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Abstract. Atmospheric correction of satellite images in 

the remote sensing area is one of the main pre-
processing techniques since the better the effects of the 
atmosphere are eliminated in these images; the more 
and better features can be extracted later. Atmospheric 
correction consists of obtaining the reflectance of the 
surface (whether the surface of the earth or the surface 
of water, also known as “water leaving reflectance”), 
taking into account the effect of the atmosphere on the 
electromagnetic spectrum both by scattering and by the 
absorption of sunlight. This work proposes the use of 
Deep Learning models (DL) to obtain this reflectance of 
the earth's surface using synthetic data generated for 
different atmospheric conditions (aerosols, water vapor, 
ozone) and geometric conditions during the satellite 
flight, using simulations in a Radiative Transfer Code 
(6S) and data from the image itself that allow training a 
DL model to make this atmospheric correction. The 
models evaluated in this work are a Multilayer 
Perceptron (MLP), a 1D Convolutional Neural Network 
(1D-CNN), a Multilayer Perceptron combined with 
“Numerical Embedding” (MLP-NE) and an architecture 
based on the “Vision Transformer”. (ViT)” using these 
atmospheric parameters to feed the DL model. The 
results obtained by the models are compared with the 
numerical simulation, concluding that the last two 
models in particular have quite accurate performance, 
with the advantage that the inference time of the DL 
model reduces the calculation time with respect to the 
simulation with close precision in some cases. 

Keywords. Atmospheric correction, reflectance, 

radiative transfer code, atmospheric parameters, 
aerosol optical thickness, deep learning. 

1 Introduction 

The objective of Atmospheric Correction (AC) is to 
eliminate the effects of the atmosphere on satellite 

images to obtain the spectral characteristics of the 
surface. The atmosphere affects the light passing 
through it primarily in two ways, light scattering and 
absorption [1, 2].  

The dominant atmospheric effect is scattering 
which is additive to the remotely sensed signals 
while multiplicative effect is caused by light 
absorption [3]. The main factors that distort satellite 
signals from the Earth's surface are aerosols and 
molecular scattering, as well as absorption by 
gases and particles suspended in the atmosphere 
[1, 2]. 

All gaseous and aerosol components of the 
atmosphere generate a distortion in the 
electromagnetic spectrum that causes the 
reflectance captured by the satellite sensors to 
include distortions that must be corrected to make 
a correct identification of the real reflectance 
values on the Earth's surface. 

Over time, different methods have been 
developed to obtain the real reflectance of the 
Earth's surface, most of them are based on the 
theory of radiative transfer developed and 
published in 1960 by Chandrasekhar [4]. Some 
methods are based only on the image itself (i.e. 
Image Based), among which we have some such 
as DOS (Dark Object Subtraction) QUAC among 
others [1, 5, 6]. 

Others require auxiliary atmospheric 
parameters (i.e. FLAASH, 6S) [1, 5, 6], generally 
these methods are based on some radiative 
transfer code. Radiative transfer codes (RTC) are 
scientific software that numerically simulate the 
propagation of electromagnetic radiation through a 
medium. RT simulations are used in various 
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disciplines, including astrophysics, Earth and 
planetary sciences, and Remote Sensing. 

The most accurate methods have generally 
been those based on Radiative Transfer Codes 
(i.e., 6S, MODTRAN) [5]. However, the complexity, 
high dimensionality, and computational cost of 
numerical RTCs, particularly in large areas with 
large data sets, restrict their use in real remote 
sensing applications, including atmospheric 
correction. Traditionally, to overcome these 
problems, look-up tables (LUT: Look-up Tables) [7, 
8] have been used to approximate the simulations 
of a radiative transfer code and recently it has been 
suggested to approximate numerical RTCs 
through machine learning, this approximation 
being known as emulation [9, 10, 11]. 

Machine learning (ML) algorithms, such as 
neural networks (Deep Learning), have 
demonstrated a good ability to emulate these 
complex and non-linear RTCs based on numerical 
methods. 6S RTC simulations have a simulation 
time of typically 0.97 seconds [12], while the 
emulation reduces the computation time. 

In this work, we propose and compare four 
different architectures based on Deep Learning 
(DL) to emulate a 6S radiative transfer code. In this 
approach, instead of using LUTs (Look-Up 
Tables), TOA (Top of Atmosphere) values along 
with a subset of other atmospheric parameters are 
used by DL models to predict the correct SR 
(Surface Reflectance) values [13]. 

The database was created from synthetic data 
generated using simulations in the RTC 6S, in 
particular the development was done using the 
Python interface with 6S called Py6S, developed 
by [14,15]. 

2 Theoretical Background 

This section presents the main ideas and 
procedures used in the construction of a synthetic 
data set and the analyzed models. It includes brief 
descriptions of the RTC used (6S) as well as the 
models used in this comparison. 

2.1 Atmospheric RTC 6S 

The Second Simulation of the Satellite Signal in the 
Solar Spectrum (known, understandably, as 6S) is 

a Radiative Transfer Model that is widely used in 
remote sensing. It simulates the effect of the 
atmosphere on the light passing through it. 

6S was originally developed by a team led by 
Eric Vermote and is described in detail in [16] and 
the original manuals. The original objective of this 
RTC was to describe the effects of the dispersion 
and absorption of atmospheric gases and aerosols 
on the propagation of solar radiation both 
downward and upward through the atmosphere, 
taking into account that sunlight passes through 
when the atmosphere reaches the Earth, it 
interacts with the Earth's surface and returns to the 
atmosphere where it passes through it again and 
is captured by the sensors in space. 

The 6S code can be used on two types 
of  surfaces: 

– Isotropic (also known as Lambertian), in which 
a diffuse reflection occurs. For this study it is 
assumed that the surface is Lambertian, which 
offers acceptable results in most cases, except 
when the value of the optical thickness of the 
aerosols is high [17]. 

– Anisotropic. A classic example of an 
anisotropic surface is water, since the 
reflection of light is not homogeneous but 
specular, that is, it depends on the angle of 
incidence of the light and the angle of view of 
the observer (i.e., BRDF). 

2.2 Deep Learning 

Deep Learning (DL) is a branch of Artificial 
Intelligence that belongs to the techniques of so-
called Machine Learning. It gained particular 
importance in the early 2010’s mainly due to the 
use of convolutional neural networks (CNN) in 
computer vision applications [18]. 

Since then and due to the good results, that 
these algorithms have given, the use of these 
networks has been extended to other applications 
such as language (Natural Language Processing), 
audio, video, etc. Regression problems commonly 
solved with DL models consist of predicting the 
value of a continuous variable from certain input. 

Because of this, continuous variables such as 
reflectance can be estimated using a DL model to 
predict their value, so the model is trained to do 
regression using different combinations of input 
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parameters and using the data obtained through 
simulations, in this case simulations with the 
RTC 6S. 

DL models need a loss function, which is the 
one that will be optimized during model training. 
For regression problems, the commonly used loss 
function is the so-called MSE (Mean Squared 
Error). In this work we present 4 models that are 
suitable for regression such as MLP, 1D-CNN, 
MLP-NE (Multilayer Perceptron with Numerical 
Embedding) and an architecture based on the ViT 
(Vision Transformer). 

2.2.1 Multilayer Perceptron (MLP) 

The multilayer perceptron is an artificial neural 
network formed by multiple layers (generally dense 
layers, that is, fully connected layers), usually an 
input layer, intermediate layers also called hidden 
layers and an output layer. Each neuron usually 
contains an activation function that introduces 
nonlinearity into the network. One of the most used 
activation functions is ReLu. MLPs have been used 
in atmospheric correction and aerosol optical 
thickness (AOD) estimation applications [19, 20, 
21, 22]. 

2.2.2 One Dimension Convolutional Neural 
Networks (1D-CNN) 

Traditionally convolutional neural networks have 
been used for images, hence two-dimensional 
filters (kernels) are used. In reality, the kernel can 

be of any dimension, which is why its use has 
spread in applications that require one-
dimensional kernels such as text, audio, etc. 
Recently, the use of 1D-CNN has been proposed 
to estimate bidirectional reflectance in satellite 
images [9]. 

These networks consist of convolutional layers 
(to extract features), Maxpooling layer (to reduce 
dimensionality of the data) and a classification or 
regression layer made up of dense layers. 

2.2.3 Multilayer Perceptron with Numerical 
Embedding (MLP-NE) 

Recently improvements have been made to the 
performance of the MLP, using what is known as 
numerical embedding. “Embedding” is a vector 
representation of some parameter. 

The concept comes from the area of Natural 
Language Processing in which a word is 
represented as a vector. In the article “On 
Embeddings for Numerical Features in Tabular 
Deep Learning” [23], the authors demonstrate how 
the vector representation of scalar parameters can 
substantially improve the performance of MLP in 
applications with tabular data (i.e. they have 
categorical and numerical data). 

One of the ways to do numerical embedding 
that is presented in this work is to do a dimensional 
expansion of each parameter using a dense layer 
[24]. In this work, “Numerical Embedding” is used 
to represent each input parameter as a vector, so 

 

Fig. 1. Flowchart for atmospheric correction of satellite data. Homogeneous Lambertian and anisotropic surfaces. 
(Adapted from Vermote et al. 2007) 
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that the input to the MLP is no longer a set of scalar 
data, but a set of vectors. 

2.2.4 Vision Transformer (ViT) 

The original Transformer was designed to be used 
in Natural Language Processing applications, later 
in 2021 it was extended to be used in computer 

vision applications. The idea of the Vision 
Transformer (ViT) is to decompose the image into 
“patches” and convert each patch into a vector, 
treating it as if it were a word [25]. 

In this work, an architecture based on the 
“Vision Transformer” is proposed that incorporates 
“Numerical Embedding” to represent each 

 

Fig. 2. Flowchart of the proposed methodology to simulate and train the models 

 

Fig. 3. WRS 25/47 scene used as reference for selection of simulation parameters 
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parameter of the input model as a vector so that 
the ViT processes a sequence of parameters 
represented as vectors, that is, the matrix of 
embeddings is made up of a set of vectors in which 
each vector represents a scalar parameter, where 
each input parameter is numerically embedded 
(vectorized) to form the embedding matrix. 

Unlike the original ViT, in this proposal 
“Positional Embedding” is not used since the 
position of the parameters is not relevant, as is the 
position of the patches in an image.  

3 Material and Methodology 

The methodology proposed in this article is divided 
into 2 phases. The first phase consists of doing 
enough simulations with Py6S (3840 simulations 
were carried out) with different values for the sun-
satellite geometry, different atmospheric 
conditions and different radiances captured by the 
satellite sensor according to the range found in the 
metadata file. 

Subsequently, random samples of 80% of the 
total data were generated to create the training 
data set of the models, the remaining 20% was 
used to create the validation data set with which 
each model was tested [9, 22]. The second phase 
consists of training and validating the four model 
architectures presented in the previous section. 

Validation is done with respect to two metrics 
that are the root mean square error (RMSE) and 
the coefficient of determination (R²). Additionally, 

the inputs were normalized using the “Min-Max 
Normalization” method. 

In general, the optimization of all 
hyperparameters was carried out iteratively until 
the combination of parameters that offered the best 
results was found. In general, there is no fixed 
methodology to find the best values for the 
hyperparameters in this type of applications [22] 
since the “optimal” value of these depends on 
many factors. 

3.1 Parameter Range for Generating Synthetic 
Data with the RTC 6S 

To create the data set with which the models will 
be trained, a series of combinations of different 
variables were created within a previously defined 
range that adjusted to the typical values of the area 
of interest being worked on.  

This area of interest is located in scene WRS 
25/47 which covers the states of Tlaxcala, Puebla, 
Veracruz, Oaxaca and a small portion of the state 
of Hidalgo. 

The following figure shows the footprint of 
scene WRS 25/47. Although it is not a critical 
parameter used in simulations carried out with 6S, 
when making atmospheric corrections, it is 
recommended that the percentage of cloud cover 
(Land Cloud Cover) be less than 10% although 
NASA recommends using images of up to 20% 
with cloud cover, it also depends on the area 
studied, some researchers suggest no more than 
20%, so 10-20% is usually an appropriate value to 

Table 1. Description and ranges of the 6S model key input parameters used to simulate Surface Reflectance 

Parameters Symbol Description Unit Range Step 

Sun-Sensor 

Geometry 

SZA Sun Zenith Angle Deg 40-70 10 

VZA View Zenith Angle Deg 0 (Nadir) N/A 

SAA Sun Azimuth Angle Deg 120-240 40 

VAA View Azimuth Angle Deg 120-240 40 

Atmospheric 

Optical 
AOD Aerosol Optical 

Depth 
Unitless 0-0.5 0.1 

Atmospheric 

Model 
N/A Midlatitude Summer Unitless N/A N/A 

Aerosol Model N/A Continental Unitless N/A N/A 

Radiance RAD Apparent Radiance 𝑊𝑎𝑡𝑡
𝑠𝑟 × 𝑚2⁄  0-450 

50 
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be selected1. However, to make land use 
classification for example, the percentage can be 
even lower 5-6% [26]. 

The ranges of the variables used are 
the following: Additionally, one of the images of this 
area captured in month 5, day 16 was selected 
since the translational movement of the earth is 
also taken into account when making the 
simulation and finally the “Coastal/Aerosol” band 
was selected, whose Central wavelength value is 
442.96nm (obtained from Landsat OLI sensor 
Relative Spectral Response file). 

Relative Spectral Response, shown in figure 4, 
plots the sensor sensitivity for the whole 
wavelength range for each band. Usually the 
center value of each band is used for simulation 
purposes and this is the approach followed in 
this study. 

Relative Spectral Response is also used for 
spectral convolution when doing calibration (i.e. 
vicarious calibration). The Coastal/Aerosol band 
was selected randomly, since the objective of this 
work is to compare the performance of different DL 
models to emulate the RTC 6S. 

As a reference, this band has two cases use, 
one is to improve the estimation of aerosols to be 
used in atmospheric correction methods and two, 
the capture of images of inland waters (i.e. lakes 
and coasts). 

                                                      
1www.researchgate.net/post/What_is_the_Landsat_Data_Clo

ud_coverage_selection_criteria 

3.2 Atmospheric Correction (AC) in 6S 

Radiative Transfer Code 6S allows atmospheric 
correction of satellite images (i.e. to obtain the 
reflectance of the Earth's surface). For this, it is 
necessary to introduce the parameters described 
above and assume that the surface is isotropic (i.e. 
Lambertian). Normally the value of the apparent 
radiance must be entered, that is, the pixel must 
have previously been converted from its raw value 
(Digital Number) to radiance. The conversion is 
done with the following formula [20]: 

𝐿𝜆 = 𝑔𝑎𝑖𝑛 × 𝐷𝑁 + 𝑏𝑖𝑎𝑠 (1) 

𝐿𝜆: Radiance in band 𝜆,  
𝑔𝑎𝑖𝑛: Named also 

REFLECTANCE_MULT_BAND_X, where X is 

the band number,  𝑏𝑖𝑎𝑠:  Named 

REFLECTANCE_ADD_BAND_1. 

As with most atmospheric correction 
algorithms, the correction is done pixel by pixel, 
except in a few algorithms in which the AC is done 
band by band as in “Empirical Line Calibration” [6]. 

3.3 Deep Learning Models Development 

Building a robust, accurate, and well-generalized 
DL model depends on several factors, including 
preprocessing the training data set, building the 
network architecture, and finally tuning 
hyperparameters such as learning rate, the lot 
size, etc. (Chollet, 2021). The following sections 
describe these critical factors. 

3.3.1 Data Preprocessing 

The ranges of all input variables (from uniform 
distributions) were resized between [0, 1] using 
Min-Max normalization. In addition, before training 
the network, the batch data set was shuffled to 
improve the training convergence and improve the 
generalization ability of the network [9, 20]. 

 

Fig. 4. Relative spectral response of the landsat 8 
OLI sensor 
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Table 2: Parameters of the MLP 

MLP Parameters/Hiperparameters 
Trainable 

Parameters 

Input Variables (Normalized) SZA, SAA, VAA, AOD, RAD  

Activation Function ReLU (except output layer)  

Training Loss Function MSE  

Hidden Layers 2  

Neurons number in the input layer 5  

Neurons number in the first hidden layer 40 (5 + 1) × 40 = 240 

Neurons number in the sencond hidden 

layer 
60 (40 + 1) × 60 = 2460 

Dropout layer 0.25 (25%)  

Neurons number in the output layer 1, Función de activación: 

Linear 

60+1=61 

Learning rate 0.001  

Batch Size 32  

Optimizer ADAM  

Epochs number (Early Stopping) 50  

Table 3. Parameters of the 1D-CNN 

1D-CNN Inputs/Hiperparameters Commentary/Train. 

Param. parameters 
Input Variables (Normalized) SZA, SAA, VAA, AOD, RAD Input as column vector 

Activation Function ReLU Fourth and tenth GeLU 

Training Loss Function MSE Regression 

Layers Number 13  

1st layer: “Reshape” Target Shape: 5 × 1 Row vector conversion 

2nd layer: “Conv 1D” Kernels: 32, Size: 2 × 1 (2 × 1 + 1) × 32 = 96 

3rd layer: “Conv 1D” Kernels: 64, Size: 2 × 1 (2 × 1 × 32 + 1) × 64 = 4160 

4th layer: “Conv 1D” Kernels: 128, Size: 2 × 1 (2 × 1 × 64 + 1) × 128 = 16512 

5th layer: “Conv 1D” Kernels: 256, Size: 2 × 1 (2 × 1 × 128 + 1) × 256
= 65792 

6th layer: “Reshape” Target Shape: 256 × 1 Row vector conversion 

7th layer: “Maxpooling” Pool size: 2, Strides: 2 Dimensionality reduction 

8th layer: “Flatten” N/A MLP input 

9th layer: “Dropout” 0.25 (25%) Prevent Overfitting 

10th layer: “Dense” 256 neurons (128 + 1) × 256 = 33024 

11th layer: “Dense” 128 neurons (256 + 1) × 128 = 32896 

12th layer: “Dropout” 0.25 (25%) Prevent Overfitting 

13th layer: “Densa” 1 neuron, Activation Function: Linear (128 + 1) × 1 = 129 

Learning rate 0.001  

Batch Size 32  

Optimizer ADAM  

Épochs number (Early Stopping) 8  
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3.3.2 Multilayer Perceptron Architecture (MLP) 

The model implemented in Keras using the 
sequential API is as follows. 

3.3.3 One Dimension Convolutional Neural 
Network Architecture (1D-CNN) 

The model implemented in Keras using “Functional 
API” is the following, the model presented in [9] 
was taken as a base, with some modifications, in 
particular the input was taken in the form of a 
vector and no readjustment was made in the form 
of the input tensor as mentioned in this article. The 
parameters of the implemented model are the 
following, the calculation of learning parameters is 
shown for each layer where there is. 

3.3.4 Multilayer Perceptron with Numerical 
Embedding (MLP-NE) 

The model implemented in Keras using “Functional 
API” is the following. 

3.3.5 Vision Transformer Architecture (ViT) 

The model implemented in Keras using “Functional 
API” and “Subclassing” is as follows, each 
Embedding of each parameter is stacked to form 

the “array of embeddings”, so that the sequence 
that is processed is the sequence of parameters. 
The Vision Transformer architecture was taken as 
a basis, in which only the encoder is implemented 
[18, 25]. 

The dense layers of Query, Key and Value (3 
dense layers, see equation), the number of 
attention heads and the output dense layer are 
taken into account to reduce the dimension of the 
concatenation of the attention heads, the formula 
for calculating the MHSA is then: 

𝑃𝑎𝑟.  𝑀𝐻𝑆𝐴 = (𝐸𝑚𝑏𝑒𝑑_𝑑𝑖𝑚 + 1) × 𝐾𝑒𝑦𝑑𝑖𝑚 × 3
× 𝐴𝑡𝑡_𝐻𝑒𝑎𝑑𝑠
+ (𝐾𝑒𝑦_𝑑𝑖𝑚 × 𝐴𝑡𝑡_𝐻𝑒𝑎𝑑𝑠 + 1)
× 𝐸𝑚𝑏𝑒𝑑_𝑑𝑖𝑚 

𝑃𝑎𝑟. 𝑀𝐻𝑆𝐴 = (32 + 1) × 32 × 3 × 2 + (64 + 1) × 32
= 6336 + 2080 = 8416 

All scenarios were implemented on a Windows 
PC with 3.20 GHz Intel Core i7-8700 CPU and 8 
GB RAM. The Adam (Adaptive moment 
estimation) optimization algorithm was used in 
all models. 

Table 4: Parameters of the MLP + Numerical Embedding 

MLP-NE Inputs/Hiperparameters 
Trainable 

Parameters 

Input Variables (Normalized) SZA, SAA, VAA, AOD, RAD  

Activation Function ReLU (except the “embedding” layer and the 

output) 

 

Training Loss Function MSE  

Embedding dimensión for each 

input 

10 (dense layer without activation function) 10 × 5 = 50 

Number of hidden layers 2  

Neurons number in the input layer 50  

Neurons number in the first hidden 

layer 

40 (50 + 1) × 40 = 2040 

Neurons number in the second 

hidden layer 

60 (40 + 1) × 60 = 2460 

Dropout layer 0.25 (25%)  

Neurons number in the output 

layer 

1, Función de activación: Linear  

Learning rate 0.001  

Batch Size 32  

Optimizer ADAM  

Epochs number (Early Stopping) 20  
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Table 5. Parameters of the ViT 

ViT Inputs/Hiperparameters Activation Function 
Commentary/Trainable 

parameters 

Input Variables 

(Normalized) 

SZA, SAA, VAA, AOD, RAD N/A  

Training Loss 

Function 

MSE N/A Regression 

Embedding 

dimension for each 

input variable 

𝐸𝑚𝑏𝑒𝑑_𝑑𝑖𝑚 = 32 Dense layer each 

parameter without 

activation function 

32 × 5 = 160 

Encoders number 3 N/A N/A 

Attention Heads 

Number 

𝐴𝑡𝑡_𝐻𝑒𝑎𝑑𝑠 = 2 N/A N/A 

Key Matrix 

Dimension 

𝐾𝑒𝑦_𝑑𝑖𝑚 = 𝐸𝑚𝑏𝑒𝑑_𝑑𝑖𝑚 N/A N/A 

Encoder Hiperparameter Activation Function 
Commentary/Trainable 

parameters 

1st Layer: 

“Normalization” 

Epsilon: 10−6 N/A 64 (obtained from model 

summary) 

2nd layer: “Multi Head 

Self Attention” 

Dropout: 0.1 (10%) N/A 8416* (see equation)  

3rd layer: “Add” N/A N/A 0 

4th layer: 

“Normalization” 

Epsilon: 10−6 N/A 64 (obtained from model 

summary) 

5th layer: “Dense” 64 neurons GELU (ReLU para el 

tercer encoder) 

(32 + 1) × 64 = 2112 

6th layer: “Dense” 32 neurons GELU(ReLU para el 

tercer encoder) 

(64 + 1) × 32 = 2080 

7th layer: “Dropout” 0.25 (25%) N/A Prevent Overfitting 

8th layer: “Add” N/A N/A 0 

Output layer Hiperparameter Activation Function 
Commentary/Trainable 

parameters 

1st layer: 

“Normalization” 

Epsilon: 10−6 N/A 64 (obtained from model 

summary) 

2nd layer: “Flatten” N/A N/A N/A 

3rd layer: “Dense” 𝑁𝑢𝑚 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 ×

𝐸𝑚𝑏𝑒𝑑_𝑑𝑖𝑚 × 2 = 320  

neuronas 

ReLU (160 + 1) × 320 = 51520 

4th layer: “Dense” 𝑁𝑢𝑚 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 ×

𝐸𝑚𝑏𝑒𝑑_𝑑𝑖𝑚 = 160 neuronas 

ReLU (320 + 1) × 160 = 51360 

5th layer: “Dropout” 0.25(25%) N/A N/A 

6th layer: “Dense” 1 neurona Linear (160 + 1) × 1 = 161 
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3.4 Performance Evaluation 

The performance of the proposed models was 
evaluated using the test data set. So two criteria 
were used to make the evaluation before deciding 
whether to modify the architecture of the models or 
the hyperparameters, including the root mean 
square error (RMSE) and the coefficient of 
determination (R²). For a value of RMSE>0.5 
and/or R²<0.6, it was considered that the 
architecture or hyperparameters should be 
adjusted iteratively until the acceptable conditions 
were met. The formulas for these metrics are 
as follows: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑆𝑅𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑆𝑅𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑)

2𝑛
1

𝑛
 (2) 

𝑅2 = 1 −
∑ (𝑆𝑅𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 − 𝑆𝑅𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

2𝑛
1

∑ (𝑆𝑅𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 − 𝑆𝑅̅̅̅̅
𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑)2𝑛

1

 (3) 

4 Results and Comparison 

This section presents the results and the 
comparison between the different 
models presented. 

4.1 Model Training and Testing in the 
Simulation Domain 

The entire simulated data set (3840 simulations) 
was divided into two subsets: training and 
validation, at a proportion respectively of 80% and 
20% of the total simulated data set. To ensure an 
unbiased split of the data set, the data set was 
used randomly to choose the training and 
validation data. 

Cross-validation of the model was also carried 
out using the K-Fold method (K=5) [18], that is, the 
data set was divided into 5 equal parts, so that the 
validation data set was rotated. 

As discussed in the previous section, different 
scenarios, including varying the network 
architecture and tuning the network 
hyperparameters with various values, were 
evaluated to construct an optimal network for 
surface reflectance modeling (i.e. 
atmospheric correction). 

As part of these experiments, the following 
Table provides information on the performance of 
the models presented above. It is striking that the 
convolutional model has the worst performance, 
which may be due to an inadequate number of 
training data or because it is convenient to use a 3-
dimensional input tensor. In fact, in [9] they 
“reshape” the input vector to convert it into a 3-
channel input. 

Total Parameters 
160 + (64 + 8416 + 64 + 2112 + 2080) × 3 + (64 + 51520 + 51360 + 161) = 141473 

Learning rate 0.001 N/A N/A 

Batch Size 32   

Optimizer ADAM   

Épochs number 

(Early Stopping) 

20 N/A N/A 

Table 6. Comparison of metrics of four evaluated models 

Model RMSE R² 

Multilayer Perceptron (MLP) 0.021 0.994 

One Dimensional Convolutonal Neural Network (1D-CNN) 0.120 0.819 

Multilayer Perceptron with Numerical Embedding (MLP-NE) 0.018 0.995 

Vision Transformer (ViT) 0.036 0.982 
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For comparison purposes, the results obtained 
are the following: 

An attempt was made to make changes to the 
architecture of the convolutional model, both by 
trying to reduce the number of parameters, via 

reducing the number of filters or kernels, as well as 
by decreasing the number of layers, however, it 
was concluded that the problem is the loss of the 
model's ability to generalize is mainly due to the 
use of a small data set. 

 

(a) 

 

(b) 

Fig. 5. MSE for training data (blue) and validation data (orange) versus epoch for the 1D-CNN model (a). MSE for 

training data (blue) and accuracy (R²) for validation data versus epoch for the 1D-CNN model (b) 

 

(a) 

 

(b) 

Fig. 6. MSE for training data (blue) and validation data (orange) versus epoch for the MLP model (a). MSE for training 

data (blue) and accuracy (R²) for validation data versus epoch for the MLP model (b) 

 

(a) 
 

(b) 

Fig. 7. MSE for training data (blue) and validation data (orange) versus epoch for the MLP-NE model (a). MSE for 

training data (blue) and accuracy (R²) for validation data versus epoch for the MLP-NE model (b) 
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(a) 

 

(b) 

Fig. 8. MSE for training data (blue) and validation data (orange) versus epoch for the ViT model (a). MSE for training 

data (blue) and accuracy (R²) for validation data versus epoch for the ViT model (b) 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 9. Dispersion between the simulated reflectance and the reflectance estimated by the 1D-CNN model (a). 

Dispersion between the simulated reflectance and the reflectance estimated by the MLP model (b). Dispersion between 
the simulated reflectance and the reflectance estimated by the MLP-NE model (c). Dispersion between the simulated 
reflectance and the reflectance estimated by the ViT model (d) 
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Several other attempts were made to improve 
the generalization ability like layer normalization, 
but no improvement was observed. As we can see 
in the previous plots, the MLP-NE model has the 
best performance of the four evaluated models. 

Most of the predicted values of this model do 
almost a perfect match with the regression line, it 
is, it shows a strong agreement with the simulated 
value. Interestingly, the CNN model has the worst 
performance of all models, the reason behind this 
behavior could be the small size of the data-
set [27]. 

5 Conclusions 

This study presented an emulation-based 
approach to approximate surface reflectance 
(Atmospheric Correction) based on RTM using 4 
different Deep Learning models. The developed 
models achieved acceptable precision and 
computational speed, except in the convolutional 
model which, as mentioned above, may be due to 
insufficient data or the type of vector input. 

It could be observed that the convolution model 
has a notably lower performance than the other 
models, this is due, as inferred based on the tests 
carried out, to the fact that the data set is small as 
explained in [27]. On the other hand, the trained 
models are applicable only for the defined ranges 
of inputs in the simulation domain and need 
retraining in case of changing these ranges for 
other areas of interest. 

The search for a suitable architecture and 
optimal hyperparameters was based on a trial and 
error approach, which requires more time and 
effort to configure. But once the network has been 
trained and tested, it can operate with acceptable 
accuracy and speed. More importantly, this effort 
demonstrated that emulation-based systems using 
this approach can be an effective solution for 
establishing the relationship between remote 
sensing observations and atmospheric and 
surface parameters. 

6 Future Work 

Research on this type of models to emulate RTC 
will be expanded to include at least 100,000 

simulations, which according to several authors [9, 
22] is enough to adequately train this type of 
models, so it will possibly be necessary to adjust 
the model architecture and do new tests. In 
particular, it is desired to reevaluate the 
performance of the convolutional model with a 
larger data set. 
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