursively and ri is its
solution, then the complete solution for r = i(HG)
is r = r1 + r2. The previous procedure determines
an enumerative tree whose leaves correspond to
the instances of subgraphs called the basic cases
of the enumerative tree.
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The branching process is iterated until the
path of the entire graph is complete and the
Hamiltonian path walker does not find another
vertex that satisfies the rules. It is time to apply
the independent set counting to the resulting basic
cases, shown in Figure 14 subsection (d), using the
Fibonacci series.

Once we have defined the basic cases, we
apply the computational strategies for counting
independent sets in simple basic structures and
mesh structures, such as linear chain, simple
cycle, simple cycle and linear chain, hexagons
connected by edges, and hexagons connected by
vertices, as it was presented in Section 3.2.

The time complexity of the branch-and-prune
algorithm is determined by the recurrence
i(G) = i(G − v) + i(G − N [v]). Our proposal
still exhibits exponential time complexity but does
not exhibit the explosive combinatorial character
that the classical transfer matrix method has for
computing i(HGm,n).

5 Conclusion and Future Work

We have presented a branching-and-pruning
proposal for computing the number of independent
sets in hexagonal meshes, denoted as HGm,n,
where m represents the number of rows and n
the number of columns. In our approach, we use
the branching rule to split the graph into simpler
subgraphs. Our strategy consists of decomposing
the original graph into outer flat subgraphs, treating
them as basic cases. The time complexity of our
approach to this computation is significantly lower
than that required by the classical transfer matrix
method to achieve the same result.

In the future we plan to investigate
combinatorial optimization techniques to reduce
the complexity of the branching-and-pruning
algorithm for computing independent sets
on hexagonal meshes, and further improve
our understanding and ability to address this
computational challenge more effectively. This
will allow us to deal more efficiently with larger
graphs. Thus, this proposal could be applied as
an effective solution for processing BIG DATA
and other complex networks by optimizing node
selection and network reduction.
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