Interest Scenes Retrieval in Long Duration Videos Using Image to Text Codification

Edgar Abidán Padilla-Luis^{*}, David Pinto, Rigoberto Cerino-Jiménez, Francisco José López-Cortés, Alberto Esteban Reyes-Peralta, Beatriz Beltrán

> Benemérita Universidad Autónoma de Puebla, Facultad De Ciencias de la Computación, Puebla, Mexico

{edgar.abidan.pl,lopcorp.z, bbeltranmtz}@gmail.com, david.pinto@correo.buap.mx, cerino_rigoberto@hotmail.com, alberto.reyesp@alumno.buap.mx

Abstract. This article presents an approach for retrieving scenes of interest in long-duration videos through image-to-text encoding. Unlike conventional approaches that often involve the use of neural networks, this method proposes a technique that avoids the use of these complex structures in order to reduce computational resource consumption. Through experiments, the feasibility and effectiveness of this technique are demonstrated, concluding that it is feasible to employ it for multimedia information retrieval, offering an efficient and economical alternative for this task.

Keywords. Information retrieval, scene identification, long-duration videos, image-to-text encoding.

1 Introduction

In recent years, due to the development and creation of better technological devices, there has been an increase in the use of digital cameras, such as cell phones, surveillance systems, specialized cameras, among others, resulting in a large volume of multimedia files.

Extracting information from these massive data volumes presents various challenges, which vary depending on the type of information to be retrieved (video, images, audio, or text). Some of the techniques used to obtain information belong to the field of *machine learning*, with deep learning standing out, as it is capable of automatically extracting features from data [6].

However, despite the growth in artificial intelligence studies, many public and private organizations still rely on human resources to perform specific tasks such as searching for scenes of interest in long-duration videos.

This method of obtaining information is slow and consumes a large number of human-hours, as the process of identifying scenes in videos is difficult and tedious, especially when dealing with large volumes of data.

In contrast, it is observed that image information retrieval techniques help reduce human costs in this task [9]. Currently, the advancement of deep learning provides us with tools to develop multimedia information retrieval systems.

However, if these types of techniques are to be implemented, the following points must be considered: a large corpus is needed to train deep learning models; training these models often takes too long; a specialized model is required; and computational resources are high (RAM, GPU, processor, and disk space).

This document proposes an approach based on text information retrieval to identify scenes of interest in long-duration videos

These techniques tend to require fewer computational resources, making them ideal for adaptation on many servers that store videos. 2344 Edgar Abidán Padilla-Luis, David Pinto, Rigoberto Cerino-Jiménez, et al.

Fig. 2. Analyzing the hat band present in frame 13

2 State of the Art

Multimedia Information Retrieval Systems (MIRS) are closely linked to technological advancements. There are various techniques applied to these systems.

For example, the Bag-of-Visual-Words method involves finding global descriptors of images by creating histograms of high dimensionality. This technique offers the ease of creating inverted indices and vector spaces to measure their distance from other images, but it tends to be less accurate in searches [26]. It has been shown that global descriptors do not capture relevant characteristics well, and local descriptors tend to yield better results [4].

In the past decade, the concept of Vector of Locally Aggregated Descriptors (VLAD) was introduced. It extracts regions using invariant detectors (algorithms for extracting Interest Scenes Retrieval in Long Duration Videos Using Image to Text Codification 2345

ikkik]]]m	kmillm111	imoiklknn	oppmkklil	nknrnnnaa	arragnifa	loomlkmon	0000000000	00000000000	mmllkkkia
iikllllno	nkhhpopmm	hlmkilmoo	oppmmknil	nnrspppqq	mrrrsrkfa	svvvvwsh	aanmkikmn	ppoooniik	lmmmlllia
ikkkilmna	oiedonkmm	ikmkkmmoo	ppgooopkk	msssppppo	ossesrkfa	ryyyyyyah	ginsswyur	ooppoolik	knnmmmlia
klmlilmmm	mkefnoool	1mmmmloo	pppqoopkk	rereagarr	assessivef	necerria	akompasws	tappporja	oghiklmka
klmkloofk	kkafknnok	1mmmmmon	pppqqqqq	arreggarr	nrsserkef	arrerrli	11mmmmmnr	ragaapppoo	mddiihaaa
iffefaaik	kknonnnm	mmmmmmmm	nkeeehnff	desegaare	esseraide	reereeekk	iiilarerr	aaaaaaaaa	iefikiiha
fdoogkkij	hloppppm	mmmmmlbk	igddfiboo	gsssqqqrs	ssssrqjue	agilnochf	fagalrer	qqqqqqpp	afibikida
deogikmhd	imooppopp	1 mmmmmh i	riffafoo	erssyqqrs	sssipuliee	conkhaaff	aafffkrrr	recercica	ffijibhfa
babibilid	Tillooppppi	Community I	ginngree	eqrsiquit	rssrqpnug	spirkinggif	ggillkiri	rrranagan	ifaggibgo
ngnjnjtlu	hmimoooooo	noooootii	Inkgingrygi	gorsiqui	rsssrqnun	uuuuuptii	fffffahaam	rrqpqqqn	Inggginga
giiginjij	птктоооор	рпккктррр	notmunkjk	Jmrrrqqqr	rrrsrqidj	sttttini	TTTTgneem	rrrokknqq	qqntjngra
jigrigngg	knooppqqq	meeeernqq	ppppptnnn	noqrrpppq	qrrrqotag	massssker	eerrottpq	rrrollqqq	qqqqppnka
jineecddf	noopppqqq	nagagiddd	dLudddddddd	pppppppp	pqqontgre	edeilogee	eeejssssr	rrrrrrr	qqqqppna
ikjkktdde	moppqqph	dddddegkq	rrrrrrr	rrrrrrr	pmkhtetth	lihtdddde	eemrrssrr	rrrrrrr	qqqqppna
jkllmkhlj	joppqrrid	ddddddee	iqsrrrsss	rrrrrnht	ttttttttt	fffhiigfe	eegknrrrr	rrrrrrr	qqqqppna
nillligjl	hkqqqrrkd	dddddddd	gqsssssss	sssssssp	lhffffff	fffffeghe	eeedddmqr	rrrrrrq	qqqqppna
llhhkmllk	mprrrqrrl	dddddddg	SSSSSSSSS	SSSSSSSSS	ssqmifff	ffffffeee	eegjihqqr	rrrrrrrq	qqqpppna
hmjiknmno	opprssrqr	fdddddei	SSSSSSSSS	ssssstsss	ssrrrnjf	ffffffee	efeeelqqq	rrrrrrqq	qqqpppma
gimopommo	oopqqrrrq	ofdddddk	ssssssrst	tttttsrss	ssssssrrr	njffffee	eefilpqqq	qqrrqqpoq	qqppppma
iginmklll	opopqqqqq	pidddddl	rsssssss	SSSSSSSSS	SSSSSSSSS	rrrokgffg	kossrpppp	pqpppppp	qppppooma
jigiokjik	moooppqqn	fddddddn	srrssssss	SSSSSSSSS	srrrsssss	srrqqropr	ssrrqpppp	pppppqqq	ppppooola
kihginnpo	ppppooppn	iededdddg	sssrrssss	sssrrrsss	ssssrrrrr	rsrrrqqqr	qqqqpppq	pppoppppp	pppooonla
lkljginpp	pooooopp	pnddddegq	srrssrrsr	rsrsssrrs	sssrrrrrr	rsrrrrqq	qrrrqqqqp	oopppppoo	ooooonmia
klllkhiop	ppppppooo	oonliefgl	grrrrrrr	sssssssr	grrsssssr	rrrrrrr	rrqqqqppp	qpppoppoo	oonnnmlka
klkkllhhn	ppppooon	nmmmkkon	oggrsssss	srssrrrrs	srrrrssss	rrrrrrr	rrrqqpqqq	qqpppkijm	onnmjjkia
jkkklmlhh	mpooppppo	nnoonmnno	poprrssss	srqnprsss	sssrrrrr	ssssrrqqq	rqqqrqqqp	plhfglonk	iiiihqqfa
kkkkllmmi	gkppppooo	nnmnooooo	pppppnnmn	qnqfffqss	ssrrrrrr	sssssrrqq	lpppppppp	gfeeeegil	lkiefihha
lkkkklmmm	jgioonnno	000nn0000	oolfeeeee	eefffpgr	rrsssssr	rgrrrrrr	rrappgohf	eeeeeedd	efgkkllja
llkiikkll	lkghlmmmn	nooonnnnn	oofeedddd	eeeeefhpr	grssssss	ragagrrrr	raagamhfe	eeeeeddd	eillkkkja
lllkijikk	kkkihlmmm	mnnnnnoo	oplfddddd	dddddefia	rrggrrrrr	rrrrragar	gappofeee	eeeeedddd	iihghijga
klllkijik	kkkkihilm	mmnooooon	opoiifedd	ddddddefm	grrgppgrr	rrrrrrgp	ppppjknig	edddddddd	deghkiffa

Fig. 3. Textual representation obtained from frame 13

characteristics from an image, robust against geometric transformations) and then characterizes them by SIFT descriptors (Scale-Invariant Feature Transform). The results are classified into clusters, which for information retrieval are associated with a vocabulary [12].

These types of systems are known as Content-Based Image Retrieval (CBIR) systems and are used in various fields, such as medical applications [3]. In recent years, methods for obtaining image descriptors have been improved.

For example, Alsmadi in [1] obtains color, shape, and texture information, and by combining this information, presents results with good accuracies. Some methods additionally create hash codes (bit strings) from the constructed descriptors, which are used to index images and apply IR algorithms based on these indices [16].

However, the rise of artificial intelligence, specifically the use of Convolutional Neural Networks (CNNs), has shown that descriptors can be found almost automatically [24]. Hash codes are used to simplify and accelerate searches; currently, CNNs are trained to obtain these codes [10], and studies are beginning to be conducted with other architectures like transformers to generate these codes [7].

It is worth mentioning that the use of CNNs requires a dataset to match images with text. CNNs have shown the ability to associate images with text and text with images by projecting the text and the image into a single feature subspace [23, 8, 11].

There are various studies focused on the medical field that use CNNs to create specialized Multimedia Information Retrieval Systems (MSIRS). Shamna and Aziz train a magnetic resonance classification model using CNNs and, through a similarity comparison, retrieve related documents that will assist the physician in making a diagnosis [19].

In the same vein, Zhang et al. employ neural networks to classify resonances and match them with text related to medical diagnosis, thus providing specialists not only with retrieved images but also with potential diagnoses [25]. In the

ISSN 2007-9737

2346 Edgar Abidán Padilla-Luis, David Pinto, Rigoberto Cerino-Jiménez, et al.

Frame 11 of the video

Frame 20 of the video

Fig. 4. Frames close to frame 13

Fig. 5. Analyzing frame 13 with hash code

fashion domain, Whu and Gao introduce the first dataset to support the advancement of image retrieval systems for fashion [23], leading to the development of the first image retrieval models referencing this database [5, 18]. On the other hand, geolocation has gained great importance, from the automation of unmanned vehicles to tourist use.

Computación y Sistemas, Vol. 28, No. 4, 2024, pp. 2343–2352 doi: 10.13053/CyS-28-4-5286 Interest Scenes Retrieval in Long Duration Videos Using Image to Text Codification 2347

Fig. 6. Partition of frame 13 in the second experiment

Table 1.	Documents	retrieved	by	applying	fault-tolerant
informatio	on retrieval				

File	Position	Distance
frame_13.txt	(5, 7)	0
frame_12.txt	(5, 7)	
frame_14.txt	(5, 7)	1
frame_11.txt	(5, 7)	
frame_15.txt	(5, 7)	2
frame_16.txt	(5, 7)	
frame_1176.txt	(10, 1)	3
frame_19.txt	(5, 7)	
frame_1223.txt	(10, 1)	
frame_18.txt	(5, 7)	
frame_17.txt	(5, 7)	

Tang et al. present an information retrieval model that does not rely on a global satellite navigation system.

They use CNNs to predict images of the environment and, through a RIM system, retrieve possible geographic areas in which they are located [22]. In terms of security, video surveillance is of utmost importance. Prathiba introduces a multimodal retrieval system using a promising clustering algorithm for human-computer interaction.

This algorithm extracts features from the frames comprising the video, applies the nearest neighbor-based algorithm, and based on this, calculates the distance between frames to retrieve the most similar images [17]. A quick review of the state of the art highlights that neural networks lead the way in tasks related to multimedia information retrieval [2, 20, 7, 8, 10, 11, 15, 17, 19, 21, 22, 23, 23, 24, 25].

3 Methodology

The methodology proposed in this document is illustrated in Fig. 1. This methodology consists of two main components: firstly, a module is included to generate the text corpus, which is carried out through an image-to-text conversion algorithm; secondly, a text information retrieval system is implemented, allowing text queries to be made and relevant documents associated with the query to be obtained as a response.

3.1 Image-to-text Conversion Algorithm

After obtaining the video frames, a modification to the steps for extracting feature sequences presented by Luo et al. [14] is applied. This algorithm is used to hide information in images; however, a text corpus is created using the following steps: from the video, images are extracted at regular intervals t, referred to as I_t .

Each I_t is divided into $m \times n$ blocks, where each block is part of the set $B_t = \{B_1, B_2, \ldots, B_{mn}\}$. A character string α is assigned to each $b_i \in B_t$ through some mapping f, such that $f(b_i) = \alpha$. This document presents two mappings: conversion to characters by averaging grayscale and image-to-hash code conversion. Thus, each image is represented by a text file, and the generated text files form the corpus that feeds the information retrieval system. 2348 Edgar Abidán Padilla-Luis, David Pinto, Rigoberto Cerino-Jiménez, et al.

File	Position	Distance
frame_13.txt	(5, 7)	0
frame_11.txt	(5, 7)	1
frame_12.txt	(5, 7)	
frame_967.txt	(17, 1)	3
frame_1106.txt	(20, 0)	
frame_1114.txt	(20, 0)	
frame_1113.txt	(20, 0)	
frame_1109.txt	(20, 0)	
frame_1111.txt	(20, 0)	
frame_1115.txt	(20, 0)	
frame_1110.txt	(20, 0)	
frame_1112.txt	(20, 0)	
frame_1107.txt	(20, 0)	
frame_1108.txt	(20, 0)	
frame_501.txt	(18, 4)	
frame_14.txt	(5, 7)	
frame_862.txt	(19, 4)	
frame_500.txt	(20, 4)	
frame_503.txt	(25, 4)	

Table 2. Strings with Levenshtein distance less than orequal to 3

4 Experiments

For the following experiments, a 5-hour video recording an office at a tax agency in the United States was downloaded from the internet.

4.1 First Experiment: Conversion to Characters by Averaging Grayscale

Based on the idea presented in section 3 for obtaining textual representations, the following process is carried out to obtain a text corpus:

- 1. A frame is obtained every 1.5 seconds.
- 2. A partition of each frame is obtained as follows:
 - (a) Each image, I_i , is divided into N rows and M columns, forming a matrix of sub-images.

- (b) Each sub-image, $S_{n,m}$, is divided into *P* elements.
- 3. Each element, P_p , undergoes a mapping f, where this mapping transforms each element into grayscale values, then the average of the grayscale colors is obtained, and this average is associated with one of the 26 letters of the English alphabet.
- 4. The letters are joined to form a character string.
- 5. The document will have N rows with M character strings.

For this experiment, the parameters are as follows: N = 30, M = 10, and P = 9. In Fig. 5, the process for partitioning frame 13 (Fig. 5) obtained from the video is shown. For this purpose, the frame is divided into 30 rows (Fig. 5) and 10 columns (Fig. 5). Subsequently, each sub-image is divided into 9 elements (Fig. 5). This division can be interpreted as a text document consisting of 30 lines, with each line containing 10 words composed of 9 letters.

Once the division process is complete, the mapping f is applied, thus obtaining a textual representation for each sub-image and a text document by concatenating all the representations following steps 5 and 6 presented in this section. The document obtained after applying this process is shown in Fig. 3.

After setting frame 13 as the scene of interest, a manual search was conducted in the nearby frames. As a result, it was found that the scenes from frame 11 to frame 20 are very similar. Observing Fig. 4, it is inferred that the only significant change occurring from frame 11 to frame 20 is the movement of a person.

In frame 13, focus is placed on the hat of the person near the door, specifically on the hat band. Fig. 2 shows this focus, and the associated string for this element is **jjjlqrsrr**. When performing a search in the information retrieval system, it is found that the only file containing the string **jjjlqrsrr** is frame 13, and this string is found on line 5 and column 7. If a search is conducted for the tokens representing this band, it is noticed that this band appears in the same position in frames 11 and 20

(the extreme frames of the manual search). The strings in that position are:

- Frame 11 -> jjjlqrssr.
- Frame 20 -> jkkkoqssr.

It is observed that the only difference between the string obtained from frame 11 is the letter 's' (highlighted in red), while in frame 20 there is a greater difference in the strings.

If it is considered that the string **jjjlqrsrr** obtained from frame 13 is a word and that this word is correctly spelled, it can be considered that the strings obtained in frames 11 and 20 are misspelled words, and their correction should be the string **jjjlqrsrr**.

In this case, we could apply an algorithm present in fault-tolerant information retrieval, which calculates the Levenshtein distance [13]. For example, the Levenshtein distance between the strings **jjjlqrssr** and **jjjlqrsrr** is 1, as only the letter 's' (highlighted in red) needs to be changed to 'r' in the first string to obtain the second string.

All documents containing tokens with a Levenshtein distance less than or equal to 3 from the token **jjjlqrsrr** were retrieved, resulting in 19 tokens. Table 2 shows the results. Out of the 19 results, only 4 documents are within the desired range.

4.2 Second Experiment: Conversion to Hash Code

For the second experiment, the following steps are followed:

- 1. A frame is obtained every 1.5 seconds.
- 2. Each frame is partitioned as follows: Each image, I_i , is divided into N rows and M columns, forming a matrix of sub-images.
- 3. Each sub-image, $S_{i,j}$, is mapped using function f to obtain a hash code.

Fig. 6 shows the partition of frame 13 into 30 rows and 10 columns. Fig. 7 shows the text document associated with frame 13. Again, the section of frame 13 with a person wearing a hat is analyzed, focusing on the hash code representing the hat's stripe. Fig. 5 shows this image segment to be analyzed.

Searching for the string **7f0f0f1fc70f1f1f** in the information retrieval system retrieves two documents: frame 13 and frame 12. Similar to the previous experiment, the hat stripe appears in that position from frame 11 to frame 20. The corresponding hash codes are as follows:

- Frame 11 -> 5f0f0f1fc70f1f1f.
- Frame 20 -> 7e0f0f0fc7670f1f.

Again, if we consider that the strings in frames 11 and 20 are misspelled, we can apply the Levenshtein algorithm. Searching for tokens with a distance less than or equal to 3 from the token **7f0f0f1fc70f1f1f** retrieves 11 results, which are presented in Table 1. Out of the 11 results, 9 fall within the manually found range.

5 Discussion

It is important to consider the following points regarding resource usage and time. For the first experiment:

- 1,237 text files were obtained.
- The process of obtaining the corpus took approximately 15 minutes and 40 seconds, meaning each image took 0.75 seconds to process.
- The total weight of the text files is approximately 3.7 MB.

For the second experiment, the following information is available:

- 1,237 text files were obtained.
- The process took approximately 14 minutes and 32 seconds, approximately 0.70 seconds per frame.

Computación y Sistemas, Vol. 28, No. 4, 2024, pp. 2343–2352 doi: 10.13053/CyS-28-4-5286 2350 Edgar Abidán Padilla-Luis, David Pinto, Rigoberto Cerino-Jiménez, et al.

070f00f3554d7f00	fcfe001cff27f300	0363016d7b6ff703	ele0e0e0e4e4e4e4	3f3f3f3f3f3f3f3c3c	f8f8f8f8f8f8f8fc7c	ff7f1f0f07c3e0f0	f0f0f0f8f8fcfe7e	f0f0f0f0f0f8f8f8	fcfcfcfcfcfcfcfc
0f0f1f1f3b333347	feffcf8f838f8f8f	677f7f7f37274747	e5e1e1f1f8f8f9fc	3434343232727673	78787878f8f8f8f8f8	787c7e7e7e7e7e7e7e	3f1f0f0703637170	fffff9f8f8f8f8f8f8	fcfcfcfcfcfc7c7c
0f0f1f1f27272727	8f8f8f8f8989898b	07473f3f3f3f3b3b	c8e0f0fcfcfeffff	737272737072f0f0	f8f8f8f87878787878	fefefefe7c3c1c0c	3c3c3e3f17070f07	7838383cfefeffff	7c7c7cfcfcfcfcfc
27266667677f7f7d	0e8e8f8f8f8f9a96	23030303c3434343	1f1f1f3f1f1f1f2f	f2f1f1f1f13133f3	78f8f8f8f8f8f8f8f8f8	ccf4f0fcfcfc7c7c	0f7f3f1f03230301	c0c0c0a0a0e0e0f0	fefebe9e9e8e8686
f9f1f1f1f1f2c8c0	ae8e8e0e8f0f0f1f	030303030303030303	ffffcfcfc7c78786	f39393b372737373	f8f878f8f8f8f8f8f8	dcdcecfc7c3cdcdc	0b0f070301b09cdf	a0a02060f078f8f8	82b290989c9c9e9e
ela181838f8f0f07	0elele3e3e3e3e3e	e3e3e3e3c3c2c0c4	c6c6c6c68404c4c4	7373737377777373	f8f8f8f8f8f8f8f8f8f8	ece4ecfc74e4fcfc	7f0f0f1fc70f1f1f	6070f0f0f8f8f8f8f8	9e9e9e9ebebebebe
0f0f070e0e1c1c0d	3e3e3e3e3e3e3e3f	fdfdfdfdfcfcf8f8	cccc8c00040c0c0c	7f7f7f7f7f7f7f7f7f7f	f8f8f8f8f8f8f8f8f8f8	7e7e3c1c0c0c0604	1f0f0f0f0f0f0f0707	f0f0f0f8f8f8f8fc	bebe3e3e2c3c3e3c
0e0ele0elele1e3e	3f3f3f3f3f3f3f3e3e	f8f0f4ecdcbd7d7d	0c0c1830e0c0c0c0	7f7f7f7f7f7f7f7f7f7f	f8f8f8f8f8f8f8f8f8f8	0080c0c0e0e4f0f0	070707070707070707	f8fcfcfefefefe	3e7e7e7268341058
3e3e3e3e2626ae2e	3f3f3f3f5f5f5f17	1c3c64fcfcff7fff	c0c04040cle7f7ff	7f7f3f3f3f3f3f3f3f3f	f8f8f8f8f8f8f8f8f8f8	f8f8f0f8f8fcfcfc	0707070707030301	fefefefefeefe7e3	682c34361a2aac9c
0e2307c7c3436767	1f1f1f1f0f0f1f1f	ffffcfcf87878783	5452d0d0d0c0f1f3	3f3f3f3f3f3f3f3f3f3f3f	f8f8f8f8f8f8f8f8f8f8	fcfcfcfcfcfcfcfc	090909191191392d	e3e3e3e3e3e3e3e3e3	c0c0e0e0f0f0f8f8
c7c7cec6c480c0c0	0f0f0f0f0f0f1f3f	8787878787070707	f0f0f0f0f0f8ffff	3f3f3b3939397071	f8f8f8f8f8f8f8f8f8f8	fcfcf8fcfc7c7838	0d0d0f0f1f0f0f1f	e3e3e3e3e3e3e3f7	f8fcfcfefefefefe
f0f1e1e0e0e0c0d0	17171f1f1f1f1f1f	070707070707070707	c0e4e4e7f2f2fa7c	b0a0909c2e6ee4f5	f8f8f8f8f8f8f8f8f8f	3c3c1c1c0c0c0000	0f0f1f1f1f1f1f1f	e0f0f8fcfcf8f8f8	fcfcfcfcfcfcfcfc
90d0f0f0f8f8f8f9	3f3f3e3e3e3e3e7c	0707030303010101	607830b2a6cf9f9f	f0f3f3ebc95c3d3e	f3f1e1c0c0808000	8080c0c0c0e06070	1f1f3f3f3f3f3f3f3f3f	f8787878f8f8f8f8f8	fcfcfcfcfcfcfcfc
787a787a3a3b3bbb	7e7c7c7c7c7c7c7c7c	0707030303030101	ff7f7f7f7f3f373f	fefcf8f8f8fcfcfc	78f8f8f8f8f8f8f8f8	303018181c0c0e06	3f3f1f1f0f0f0707	f8f8f8f8f8f8f8f8f8f8	fcfcfcfcfcfcfcfc
bbb9b9b1b1b9baba	7c7c7c3c3c3e3e3e	03030303070f0f0f	3f3f3f3f7f7f7e7e	ecd696b33b7bfdfc	000000008080c0c0	0606030300000000	0703030703070707	f8f8f8f8f8f8f8f8f8f8	fcfcfcfcfcfcfcfc
a888cccccfcfcf4f	3e3e3e3a3e3e3e3f	0001010101818181	7c393bb3a78fcf9f	fcfc787a73a7a78f	c0c0e0e0e0f0f0f0	fefefefefcfcf8f8	27271717171f0f07	fcfcfcfc7c7c7c7c7c	fcfcfcfcfcfcfcfc
47474747434f4f1f	1f1f1f1f1d1d1d19	0101010181818181	8f2f2f6f67e6f4f4	9f9f9f0f6f6fe7f7	f8f8f8fcfcfcfefe	a0a0a0a0c4cecfdf	0f0707070707070707	fcfcfcfc78787070	fcfcfcfcfcfcfcfc
1f3f3f3b33313931	lflf2f0elelflflf	818181818181clc1	f1f9f3f3e3e9c9dd	f6f0f8f9f9f8f1f5	e2f3f3f2faf8fcf9	0c0c8c80c0c0c0e0	07070f0f1f1f1f3f	fffffdfdf8f8f9f9	fcfcfcfcfcfcfcfc
3f3f3f3f17131210	1f1f1f1f1d0b0b03	clclclc181818181	9cbc3e7e7e7b7b7e	e4ccdc9ebe3e7e7e	f8f2f2f6676f4f1f	e0e0e0f0f0f0f8f9	3a3b7b797cfcfcf8	f97c7e3e3ebe9e1e	fcfcfcfcfcfcfcfc
1818181818180d89	6f6f4f4f0e8e2e26	8181810101010101	3ebcbcb99b9397c7	3f3fbfbf9ededccc	9f9f3f1f5fcfcfe7	f9e9cfcfdfcfcfa7	b8f0f0f0e0e0e0e0	5f4f6f2727131303	fcfcfcfcfcfcfcfc
0b0f0f0f8f878787	66e6e6f6f7f5f1f3	0101010181818181	cfcfcf8fa7276767	cde9e3e3e7e7e3c3	e7e7f7f2f2f8f8f9	a47072f2f8f8f8fc	e2d2d2dab8b83878	ebe3edcdc4c2d298	fcfcfcfcfcfcfcfc
07076747e7a3a323	f3f3e3e3cbd99939	8lclclclclclclcl	f7f7f3f39b190818	d39b9939397d7cfc	f9f9f0f4e4eeecf	f4fcfafcfcfcf879	70f0f8f8787838ba	bcbc3c3c7c7c3cbc	fcfcfcfcfcfcfcfc
6373737373535151	3979f9fcfcfcfcf8	elf1f0f0f0f1f1f1	7d3d393a3636262f	fefefefe7f7fbe7e	de9e3e3f7f7f3f3f	7b73b3b78787cfcf	be9cdcdcc9e9e9e2	9cdcccece8e0e0f0	fcfcfcfcfcfcfcfc
f9f9f9f95959587c	fcfcf8f8f2f6e6ee	f1f1d39b1f1f7f7f	0f1f1f1f3f3f3f3f3f	7c7c7d79bbb3b7a7	3f9f9f1f4fcfcfee	cf8f8fa727777373	f2f2f2f0e0e9e9cc	fffffbf9f9f8f0f0	fefcf6f6f6f2e0e0
7c7c7c7c7c7c7e7e	cede5f7f7f7f7e7e	3475f1f9b3b3a7a7	3f1f1f1f1f0f1f0f	efcfdfdf9faf4f47	eee6e4f5f1f1f3f3	f8f9f9f8fcfcfcfa	ccdcde9ebcb83878	e4c6c6cf8f8f8787	fc78787832b296c6
0e0elelele3e3f3f	7f7f3f3f3f3f3f3f3f3e	8fcf9f9f1f1f4f4f	fffffffffdf8f0e0	c7c7c7c783838303	flfle5eccccde9e	fcfcfcfcfcf8f9	7f7f7efebebebedc	8787830301010000	c4e4e4eecececede
0f0707878787878787	3f3f3f1f1b171f1f	c3c3c3e3e7e7e7e7	e0e0e0e0e0c0c0c0	07070707070707070707	9e3e3e7e7efefefe	797b733337a7a78f	fefcfcfcfcfcfcf8	f0f0f0f0f0f0f0f0f0	celelele3e3e3e3e
c7c7c3c3c3c3c3c3c0	9f9f9f8f8f0f4fcf	e7f7f2f2f475717b	c0c0c0c0c0c0c0c0	070703030303030303	7e7f7f7f3f3f3f3f3f	cfcfcf8f8fafa727	f8f8f8f8f8f8f8f8f8f	f0f0f0f0f0f0f0f0f0	3e3e3e7e7e7e7efa
e0e0ele1e1fle3e1	8f0f0f2767676727	7373272f0d1d1d3f	c0c0e0e0e0e0e0e0e0	030303030303030301	bf9f9e9edccccdc9	7773f3fbf9f8f8fc	f0f0f0f0f0f8f8f0	f0f0f1d8d8e8e060	fefee686840c0c2c
elele0e0f0f0f0f0	e7e7e3e3e36363e1	3d3flelelelelflf	e0c0e0f0f0e8e8e8	0303030301010101	e9e36377f7e3e3eb	fcfcf8f8f8f8f8f8f8	f0f4f4f4f4e4e4e4	7c7e3a18088081c0	3c3c3c3c7878583a

Fig. 7. Text associated with frame 13 in the second experiment

The total weight of the text files is approximately 6.3 MB.

This data indicates that the use of computational resources is very low compared to the use of neural networks since it is not necessary to store large amounts of images or use a GPU for training neural network models.

Additionally, the required time is less since not only is the construction of a specialized dataset for the task avoided, but also the training time and adjustment of deep learning models.

When analyzing the results presented in Table 2 (referring to the first experiment where the average grayscale is used as mapping), it is observed that 4 out of the 19 recovered frames correspond to the scene in the video where the hat's stripe appears.

On the other hand, in Table 1 (referring to the second experiment which applies a Hash code as mapping), it is observed that 9 out of the 10 recovered frames correspond to the scene of interest. This suggests that converting image to text using Hash code leads to better performance in the retrieval system.

By using an evaluation metric, it is possible to obtain a more concrete data to assess these two experiments. The precision metric is used to compare their results, and it is given by the following formula:

$$Accuracy = \frac{|\text{relevant docs} \cap \text{recovered docs}|}{\text{recovered docs}}.$$
 (1)

Considering that there are 10 relevant documents (from frame 11 to frame 20) and taking into account the results from Tables 2 and 1, for the first experiment we have a precision of:

Accuracy
$$= \frac{4}{19} = 0.21.$$
 (2)

And for the second experiment we have a precision of:

Accuracy
$$= \frac{9}{11} = 0.81.$$
 (3)

This indicates that using Hash code as mapping yields better results compared to using the average grayscale as mapping.

6 Conclusions

Currently, the development of artificial intelligence greatly contributes to the advancement of technologies. However, it is important to note that not all organizations and individuals have access to the computational resources required for these algorithms, as well as the time invested in this area. Therefore, it is vital to continue researching alternative techniques.

This article demonstrates that it is possible to find parts of an object of interest in an image through information retrieval. However, with the results presented here, it is considered possible to find objects in their entirety and not just a section of

Computación y Sistemas, Vol. 28, No. 4, 2024, pp. 2343–2352 doi: 10.13053/CyS-28-4-5286 them, without the need for deep learning. With the results generated through this research, a possible efficient method for retrieving scenes of interest in long-duration videos is opened without the need for high computational resources.

References

- 1. Alsmadi, M. K. (2020). Content-based image retrieval using color, shape and texture descriptors and features. Arabian Journal for Science and Engineering, Vol. 45, No. 4, pp. 3317–3330. DOI: 10.1007/s13369-020-0 4384-y.
- 2. Butt, H., Raza, M. R., Ramzan, M. J., Ali, M. J., Haris, M. (2021). Attention-based CNN-RNN arabic text recognition from natural scene images.
- **3. Coelho, F., Ribeiro, C. (2010).** Evaluation of global descriptors for multimedia retrieval in medical applications. 2010 Workshops on Database and Expert Systems Applications, pp. 127–131. DOI: 10.1109/DEXA.2010.44.
- 4. Deselaers, T., Keysers, D., Ney, H. (2008). Features for image retrieval: An experimental comparison. Information retrieval, Vol. 11, pp. 77–107. DOI: 10.1007/s10791-007-903 9-3.
- 5. Dodds, E., Culpepper, J., Srivastava, G. (2022). Training and challenging models for text-guided fashion image retrieval. DOI: 10.4 8550/arXiv.2204.11004.
- Dubey, S. R. (2021). A decade survey of content based image retrieval using deep learning. IEEE Transactions on Circuits and Systems for Video Technology, Vol. 32, No. 5, pp. 2687–2704. DOI: 10.1109/TCSVT.2021.3 080920.
- Dubey, S. R., Singh, S. K., Chu, W. T. (2022). Vision transformer hashing for image retrieval. 2022 IEEE International Conference on Multimedia and Expo, pp. 1–6. DOI: 10.110 9/ICME52920.2022.9859900.

- Gordo, A., Almazan, J., Revaud, J., Larlus, D. (2017). End-to-end learning of deep visual representations for image retrieval. International Journal of Computer Vision, Vol. 124, No. 2, pp. 237–254. DOI: 10.1007/ s11263-017-1016-8.
- Haering, N., Venetianer, P. L., Lipton, A. (2008). The evolution of video surveillance: an overview. Machine Vision and Applications, Vol. 19, No. 5–6, pp. 279–290. DOI: 10.1007/ s00138-008-0152-0.
- Han, L., Li, P., Bai, X., Grecos, C., Zhang, X., Ren, P. (2019). Cohesion intensive deep hashing for remote sensing image retrieval. Remote Sensing, Vol. 12, No. 1, pp. 101. DOI: 10.1007/s00138-008-0152-0.
- Iscen, A., Caron, M., Fathi, A., Schmid, C. (2023). Retrieval-enhanced contrastive vision-text models. DOI: 10.48550/arXiv.230 6.07196.
- Jégou, H., Douze, M., Schmid, C., Pérez, P. (2010). Aggregating local descriptors into a compact image representation. 2010 IEEE computer society conference on computer vision and pattern recognition, pp. 3304–3311. DOI: 10.1109/CVPR.2010.5540039.
- **13. Levenshtein, V. I. (1966).** Binary codes capable of correcting deletions, insertions, and reversals. Soviet physics doklady, Vol. 10, No. 8, pp. 707–710.
- Luo, Y., Qin, J., Xiang, X., Tan, Y., Liu, Q., Xiang, L. (2020). Coverless real-time image information hiding based on image block matching and dense convolutional network. Journal of Real-Time Image Processing, Vol. 17, pp. 125–135. DOI: 10.1007/s11554 -019-00917-3.
- Medina-Cortes, A., Saldaña-Pérez, M., Sossa-Azuela, H., Torres-Ruiz, M., Moreno-Ibarra, M. (2021). An application of deep neural network for robbery evidence using face recognition approach. Research and Innovation Forum, pp. 23–36. DOI: 10.1007/978-3-030-62066-0_3.

ISSN 2007-9737

2352 Edgar Abidán Padilla-Luis, David Pinto, Rigoberto Cerino-Jiménez, et al.

- Öztürk, Ş. (2020). Stacked auto-encoder based tagging with deep features for content-based medical image retrieval. Expert Systems with Applications, Vol. 161, pp. 113693. DOI: 10.1016/j.eswa.2020.1136 93.
- 17. Prathiba, T., Kumari, R. S. S. (2021). Content based video retrieval system based on multimodal feature grouping by KFCM clustering algorithm to promote human-computer interaction. Journal of Ambient Intelligence and Humanized Computing, Vol. 12, No. 6, pp. 6215–6229. DOI: 10.1007/s12652-020-02190-w.
- Saito, K., Sohn, K., Zhang, X., Li, C. L., Lee, C. Y., Saenko, K., Pfister, T. (2023). Pic2word: Mapping pictures to words for zero-shot composed image retrieval. n Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19305–19314.
- Shamna, N., Aziz-Musthafa, B. (2023). Feature extraction method using HoG with LTP for content-based medical image retrieval. International journal of electrical and computer engineering systems, Vol. 14, No. 3, pp. 267–275. DOI: 10.32985/ijeces.14.3.4.
- 20. Suaña-Chambi, J. L., Gutiérrez-Cáceres, J. C., Beltrán-Castañón, C. A. (2022). Densenet 3d for violent action recognition in surveillance video sequences. Proceedings of the 41st International Conference of the Chilean Computer Science Society, pp. 1–8. DOI: 10.1109/SCCC57464.2022.10000272.
- 21. Tahmasebzadeh, G., Kacupaj, E., Müller-Budack, E., Hakimov, S.,

Lehmann, J., Ewerth, R. (2021). GeoWINE: Geolocation based wiki, image, news and event retrieval. Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 2565–2569. DOI: 0.1145/3404835.3462786.

- Tang, J., Gong, C., Guo, F., Yang, Z., Wu, Z. (2022). Automatic geo-localization framework without GNSS data. IET Image Processing, Vol. 16, No. 8, pp. 2180–2195. DOI: 10.104 9/ipr2.12482.
- Wu, H., Gao, Y., Guo, X., Al-Halah, Z., Rennie, S., Grauman, K., Feris, R. (2021). Fashion iq: A new dataset towards retrieving images by natural language feedback. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11307–11317.
- 24. Yue-Hei-Ng, J., Yang, F., Davis, L. S. (2015). Exploiting local features from deep networks for image retrieval. Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp. 53–61.
- Zhang, Y., Jiang, H., Miura, Y., Manning, C. D., Langlotz, C. P. (2022). Contrastive learning of medical visual representations from paired images and text. Machine Learning for Healthcare Conference, pp. 2–25.
- 26. Zhou, Q., Wang, C., Liu, P., Li, Q., Wang, Y., Chen, S. (2016). Distribution entropy boosted VLAD for image retrieval. Entropy, Vol. 18, No. 8, pp. 311. DOI: 10.3390/e18080311.

Article received on 11/04/2024; accepted on 12/07/2024. *Corresponding author is Edgar Abidán Padilla-Luis.