
Deep Learning Based Emulation of Radiative Transfer Code
for Atmospheric Correction of Satellite Images

Arturo Enrique Jasso-Garduño*, Ignacio Muñoz-Máximo, David Pinto,
Juan Manuel Ramírez-Cortés

Benemérita Universidad Autónoma de Puebla,
Facultad de Ciencias de la Computación, Puebla,

Mexico

arturo.jasogarduno@viep.com.mx, {ignacio.munozmax, david.pinto}@correo.buap.mx, jmram@inaoep.mx

Abstract. Atmospheric correction of satellite images in

the remote sensing area is one of the main pre-
processing techniques since the better the effects of the
atmosphere are eliminated in these images; the more
and better features can be extracted later. Atmospheric
correction consists of obtaining the reflectance of the
surface (whether the surface of the earth or the surface
of water, also known as “water leaving reflectance”),
taking into account the effect of the atmosphere on the
electromagnetic spectrum both by scattering and by the
absorption of sunlight. This work proposes the use of
Deep Learning models (DL) to obtain this reflectance of
the earth's surface using synthetic data generated for
different atmospheric conditions (aerosols, water vapor,
ozone) and geometric conditions during the satellite
flight, using simulations in a Radiative Transfer Code
(6S) and data from the image itself that allow training a
DL model to make this atmospheric correction. The
models evaluated in this work are a Multilayer
Perceptron (MLP), a 1D Convolutional Neural Network
(1D-CNN), a Multilayer Perceptron combined with
“Numerical Embedding” (MLP-NE) and an architecture
based on the “Vision Transformer”. (ViT)” using these
atmospheric parameters to feed the DL model. The
results obtained by the models are compared with the
numerical simulation, concluding that the last two
models in particular have quite accurate performance,
with the advantage that the inference time of the DL
model reduces the calculation time with respect to the
simulation with close precision in some cases.

Keywords. Atmospheric correction, reflectance,

radiative transfer code, atmospheric parameters,
aerosol optical thickness, deep learning.

1 Introduction

The objective of Atmospheric Correction (AC) is to
eliminate the effects of the atmosphere on satellite

images to obtain the spectral characteristics of the
surface. The atmosphere affects the light passing
through it primarily in two ways, light scattering and
absorption [1, 2].

The dominant atmospheric effect is scattering
which is additive to the remotely sensed signals
while multiplicative effect is caused by light
absorption [3]. The main factors that distort satellite
signals from the Earth's surface are aerosols and
molecular scattering, as well as absorption by
gases and particles suspended in the atmosphere
[1, 2].

All gaseous and aerosol components of the
atmosphere generate a distortion in the
electromagnetic spectrum that causes the
reflectance captured by the satellite sensors to
include distortions that must be corrected to make
a correct identification of the real reflectance
values on the Earth's surface.

Over time, different methods have been
developed to obtain the real reflectance of the
Earth's surface, most of them are based on the
theory of radiative transfer developed and
published in 1960 by Chandrasekhar [4]. Some
methods are based only on the image itself (i.e.
Image Based), among which we have some such
as DOS (Dark Object Subtraction) QUAC among
others [1, 5, 6].

Others require auxiliary atmospheric
parameters (i.e. FLAASH, 6S) [1, 5, 6], generally
these methods are based on some radiative
transfer code. Radiative transfer codes (RTC) are
scientific software that numerically simulate the
propagation of electromagnetic radiation through a
medium. RT simulations are used in various

Computación y Sistemas, Vol. 28, No. 4, 2024, pp. 2327–2341
doi: 10.13053/CyS-28-4-5287

ISSN 2007-9737

mailto:arturo.jasogarduno@viep.com.mx
mailto:david.pinto@correo.buap.mx
mailto:jmram@inaoep.mx

disciplines, including astrophysics, Earth and
planetary sciences, and Remote Sensing.

The most accurate methods have generally
been those based on Radiative Transfer Codes
(i.e., 6S, MODTRAN) [5]. However, the complexity,
high dimensionality, and computational cost of
numerical RTCs, particularly in large areas with
large data sets, restrict their use in real remote
sensing applications, including atmospheric
correction. Traditionally, to overcome these
problems, look-up tables (LUT: Look-up Tables) [7,
8] have been used to approximate the simulations
of a radiative transfer code and recently it has been
suggested to approximate numerical RTCs
through machine learning, this approximation
being known as emulation [9, 10, 11].

Machine learning (ML) algorithms, such as
neural networks (Deep Learning), have
demonstrated a good ability to emulate these
complex and non-linear RTCs based on numerical
methods. 6S RTC simulations have a simulation
time of typically 0.97 seconds [12], while the
emulation reduces the computation time.

In this work, we propose and compare four
different architectures based on Deep Learning
(DL) to emulate a 6S radiative transfer code. In this
approach, instead of using LUTs (Look-Up
Tables), TOA (Top of Atmosphere) values along
with a subset of other atmospheric parameters are
used by DL models to predict the correct SR
(Surface Reflectance) values [13].

The database was created from synthetic data
generated using simulations in the RTC 6S, in
particular the development was done using the
Python interface with 6S called Py6S, developed
by [14,15].

2 Theoretical Background

This section presents the main ideas and
procedures used in the construction of a synthetic
data set and the analyzed models. It includes brief
descriptions of the RTC used (6S) as well as the
models used in this comparison.

2.1 Atmospheric RTC 6S

The Second Simulation of the Satellite Signal in the
Solar Spectrum (known, understandably, as 6S) is

a Radiative Transfer Model that is widely used in
remote sensing. It simulates the effect of the
atmosphere on the light passing through it.

6S was originally developed by a team led by
Eric Vermote and is described in detail in [16] and
the original manuals. The original objective of this
RTC was to describe the effects of the dispersion
and absorption of atmospheric gases and aerosols
on the propagation of solar radiation both
downward and upward through the atmosphere,
taking into account that sunlight passes through
when the atmosphere reaches the Earth, it
interacts with the Earth's surface and returns to the
atmosphere where it passes through it again and
is captured by the sensors in space.

The 6S code can be used on two types
of surfaces:

– Isotropic (also known as Lambertian), in which
a diffuse reflection occurs. For this study it is
assumed that the surface is Lambertian, which
offers acceptable results in most cases, except
when the value of the optical thickness of the
aerosols is high [17].

– Anisotropic. A classic example of an
anisotropic surface is water, since the
reflection of light is not homogeneous but
specular, that is, it depends on the angle of
incidence of the light and the angle of view of
the observer (i.e., BRDF).

2.2 Deep Learning

Deep Learning (DL) is a branch of Artificial
Intelligence that belongs to the techniques of so-
called Machine Learning. It gained particular
importance in the early 2010’s mainly due to the
use of convolutional neural networks (CNN) in
computer vision applications [18].

Since then and due to the good results, that
these algorithms have given, the use of these
networks has been extended to other applications
such as language (Natural Language Processing),
audio, video, etc. Regression problems commonly
solved with DL models consist of predicting the
value of a continuous variable from certain input.

Because of this, continuous variables such as
reflectance can be estimated using a DL model to
predict their value, so the model is trained to do
regression using different combinations of input

Computación y Sistemas, Vol. 28, No. 4, 2024, pp. 2327–2341
doi: 10.13053/CyS-28-4-5287

Arturo Enrique Jasso-Garduño, Ignacio Muñoz-Máximo, David Pinto, et al.2328

ISSN 2007-9737

parameters and using the data obtained through
simulations, in this case simulations with the
RTC 6S.

DL models need a loss function, which is the
one that will be optimized during model training.
For regression problems, the commonly used loss
function is the so-called MSE (Mean Squared
Error). In this work we present 4 models that are
suitable for regression such as MLP, 1D-CNN,
MLP-NE (Multilayer Perceptron with Numerical
Embedding) and an architecture based on the ViT
(Vision Transformer).

2.2.1 Multilayer Perceptron (MLP)

The multilayer perceptron is an artificial neural
network formed by multiple layers (generally dense
layers, that is, fully connected layers), usually an
input layer, intermediate layers also called hidden
layers and an output layer. Each neuron usually
contains an activation function that introduces
nonlinearity into the network. One of the most used
activation functions is ReLu. MLPs have been used
in atmospheric correction and aerosol optical
thickness (AOD) estimation applications [19, 20,
21, 22].

2.2.2 One Dimension Convolutional Neural
Networks (1D-CNN)

Traditionally convolutional neural networks have
been used for images, hence two-dimensional
filters (kernels) are used. In reality, the kernel can

be of any dimension, which is why its use has
spread in applications that require one-
dimensional kernels such as text, audio, etc.
Recently, the use of 1D-CNN has been proposed
to estimate bidirectional reflectance in satellite
images [9].

These networks consist of convolutional layers
(to extract features), Maxpooling layer (to reduce
dimensionality of the data) and a classification or
regression layer made up of dense layers.

2.2.3 Multilayer Perceptron with Numerical
Embedding (MLP-NE)

Recently improvements have been made to the
performance of the MLP, using what is known as
numerical embedding. “Embedding” is a vector
representation of some parameter.

The concept comes from the area of Natural
Language Processing in which a word is
represented as a vector. In the article “On
Embeddings for Numerical Features in Tabular
Deep Learning” [23], the authors demonstrate how
the vector representation of scalar parameters can
substantially improve the performance of MLP in
applications with tabular data (i.e. they have
categorical and numerical data).

One of the ways to do numerical embedding
that is presented in this work is to do a dimensional
expansion of each parameter using a dense layer
[24]. In this work, “Numerical Embedding” is used
to represent each input parameter as a vector, so

Fig. 1. Flowchart for atmospheric correction of satellite data. Homogeneous Lambertian and anisotropic surfaces.
(Adapted from Vermote et al. 2007)

Computación y Sistemas, Vol. 28, No. 4, 2024, pp. 2327–2341
doi: 10.13053/CyS-28-4-5287

Deep Learning Based Emulation of Radiative Transfer Code for Atmospheric Correction ... 2329

ISSN 2007-9737

that the input to the MLP is no longer a set of scalar
data, but a set of vectors.

2.2.4 Vision Transformer (ViT)

The original Transformer was designed to be used
in Natural Language Processing applications, later
in 2021 it was extended to be used in computer

vision applications. The idea of the Vision
Transformer (ViT) is to decompose the image into
“patches” and convert each patch into a vector,
treating it as if it were a word [25].

In this work, an architecture based on the
“Vision Transformer” is proposed that incorporates
“Numerical Embedding” to represent each

Fig. 2. Flowchart of the proposed methodology to simulate and train the models

Fig. 3. WRS 25/47 scene used as reference for selection of simulation parameters

Computación y Sistemas, Vol. 28, No. 4, 2024, pp. 2327–2341
doi: 10.13053/CyS-28-4-5287

Arturo Enrique Jasso-Garduño, Ignacio Muñoz-Máximo, David Pinto, et al.2330

ISSN 2007-9737

parameter of the input model as a vector so that
the ViT processes a sequence of parameters
represented as vectors, that is, the matrix of
embeddings is made up of a set of vectors in which
each vector represents a scalar parameter, where
each input parameter is numerically embedded
(vectorized) to form the embedding matrix.

Unlike the original ViT, in this proposal
“Positional Embedding” is not used since the
position of the parameters is not relevant, as is the
position of the patches in an image.

3 Material and Methodology

The methodology proposed in this article is divided
into 2 phases. The first phase consists of doing
enough simulations with Py6S (3840 simulations
were carried out) with different values for the sun-
satellite geometry, different atmospheric
conditions and different radiances captured by the
satellite sensor according to the range found in the
metadata file.

Subsequently, random samples of 80% of the
total data were generated to create the training
data set of the models, the remaining 20% was
used to create the validation data set with which
each model was tested [9, 22]. The second phase
consists of training and validating the four model
architectures presented in the previous section.

Validation is done with respect to two metrics
that are the root mean square error (RMSE) and
the coefficient of determination (R²). Additionally,

the inputs were normalized using the “Min-Max
Normalization” method.

In general, the optimization of all
hyperparameters was carried out iteratively until
the combination of parameters that offered the best
results was found. In general, there is no fixed
methodology to find the best values for the
hyperparameters in this type of applications [22]
since the “optimal” value of these depends on
many factors.

3.1 Parameter Range for Generating Synthetic
Data with the RTC 6S

To create the data set with which the models will
be trained, a series of combinations of different
variables were created within a previously defined
range that adjusted to the typical values of the area
of interest being worked on.

This area of interest is located in scene WRS
25/47 which covers the states of Tlaxcala, Puebla,
Veracruz, Oaxaca and a small portion of the state
of Hidalgo.

The following figure shows the footprint of
scene WRS 25/47. Although it is not a critical
parameter used in simulations carried out with 6S,
when making atmospheric corrections, it is
recommended that the percentage of cloud cover
(Land Cloud Cover) be less than 10% although
NASA recommends using images of up to 20%
with cloud cover, it also depends on the area
studied, some researchers suggest no more than
20%, so 10-20% is usually an appropriate value to

Table 1. Description and ranges of the 6S model key input parameters used to simulate Surface Reflectance

Parameters Symbol Description Unit Range Step

Sun-Sensor

Geometry

SZA Sun Zenith Angle Deg 40-70 10

VZA View Zenith Angle Deg 0 (Nadir) N/A

SAA Sun Azimuth Angle Deg 120-240 40

VAA View Azimuth Angle Deg 120-240 40

Atmospheric

Optical
AOD Aerosol Optical

Depth
Unitless 0-0.5 0.1

Atmospheric

Model
N/A Midlatitude Summer Unitless N/A N/A

Aerosol Model N/A Continental Unitless N/A N/A

Radiance RAD Apparent Radiance 𝑊𝑎𝑡𝑡
𝑠𝑟 × 𝑚2⁄ 0-450

50

Computación y Sistemas, Vol. 28, No. 4, 2024, pp. 2327–2341
doi: 10.13053/CyS-28-4-5287

Deep Learning Based Emulation of Radiative Transfer Code for Atmospheric Correction ... 2331

ISSN 2007-9737

be selected1. However, to make land use
classification for example, the percentage can be
even lower 5-6% [26].

The ranges of the variables used are
the following: Additionally, one of the images of this
area captured in month 5, day 16 was selected
since the translational movement of the earth is
also taken into account when making the
simulation and finally the “Coastal/Aerosol” band
was selected, whose Central wavelength value is
442.96nm (obtained from Landsat OLI sensor
Relative Spectral Response file).

Relative Spectral Response, shown in figure 4,
plots the sensor sensitivity for the whole
wavelength range for each band. Usually the
center value of each band is used for simulation
purposes and this is the approach followed in
this study.

Relative Spectral Response is also used for
spectral convolution when doing calibration (i.e.
vicarious calibration). The Coastal/Aerosol band
was selected randomly, since the objective of this
work is to compare the performance of different DL
models to emulate the RTC 6S.

As a reference, this band has two cases use,
one is to improve the estimation of aerosols to be
used in atmospheric correction methods and two,
the capture of images of inland waters (i.e. lakes
and coasts).

1www.researchgate.net/post/What_is_the_Landsat_Data_Clo

ud_coverage_selection_criteria

3.2 Atmospheric Correction (AC) in 6S

Radiative Transfer Code 6S allows atmospheric
correction of satellite images (i.e. to obtain the
reflectance of the Earth's surface). For this, it is
necessary to introduce the parameters described
above and assume that the surface is isotropic (i.e.
Lambertian). Normally the value of the apparent
radiance must be entered, that is, the pixel must
have previously been converted from its raw value
(Digital Number) to radiance. The conversion is
done with the following formula [20]:

𝐿𝜆 = 𝑔𝑎𝑖𝑛 × 𝐷𝑁 + 𝑏𝑖𝑎𝑠 (1)

𝐿𝜆: Radiance in band 𝜆,
𝑔𝑎𝑖𝑛: Named also

REFLECTANCE_MULT_BAND_X, where X is

the band number, 𝑏𝑖𝑎𝑠: Named

REFLECTANCE_ADD_BAND_1.

As with most atmospheric correction
algorithms, the correction is done pixel by pixel,
except in a few algorithms in which the AC is done
band by band as in “Empirical Line Calibration” [6].

3.3 Deep Learning Models Development

Building a robust, accurate, and well-generalized
DL model depends on several factors, including
preprocessing the training data set, building the
network architecture, and finally tuning
hyperparameters such as learning rate, the lot
size, etc. (Chollet, 2021). The following sections
describe these critical factors.

3.3.1 Data Preprocessing

The ranges of all input variables (from uniform
distributions) were resized between [0, 1] using
Min-Max normalization. In addition, before training
the network, the batch data set was shuffled to
improve the training convergence and improve the
generalization ability of the network [9, 20].

Fig. 4. Relative spectral response of the landsat 8
OLI sensor

Computación y Sistemas, Vol. 28, No. 4, 2024, pp. 2327–2341
doi: 10.13053/CyS-28-4-5287

Arturo Enrique Jasso-Garduño, Ignacio Muñoz-Máximo, David Pinto, et al.2332

ISSN 2007-9737

Table 2: Parameters of the MLP

MLP Parameters/Hiperparameters
Trainable

Parameters

Input Variables (Normalized) SZA, SAA, VAA, AOD, RAD

Activation Function ReLU (except output layer)

Training Loss Function MSE

Hidden Layers 2

Neurons number in the input layer 5

Neurons number in the first hidden layer 40 (5 + 1) × 40 = 240

Neurons number in the sencond hidden

layer
60 (40 + 1) × 60 = 2460

Dropout layer 0.25 (25%)

Neurons number in the output layer 1, Función de activación:

Linear

60+1=61

Learning rate 0.001

Batch Size 32

Optimizer ADAM

Epochs number (Early Stopping) 50

Table 3. Parameters of the 1D-CNN

1D-CNN Inputs/Hiperparameters Commentary/Train.

Param. parameters
Input Variables (Normalized) SZA, SAA, VAA, AOD, RAD Input as column vector

Activation Function ReLU Fourth and tenth GeLU

Training Loss Function MSE Regression

Layers Number 13

1st layer: “Reshape” Target Shape: 5 × 1 Row vector conversion

2nd layer: “Conv 1D” Kernels: 32, Size: 2 × 1 (2 × 1 + 1) × 32 = 96

3rd layer: “Conv 1D” Kernels: 64, Size: 2 × 1 (2 × 1 × 32 + 1) × 64 = 4160

4th layer: “Conv 1D” Kernels: 128, Size: 2 × 1 (2 × 1 × 64 + 1) × 128 = 16512

5th layer: “Conv 1D” Kernels: 256, Size: 2 × 1 (2 × 1 × 128 + 1) × 256
= 65792

6th layer: “Reshape” Target Shape: 256 × 1 Row vector conversion

7th layer: “Maxpooling” Pool size: 2, Strides: 2 Dimensionality reduction

8th layer: “Flatten” N/A MLP input

9th layer: “Dropout” 0.25 (25%) Prevent Overfitting

10th layer: “Dense” 256 neurons (128 + 1) × 256 = 33024

11th layer: “Dense” 128 neurons (256 + 1) × 128 = 32896

12th layer: “Dropout” 0.25 (25%) Prevent Overfitting

13th layer: “Densa” 1 neuron, Activation Function: Linear (128 + 1) × 1 = 129

Learning rate 0.001

Batch Size 32

Optimizer ADAM

Épochs number (Early Stopping) 8

Computación y Sistemas, Vol. 28, No. 4, 2024, pp. 2327–2341
doi: 10.13053/CyS-28-4-5287

Deep Learning Based Emulation of Radiative Transfer Code for Atmospheric Correction ... 2333

ISSN 2007-9737

3.3.2 Multilayer Perceptron Architecture (MLP)

The model implemented in Keras using the
sequential API is as follows.

3.3.3 One Dimension Convolutional Neural
Network Architecture (1D-CNN)

The model implemented in Keras using “Functional
API” is the following, the model presented in [9]
was taken as a base, with some modifications, in
particular the input was taken in the form of a
vector and no readjustment was made in the form
of the input tensor as mentioned in this article. The
parameters of the implemented model are the
following, the calculation of learning parameters is
shown for each layer where there is.

3.3.4 Multilayer Perceptron with Numerical
Embedding (MLP-NE)

The model implemented in Keras using “Functional
API” is the following.

3.3.5 Vision Transformer Architecture (ViT)

The model implemented in Keras using “Functional
API” and “Subclassing” is as follows, each
Embedding of each parameter is stacked to form

the “array of embeddings”, so that the sequence
that is processed is the sequence of parameters.
The Vision Transformer architecture was taken as
a basis, in which only the encoder is implemented
[18, 25].

The dense layers of Query, Key and Value (3
dense layers, see equation), the number of
attention heads and the output dense layer are
taken into account to reduce the dimension of the
concatenation of the attention heads, the formula
for calculating the MHSA is then:

𝑃𝑎𝑟. 𝑀𝐻𝑆𝐴 = (𝐸𝑚𝑏𝑒𝑑_𝑑𝑖𝑚 + 1) × 𝐾𝑒𝑦𝑑𝑖𝑚 × 3
× 𝐴𝑡𝑡_𝐻𝑒𝑎𝑑𝑠
+ (𝐾𝑒𝑦_𝑑𝑖𝑚 × 𝐴𝑡𝑡_𝐻𝑒𝑎𝑑𝑠 + 1)
× 𝐸𝑚𝑏𝑒𝑑_𝑑𝑖𝑚

𝑃𝑎𝑟. 𝑀𝐻𝑆𝐴 = (32 + 1) × 32 × 3 × 2 + (64 + 1) × 32
= 6336 + 2080 = 8416

All scenarios were implemented on a Windows
PC with 3.20 GHz Intel Core i7-8700 CPU and 8
GB RAM. The Adam (Adaptive moment
estimation) optimization algorithm was used in
all models.

Table 4: Parameters of the MLP + Numerical Embedding

MLP-NE Inputs/Hiperparameters
Trainable

Parameters

Input Variables (Normalized) SZA, SAA, VAA, AOD, RAD

Activation Function ReLU (except the “embedding” layer and the

output)

Training Loss Function MSE

Embedding dimensión for each

input

10 (dense layer without activation function) 10 × 5 = 50

Number of hidden layers 2

Neurons number in the input layer 50

Neurons number in the first hidden

layer

40 (50 + 1) × 40 = 2040

Neurons number in the second

hidden layer

60 (40 + 1) × 60 = 2460

Dropout layer 0.25 (25%)

Neurons number in the output

layer

1, Función de activación: Linear

Learning rate 0.001

Batch Size 32

Optimizer ADAM

Epochs number (Early Stopping) 20

Computación y Sistemas, Vol. 28, No. 4, 2024, pp. 2327–2341
doi: 10.13053/CyS-28-4-5287

Arturo Enrique Jasso-Garduño, Ignacio Muñoz-Máximo, David Pinto, et al.2334

ISSN 2007-9737

Table 5. Parameters of the ViT

ViT Inputs/Hiperparameters Activation Function
Commentary/Trainable

parameters

Input Variables

(Normalized)

SZA, SAA, VAA, AOD, RAD N/A

Training Loss

Function

MSE N/A Regression

Embedding

dimension for each

input variable

𝐸𝑚𝑏𝑒𝑑_𝑑𝑖𝑚 = 32 Dense layer each

parameter without

activation function

32 × 5 = 160

Encoders number 3 N/A N/A

Attention Heads

Number

𝐴𝑡𝑡_𝐻𝑒𝑎𝑑𝑠 = 2 N/A N/A

Key Matrix

Dimension

𝐾𝑒𝑦_𝑑𝑖𝑚 = 𝐸𝑚𝑏𝑒𝑑_𝑑𝑖𝑚 N/A N/A

Encoder Hiperparameter Activation Function
Commentary/Trainable

parameters

1st Layer:

“Normalization”

Epsilon: 10−6 N/A 64 (obtained from model

summary)

2nd layer: “Multi Head

Self Attention”

Dropout: 0.1 (10%) N/A 8416* (see equation)

3rd layer: “Add” N/A N/A 0

4th layer:

“Normalization”

Epsilon: 10−6 N/A 64 (obtained from model

summary)

5th layer: “Dense” 64 neurons GELU (ReLU para el

tercer encoder)

(32 + 1) × 64 = 2112

6th layer: “Dense” 32 neurons GELU(ReLU para el

tercer encoder)

(64 + 1) × 32 = 2080

7th layer: “Dropout” 0.25 (25%) N/A Prevent Overfitting

8th layer: “Add” N/A N/A 0

Output layer Hiperparameter Activation Function
Commentary/Trainable

parameters

1st layer:

“Normalization”

Epsilon: 10−6 N/A 64 (obtained from model

summary)

2nd layer: “Flatten” N/A N/A N/A

3rd layer: “Dense” 𝑁𝑢𝑚 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 ×

𝐸𝑚𝑏𝑒𝑑_𝑑𝑖𝑚 × 2 = 320

neuronas

ReLU (160 + 1) × 320 = 51520

4th layer: “Dense” 𝑁𝑢𝑚 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 ×

𝐸𝑚𝑏𝑒𝑑_𝑑𝑖𝑚 = 160 neuronas

ReLU (320 + 1) × 160 = 51360

5th layer: “Dropout” 0.25(25%) N/A N/A

6th layer: “Dense” 1 neurona Linear (160 + 1) × 1 = 161

Computación y Sistemas, Vol. 28, No. 4, 2024, pp. 2327–2341
doi: 10.13053/CyS-28-4-5287

Deep Learning Based Emulation of Radiative Transfer Code for Atmospheric Correction ... 2335

ISSN 2007-9737

3.4 Performance Evaluation

The performance of the proposed models was
evaluated using the test data set. So two criteria
were used to make the evaluation before deciding
whether to modify the architecture of the models or
the hyperparameters, including the root mean
square error (RMSE) and the coefficient of
determination (R²). For a value of RMSE>0.5
and/or R²<0.6, it was considered that the
architecture or hyperparameters should be
adjusted iteratively until the acceptable conditions
were met. The formulas for these metrics are
as follows:

𝑅𝑀𝑆𝐸 = √
∑ (𝑆𝑅𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑆𝑅𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑)

2𝑛
1

𝑛
 (2)

𝑅2 = 1 −
∑ (𝑆𝑅𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 − 𝑆𝑅𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

2𝑛
1

∑ (𝑆𝑅𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 − 𝑆𝑅̅̅̅̅
𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑)2𝑛

1

 (3)

4 Results and Comparison

This section presents the results and the
comparison between the different
models presented.

4.1 Model Training and Testing in the
Simulation Domain

The entire simulated data set (3840 simulations)
was divided into two subsets: training and
validation, at a proportion respectively of 80% and
20% of the total simulated data set. To ensure an
unbiased split of the data set, the data set was
used randomly to choose the training and
validation data.

Cross-validation of the model was also carried
out using the K-Fold method (K=5) [18], that is, the
data set was divided into 5 equal parts, so that the
validation data set was rotated.

As discussed in the previous section, different
scenarios, including varying the network
architecture and tuning the network
hyperparameters with various values, were
evaluated to construct an optimal network for
surface reflectance modeling (i.e.
atmospheric correction).

As part of these experiments, the following
Table provides information on the performance of
the models presented above. It is striking that the
convolutional model has the worst performance,
which may be due to an inadequate number of
training data or because it is convenient to use a 3-
dimensional input tensor. In fact, in [9] they
“reshape” the input vector to convert it into a 3-
channel input.

Total Parameters
160 + (64 + 8416 + 64 + 2112 + 2080) × 3 + (64 + 51520 + 51360 + 161) = 141473

Learning rate 0.001 N/A N/A

Batch Size 32

Optimizer ADAM

Épochs number

(Early Stopping)

20 N/A N/A

Table 6. Comparison of metrics of four evaluated models

Model RMSE R²

Multilayer Perceptron (MLP) 0.021 0.994

One Dimensional Convolutonal Neural Network (1D-CNN) 0.120 0.819

Multilayer Perceptron with Numerical Embedding (MLP-NE) 0.018 0.995

Vision Transformer (ViT) 0.036 0.982

Computación y Sistemas, Vol. 28, No. 4, 2024, pp. 2327–2341
doi: 10.13053/CyS-28-4-5287

Arturo Enrique Jasso-Garduño, Ignacio Muñoz-Máximo, David Pinto, et al.2336

ISSN 2007-9737

For comparison purposes, the results obtained
are the following:

An attempt was made to make changes to the
architecture of the convolutional model, both by
trying to reduce the number of parameters, via

reducing the number of filters or kernels, as well as
by decreasing the number of layers, however, it
was concluded that the problem is the loss of the
model's ability to generalize is mainly due to the
use of a small data set.

(a)

(b)

Fig. 5. MSE for training data (blue) and validation data (orange) versus epoch for the 1D-CNN model (a). MSE for

training data (blue) and accuracy (R²) for validation data versus epoch for the 1D-CNN model (b)

(a)

(b)

Fig. 6. MSE for training data (blue) and validation data (orange) versus epoch for the MLP model (a). MSE for training

data (blue) and accuracy (R²) for validation data versus epoch for the MLP model (b)

(a)

(b)

Fig. 7. MSE for training data (blue) and validation data (orange) versus epoch for the MLP-NE model (a). MSE for

training data (blue) and accuracy (R²) for validation data versus epoch for the MLP-NE model (b)

Computación y Sistemas, Vol. 28, No. 4, 2024, pp. 2327–2341
doi: 10.13053/CyS-28-4-5287

Deep Learning Based Emulation of Radiative Transfer Code for Atmospheric Correction ... 2337

ISSN 2007-9737

(a)

(b)

Fig. 8. MSE for training data (blue) and validation data (orange) versus epoch for the ViT model (a). MSE for training

data (blue) and accuracy (R²) for validation data versus epoch for the ViT model (b)

(a)

(b)

(c)

(d)

Fig. 9. Dispersion between the simulated reflectance and the reflectance estimated by the 1D-CNN model (a).

Dispersion between the simulated reflectance and the reflectance estimated by the MLP model (b). Dispersion between
the simulated reflectance and the reflectance estimated by the MLP-NE model (c). Dispersion between the simulated
reflectance and the reflectance estimated by the ViT model (d)

Computación y Sistemas, Vol. 28, No. 4, 2024, pp. 2327–2341
doi: 10.13053/CyS-28-4-5287

Arturo Enrique Jasso-Garduño, Ignacio Muñoz-Máximo, David Pinto, et al.2338

ISSN 2007-9737

Several other attempts were made to improve
the generalization ability like layer normalization,
but no improvement was observed. As we can see
in the previous plots, the MLP-NE model has the
best performance of the four evaluated models.

Most of the predicted values of this model do
almost a perfect match with the regression line, it
is, it shows a strong agreement with the simulated
value. Interestingly, the CNN model has the worst
performance of all models, the reason behind this
behavior could be the small size of the data-
set [27].

5 Conclusions

This study presented an emulation-based
approach to approximate surface reflectance
(Atmospheric Correction) based on RTM using 4
different Deep Learning models. The developed
models achieved acceptable precision and
computational speed, except in the convolutional
model which, as mentioned above, may be due to
insufficient data or the type of vector input.

It could be observed that the convolution model
has a notably lower performance than the other
models, this is due, as inferred based on the tests
carried out, to the fact that the data set is small as
explained in [27]. On the other hand, the trained
models are applicable only for the defined ranges
of inputs in the simulation domain and need
retraining in case of changing these ranges for
other areas of interest.

The search for a suitable architecture and
optimal hyperparameters was based on a trial and
error approach, which requires more time and
effort to configure. But once the network has been
trained and tested, it can operate with acceptable
accuracy and speed. More importantly, this effort
demonstrated that emulation-based systems using
this approach can be an effective solution for
establishing the relationship between remote
sensing observations and atmospheric and
surface parameters.

6 Future Work

Research on this type of models to emulate RTC
will be expanded to include at least 100,000

simulations, which according to several authors [9,
22] is enough to adequately train this type of
models, so it will possibly be necessary to adjust
the model architecture and do new tests. In
particular, it is desired to reevaluate the
performance of the convolutional model with a
larger data set.

References

1. Liang, S., Li, X., Wang, J. (2012). Advanced
remote sensing: Terrestrial information
extraction and applications. Academic Press.

2. Katsev, I. L., Prikhach, A. S., Zege, E. P.,
Kokhanovsky, A. A. (2021). A robust
atmospheric correction procedure for
determination of spectral reflectance of
terrestrial surfaces from satellite spectral
measurements. Remote Sensing, Vol. 13, No.
9, p. 1831. DOI: 10.3390/rs13091831.

3. Song, C., Woodcock, C. E., Seto, K. C.,
Lenney, M. P., Macomber, S. A. (2001).
Classification and change detection using
Landsat TM data: when and how to correct
atmospheric effects? Remote sensing of
Environment, Vol. 75, No. 2, pp. 230–244.
DOI: 10.1016/S0034-4257(00)00169-3.

4. Chandrasekhar, S. (2003). Radiative transfer.
Dover Publications.

5. Hadjimitsis, D. G., Clayton, C. R. I., Hope, V.

S. (2004). An assessment of the effectiveness

of atmospheric correction algorithms through

the remote sensing of some reservoirs.

International journal of remote sensing, Vol.

25, No. 18, pp. 3651–3674. DOI: 10.1080/014

31160310001647993.

6. Jensen, J. R., Lulla, K. (1987). Introductory

digital image processing: a remote sensing

perspective.

7. Lee, K. S., Lee, C. S., Seo, M., Choi, S.,
Seong, N. H., Jin, D., Han, K. S. (2020).
Improvements of 6S look-up-table based
surface reflectance employing minimum
curvature surface method. Asia-Pacific Journal
of Atmospheric Sciences, Vol. 56, pp. 235–
248. DOI: 10.1007/s13143-019-00164-3.

Computación y Sistemas, Vol. 28, No. 4, 2024, pp. 2327–2341
doi: 10.13053/CyS-28-4-5287

Deep Learning Based Emulation of Radiative Transfer Code for Atmospheric Correction ... 2339

ISSN 2007-9737

https://doi.org/10.3390/rs13091831
https://doi.org/10.1080/01431160310001647993
https://doi.org/10.1080/01431160310001647993
https://doi.org/10.1007/s13143-019-00164-3

8. Riihelä, A., Manninen, T., Key, J., Sun, Q.,
Sütterlin, M., Lattanzio, A., Schaaf, C.
(2018). A multisensor approach to global
retrievals of land surface albedo. Remote
sensing, Vol. 10, No. 6, p. 848. DOI: 10.3390/
rs10060848.

9. Ojaghi, S., Bouroubi, Y., Foucher, S.,
Bergeron, M., Seynat, C. (2023). Deep
learning-based emulation of radiative transfer
models for top-of-atmosphere BRDF modelling
using sentinel-3 OLCI. Remote Sensing, Vol.
15, No. 3, p. 835. DOI: 10.3390/rs15030835.

10. Lagerquist, R., Turner, D., Ebert-Uphoff, I.,
Stewart, J., Hagerty, V. (2021). Using deep
learning to emulate and accelerate a radiative
transfer model. Journal of Atmospheric and
Oceanic Technology, Vol. 38, No. 10, pp.
1673–1696. DOI: 10.1175/JTECH-D-21-
0007.1.

11. Verrelst, J., Sabater, N., Rivera, J. P.,
Muñoz-Marí, J., Vicent, J., Camps-Valls, G.,
Moreno, J. (2016). Emulation of leaf, canopy
and atmosphere radiative transfer models for
fast global sensitivity analysis. Remote
Sensing, Vol. 8, No. 8, p. 673. DOI: 10.3390/
rs8080673.

12. Huneeus, N. (2007). Investigation of the
suitability of the 6S radiative transfer model to
extend RTTOV to solar wavelengths.

13. Shah, M., Raval, M. S., Divakaran, S. (2022).
A deep learning perspective to atmospheric
correction of satellite images. IGARSS 2022-
2022 IEEE International Geoscience and
Remote Sensing Symposium, pp. 346–349.
DOI: 10.1109/IGARSS46834.2022.9884900.

14. Release Notes (2022). https://py6s.read
thedocs.io/en/latest/releasenotes.html.

15. Vermote, E. F., Tanré, D., Deuze, J. L.,
Herman, M., Morcette, J. J. (1997). Second
simulation of the satellite signal in the solar
spectrum, 6S: An overview. IEEE transactions
on geoscience and remote sensing, Vol. 35,
No. 3, pp. 675–686. DOI: 10.1109/36.581987.

16. Franch, B., Vermote, E. F., Sobrino, J. A.,
Fédèle, E. (2013). Analysis of directional
effects on atmospheric correction. Remote
Sensing of Environment, Vol. 128, pp. 276–
288. DOI: 10.1016/j.rse.2012.10.018.

17. Chollet, F. (2022). Deep learning with python.

Manning Publications.

18. Liang, T., Liang, S., Zou, L., Sun, L., Li, B.,
Lin, H., Tian, F. (2022). Estimation of aerosol
optical depth at 30 m resolution using Landsat
imagery and machine learning. Remote
Sensing, Vol. 14, No. 5, p. 1053. DOI: 10.3390/
rs14051053.

19. Jiang, W., He, G., Long, T., Ni, Y., Liu, H.,
Peng, Y., Wang, G. (2018). Multilayer
perceptron neural network for surface water
extraction in Landsat 8 OLI satellite images.
Remote Sensing, Vol. 10, No. 5, p. 755. DOI:
10.3390/rs10050755.

20. Schroeder, T., Behnert, I., Schaale, M.,
Fischer, J., Doerffer, R. (2007). Atmospheric

correction algorithm for MERIS above case‐2
waters. International Journal of Remote
Sensing, Vol. 28, No. 7, pp. 1469–1486. DOI:
10.1080/01431160600962574.

21. Fan, Y., Li, W., Gatebe, C. K., Jamet, C.,
Zibordi, G., Schroeder, T., Stamnes, K.
(2017). Atmospheric correction over coastal
waters using multilayer neural networks.
Remote Sensing of Environment, Vol. 199, pp.
218–240. DOI: 10.1016/j.rse.2017.07.016.

22. Gorishniy, Y., Rubachev, I., Babenko, A.
(2022). On embeddings for numerical features
in tabular deep learning. Advances in Neural
Information Processing Systems, Vol. 35, pp.
24991–25004.

23. Tocilins_Ruberts, A. (2022). Transformers
for tabular data (Part 2): Linear numerical
embeddings. Deep learning for tabular data
with FT-Transformer. https://towardsdata
science.com/improving-tabtransformer-part-1-
linear-numerical-embeddings-dbc3be3b5bb5.

24. Dosovitskiy, A., Beyer, L., Kolesnikov, A.,
Weissenborn, D., Zhai, X., Unterthiner, T.,
Dehghani, M., Minderer, M., Heigold, G.,
Gelly, S., Uszkoreit, J., Houlsby, N. (2020).
An image is worth 16x16 words: Transformers
for image recognition at scale. http://arxiv.org/
abs/2010.11929.

25. Batista-Salgado, C., Abílio-de-Carvalho, O.,
Troncoso-Gomez, R. A. (2019). Cloud
interference analysis in the classification of
MODIS-NDVI temporal series in the Amazon

Computación y Sistemas, Vol. 28, No. 4, 2024, pp. 2327–2341
doi: 10.13053/CyS-28-4-5287

Arturo Enrique Jasso-Garduño, Ignacio Muñoz-Máximo, David Pinto, et al.2340

ISSN 2007-9737

https://doi.org/10.3390/rs10060848
https://doi.org/10.3390/rs10060848
https://doi.org/10.3390/rs8080673
https://doi.org/10.3390/rs8080673
https://doi.org/10.1016/j.rse.2012.10.018
https://doi.org/10.3390/rs14051053
https://doi.org/10.3390/rs14051053
https://doi.org/10.3390/rs10050755
https://doi.org/10.3390/rs10050755
https://doi.org/10.1016/j.rse.2017.07.016
http://arxiv.org/%20abs/2010.11929
http://arxiv.org/%20abs/2010.11929

region, municipality of Capixaba, Vol. 31. DOI:
10.14393/SN-v31-2019-47062.

26. Dawson, H. L., Dubrule, O., John, C. M.
(2023). Impact of dataset size and
convolutional neural network architecture on
transfer learning for carbonate rock
classification. Computers & Geosciences, Vol.
171, p. 105284. DOI: 10.1016/j.cageo.2022.
105284.

27. Liang, S. (2003). Quantitative remote sensing
of land surfaces. John Wiley & Sons.

28. Kotchenova, S. Y., Vermote, E. F. (2007).
Validation of a vector version of the 6S
radiative transfer code for atmospheric
correction of satellite data. Part II.
Homogeneous Lambertian and anisotropic
surfaces. Applied Optics, Vol. 46, No. 20, pp.
4455–4464. DOI: 10.1364/ao.46.004455.

29. Moré, G., Pons, X., Cristóbal, J., Pesquer,
L., Gonzalez, O. (2012). Corrección
radiométrica automática de imágenes Landsat
TM mediante áreas pseudoinvariantes y
modelización MODTRAN. Teledetección, Vol.
37, pp. 67–73.

30. Vermote, E., Justice, C., Claverie, M.,
Franch, B. (2016). Preliminary analysis of the
performance of the Landsat 8/OLI land surface
reflectance product. Remote sensing of
environment, Vol. 185, pp. 46–56. DOI:
10.1016/j.rse.2016.04.008.

31. Colin, J., Hagolle, O., Landier, L.,
Coustance, S., Kettig, P., Meygret, A.,
Osman, J., Vermote, E. (2023). Assessment
of the performance of the atmospheric
correction algorithm MAJA for Sentinel-2
surface reflectance estimates. Remote
Sensing, Vol. 15, No. 10, p. 2665. DOI: 10.339
0/rs15102665.

32. Vermote, E. F., Kotchenova, S. (2008).
Atmospheric correction for the monitoring of
land surfaces. Journal of Geophysical
Research, Vol. 113, No. D23. DOI: 10.1029/
2007jd009662.

Article received on 09/04/2024; accepted on 18/07/2024.
*Corresponding author is Arturo Enrique Jasso-Garduño.

Computación y Sistemas, Vol. 28, No. 4, 2024, pp. 2327–2341
doi: 10.13053/CyS-28-4-5287

Deep Learning Based Emulation of Radiative Transfer Code for Atmospheric Correction ... 2341

ISSN 2007-9737

https://doi.org/10.1016/j.cageo.2022.105284
https://doi.org/10.1016/j.cageo.2022.105284
https://doi.org/10.1364/ao.46.004455
https://doi.org/10.1016/j.rse.2016.04.008
https://doi.org/10.1016/j.rse.2016.04.008
https://doi.org/10.3390/rs15102665
https://doi.org/10.3390/rs15102665
https://doi.org/10.1029/2007jd009662
https://doi.org/10.1029/2007jd009662

