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Abstract. Maintaining balance in quadruped robots 

requires precise coordination of joint movements, which 
varies depending on the unique physical characteristics 
of each robot, such as dimensions, mass distribution and 
centre of gravity. There are several control methods for 
quadruped robots balance, a commonly used is the 
Proportional Integral Derivative (PID) controllers, 
provide robust stability, but typically require 
individualised tuning for each robot due to these varying 
physical parameters. To address this limitation, this 
paper explores an intelligent control strategy that 
leverages neural networks to generalise balance control 
across different quadruped platforms. Initially, a PID 
controller was implemented to create a large dataset by 
controlling the equilibrium of a commercial 12 joints 
quadruped robot. This data is used to train a several 
perceptron neural networks to learn the complex 
mapping of body orientation to joint movements. 
Through a parameter search, it was determined that a 
simple single-layer neural network with 18 neurons 
effectively mimicking the behaviour of the PID controller. 
This neural network is then applied to a secondary 
quadruped robot with different dimensions and mass, 
demonstrating that single-layer networks, despite their 
simplicity, can effectively capture essential control 
dynamics, reducing model complexity and enabling 
rapid deployment on different quadruped robots. 
Furthermore, this work opens the way to scalable and 
adaptive control methods in robotic systems where 

neural networks trained on one platform can be 
effectively transferred to others with 
minimal modifications. 

Keywords. Quadruped robot, balance controller, ANN 

controller, knowledge transfer. 

1 Introduction 

Quadruped robots have proven to be a versatile 
solution in the field of mobile robotics, excelling in 
applications where mobility over rough and difficult 
terrain is essential. Unlike wheeled or bipedal 
robots, quadrupeds offer greater stability and 
adaptability to complex environments, such as 
search and rescue areas [1, 2], planetary 
exploration [3, 4], industrial inspection in rough 
terrain [5, 6], and operations in human-hazardous 
environments [7]. 

Their ability to maintain stability while 
negotiating obstacles or uneven surfaces, together 
with the redundancy of their support points, make 
them the preferred choice for tasks requiring 
robustness in difficult terrain. 

However, quadruped robots are mechanisms 
that present a high complexity in their control, 
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whether for walking, avoiding obstacles, adapting 
to the terrain and maintaining balance, the latter 
being a very important property since, not having a 
base or support fixed to the plane where they 
move, they must control their balance to 
avoid falling. 

In addition, the complexity of the control of 
these robots lies in the fact that they have many 
degrees of freedom and are redundant, each leg of 
the robot must be precisely controlled to ensure 
smooth locomotion, avoiding falls or imbalances 
that could compromise performance. 

Technically, this requires sophisticated 
algorithms that manage not only the positioning of 
the legs, but also the orientation of the body. The 
high dimensionality of the control makes the task 
computationally intensive and challenging in terms 
of controller design. 

There are several known methods for 
controlling quadruped robots by merging balance 
control with gait pattern control, each with its 
strengths and weaknesses. One of these 
traditional methods is model-based dynamic 
control [8, 9], which describe complete dynamics of 
the robot using mathematical models, generating 
optimal gait patterns [10] in terms of energy 
efficiency and stability. 

Although accurate, its main drawback is its high 
computational complexity, which may limit its 
application in real time, and its poor performance 
in unpredictable environments. 

To manage real-time operation using a 
mathematical model, approaches such as Model-
based Predictive Control (MPC) have been 
developed [11]. MPC uses detailed models of robot 
dynamics to anticipate future movements and 
calculate the necessary adjustments in real time to 
maintain balance and stable posture as seen in 
[12, 13]. 

This approach adjusts both leg movement and 
body posture based on predictions of future states, 
considering possible perturbations and optimizing 
actions to minimize loss of balance.  

Furthermore, to minimize complexity and 
reduce control dimensionality some approaches 
focus on the analysis of center of mass (COM) and 
controlling its position by means of its legs. An 
example is Zero Moment Point (ZMP) control, 
balance and posture are regulated by constantly 
monitoring the position of the zero moment point 

and adjusting the posture of the legs so that the 
ZMP remains within the support polygon as in 
[14, 15]. 

This approach allows for stable posture and 
effective balance control in static or low-speed 
tasks, as the robot ensures its balance by 
maintaining the center of mass within the support 
polygon. However, in dynamic movements or 
changing terrains, ZMP control may not be 
sufficiently fast or adaptive, as it does not allow for 
anticipation of major disturbances. 

Moreover, the Inverted Pendulum Model (IPM) 
managed the balance by simulating the centre of 
mass of the robot as a control point to be aligned 
on the support polygon, acting as the "arm" of the 
pendulum around which the robot swings as shown 
in [16, 17]. By simplifying the complex dynamics to 
a general equilibrium model, IPM allows rapid 
response to COM movement in moderately 
variable terrain. 

The accuracy of posture control depends on the 
accuracy of the model and simplifying assumptions 
such as rigid contact limits its applicability in 
environments with irregular surfaces and 
constantly changing contact points. 

In contrast to the use of mathematical models, 
model-free quadruped robot controllers have 
emerged that focus on replicating biomechanical or 
biological processes, such as patterned, rhythmic 
neural outputs that drive rhythmic behaviours. The 
Central Pattern Generators (CPGs) [18] mimics the 
rhythmic gait patterns observed in biological 
organisms. CPGs can generate cyclic sequences 
of joint activation that perform periodic movement 
of each leg. 

The system combining with Reinforcement 
Learning automatically adjusts the phase of 
movement based on basic sensory feedback, 

 

Fig. 1. Commercial quadruped robot "Robot dog kit" 

manufactured by the company Freenove 
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adapting to small perturbations without the need 
for complex modelling such in [19, 20]. CPGs are 
limited in their ability to respond to large 
disturbances or highly irregular environments, 
which has an impact on the robot's posture 
accuracy and overall stability. 

The computational efficiency of CPGs makes 
them suitable for real-time operations, but because 
they do not incorporate an explicit dynamic 
equilibrium model. 

As seen in the different methods of controlling 
quadruped robots, balance control is an important 
goal in the locomotion task. The robot must 
compensate for the imbalance with specific 
movements of each leg. Mathematical modeling is 
necessary to know how to move every joint, but it 
is difficult to obtain and is unique for each robot. 

Given this scenario, there is a need to develop 
a model-free controller that would be capable of 
control only the balance to reduce complexity and 
generalizing the balance control to 
quadruped robot architectures with different 
physical configurations. 

In this work we present the develop of a 
compact neural network model that extract a 
balance PID controller behavior from an existing 
one, capturing basic balance dynamics and then 
the learned model can be transferred to another 
quadruped robot of different size, that was 
developed from scratch. 

The search for optimal parameters and the 
analysis of the appropriate neural network to learn 
the balance control was fundamental to maintain 
computational simplicity and improving control 
flexibility without the need to manually adjust each 
parameter of the new robot. 

2 Methodology 

For this research work we used a commercial 
quadruped robot called Robot dog kit 
manufactured by the company Freenove, shown in 
figure 1, which is a quadruped robot with acrylic 
structure, it has (MG90) servomotors which can be 
controlled by position using PWM. It also has the 
necessary electronics for the robot to operate with 
lithium-ion batteries and a raspberry pi 4 to control 
the motors through a user interface. 

This robot has predefined functions such as 
forward, backward, sideways walk and turning in 
both directions. This is achieved by using the 
inverse kinematics of the mechanism to 
subsequently calculate the trajectory to be followed 
by each of its limbs. We know that this task 
involves the analysis of the mechanism, its 
dimensions and type of morphology. 

The robot has an inertial measurement unit 
(IMU) that combines a three-axis accelerometer 
and gyroscope. The accelerometer measures 
linear acceleration in the X, Y and Z directions, 
including acceleration due to gravity, allowing it to 
determine the tilt or angle of orientation of the 
device. The gyroscope, on the other hand, 
measures angular velocity in the same directions, 
providing crucial information about rotations and 
angular movements. 

Being a commercial robot, it has mathematical 
equations that detail the orientation of the system 
by means of the information acquired by its inertial 
measurement unit, as well as Kalman filters and 
techniques that allow obtaining the Euler angles 
(Roll, Pitch, Yaw). An important function of this 
system is the balance control of the quadruped 
robot, which gives the robot the ability to react 
when it is on an inclined plane, compensating this 

 

Fig. 2. Movements made to extract the database, a) 

and b) show the movement in pitch and c) and d) show 
the movement in Roll 
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inclination with the movement of its legs so that the 
robot's torso is always horizontal, thus balancing 
the system. 

To achieve this task, a PID controller is used 
which aims to manipulate the variable Euler angles 
mentioned above, and thus, with the help of 
rotation matrices, Kalman filters and the 
morphology of the robot can achieve control of the 
orientation of the system, it should be noted that 
the robot also makes use of inverse kinematics to 
know the values that must be provided to the 
motors in angle format. 

Having all this information contained in the 
source code of the commercial robot, it is proposed 
to extract this knowledge by means of a neural 
network, which will aim to learn the behaviour of 
the PID controller on the variables of the Euler 
angles provided by the imu. 

2.1 Dataset 

To achieve this task, the first step is to acquire 
the database of the PID controller's behaviour on 
the motors, i.e. it is necessary to extract the 
behaviour of the PID through all possible 
measurements and the actions that the motors 
generate to compensate for the tilt movements 
registered by the sensor. 

The robot needed to be on a platform where tilt 
movements were performed to obtain the sensor 
measurements and the action of the controller in 
inclined planes. Thus, the robot was placed on a 
platform and through the movement of the 
platform, as shown in figure 2, the database was 
generated, which consists of 49,876 data, and a 
database for validation of 4,067 data was 
also extracted. 

 

Fig. 3. Inertial reference axis to generate the artificial 

neural network 

 

Fig. 4. Robot assembly with motors at 90 

 

Fig. 5. Roll, Pitch and Yaw values with filters applied and the neural network inference for these values 
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The variables that were acquired consist of the 
action of the 12 motors plus 3 inputs from the IMU 
sensor with which the Euler angles are calculated, 
these are the data that we use to train our robot. 
Once the database to train our neural network was 
obtained, we proceeded to use the tensorflow 
framework to create our model. 

2.2 ANN Architecture 

An exploration was carried out to find out what type 
of neural network architecture is suitable to 
perform the balancing control task on the robot and 
to show optimal learning of the PID controller, so 
we started by using a multilayer perceptron 
network and experiments were carried out to 
determine the best architecture to successfully 
perform the balancing task. 

The experiments consisted of training with the 
same database a series of neural networks ranging 
from one neuron to 20 neurons, as well as 
experimenting with one and two layers in each 
architecture. The activation function "ReLu" was 
used and as a loss function, we used the "mean 
squared error" which is used for regression 
problems, all training was performed with 
50 epochs. 

Once the experiments are done, we select the 
best architecture by calculating the mean absolute 
error and mean squared error metrics. With these 
metrics we can select how many neurons and how 
many layers are the optimal architecture to be able 
to perform the learning work. 

2.3 Transfer Knowledge 

Once the neural network had been designed and 
tested, we proceeded to transfer the knowledge 
acquired by the model to our robotic platform. 
However, we must take care of certain details so 
that the transfer can work, and the model can 
perform the balancing actions on a robot whose 
mathematical model is unknown and where none 
of the conventional methods such as the 
calculation of trajectories for the limbs are applied. 

To achieve this task, we first need to use a 
sensor that provides us with information about the 
change of state in the Euler angles, i.e. a 
gyroscope and accelerometer, since with the 
appropriate software this information can be 

Table 1. Comparative table of MSE and MAE metrics of 

1-layer neural networks with different number of neurons 

N° Neurons MSE MAE 

18 0.26062 0.25241 

17 0.31753 0.30081 

14 0.32096 0.30351 

19 0.32676 0.29505 

10 0.34511 0.30179 

13 0.34582 0.31588 

12 0.41526 0.37572 

11 0.53823 0.39626 

5 0.54264 0.40549 

4 0.54407 0.41224 

16 0.55667 0.43297 

15 0.55823 0.40960 

8 0.56823 0.43116 

3 0.56898 0.43218 

9 0.56915 0.42769 

6 0.56921 0.43048 

7 0.86466 0.61360 

20 1.18497 0.76728 

2 10.06871 2.16316 

1 46.45846 4.66416 

Table 2. Comparative table of MSE and MAE metrics of 

2-layer neural networks with different number of neurons 

Neurons per 
layer 

MSE MAE 

14 -14 0.23634 0.23299 

8 -8 0.25719 0.25164 

16 -16 0.27813 0.27039 

17 -17 0.27996 0.27148 

10 -10 0.28447 0.27684 

12 -12 0.28803 0.28222 

4 - 4 0.32811 0.29782 

18 - 18 0.34210 0.32788 

11 – 11 0.35039 0.33671 

13 – 13 0.35077 0.31601 

6 – 6 0.35464 0.32212 

19 – 19 0.37177 0.34225 

5 – 5 0.38674 0.35156 

9 – 9 0.38730 0.36499 

15 – 15 0.40518 0.37782 

20 – 20 0.46303 0.42260 

3 – 3 0.53846 0.42620 

7 – 7 0.80416 0.60000 

2 – 2 47.11017 4.66455 

1 – 1 2278.72757 40.30010 
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generated. In addition, we must consider the 
directions of the axes of this sensor, since the 
variables must have the same reference point as 
the sensor used to generate the database, as 
shown in figure 3. 

We must also clarify that the IMU sensors of the 
new robot are not located in the same part of the 
robot torso from which the knowledge was 
extracted. However, they have a similar 
positioning, this impacts on the way the robot is 
balanced in the horizontal plane, but this problem 
can be solved by compensating the motors 

manually, it should be noted that the calibration 
process could be automated. 

An important aspect is the assembly process of 
the new robot, as this must be such that the motors 
are assembled when they are at a predefined value 
of 90º, this allows the robot to be assembled as 
shown in figure 4, so it would be assembled in the 
same way as the Freenove robotic platform. 

In addition, the neural network output gives 
values in degrees (°), so the motors of our robot 
should work in the same way. Our robotic platform 
has embedded systems to be able to run an 

 

Fig. 6. Plot of the mean squared error loss function during 

training for the neural network with 1 layer and 18 neurons 

 

Fig. 7. Plot of the mean absolute error metric for the neural 

network with 1 layer and 18 neurons 

 

Fig. 8. Plot of the mean squared error loss function during 

training for the neural network with 2 layers and 14 
neurons each layer 

 

Fig. 9. Plot of the mean absolute error metric for the neural 

network with 2 layers and 14 neurons each layer 
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Ubuntu operating system, the problem we faced is 
that they do not have much support for Tensorflow 
so we had to convert the previously generated 
model to a version that occupies less 
computational resources such as Tensorflow Lite. 

Once we installed all the dependencies in our 
robot, we proceeded to generate the code that 
extracts the information from the sensor and 
applies Kalman filters to obtain an accurate 
measurement of the angles (Roll, Pitch, Yaw). 
Figure 5 shows the data acquired from the sensor, 
as well as the response of the neural network to 
these readings in the new robot. Once the system 
had been tested, the balance control was run on 
the new platform. 

3 Results 

In this section we present the results of the search 
for the best neural network architecture, as well as 
its comparison and implementation, in addition we 
present graphs of the training for the best 

architectures and, finally, the model implemented 
on the new quadruped platform. 

Table 1 shows the results of the metrics 
calculated with the validation data for the 
exploration of a 1-layer neural network with 
different number of neurons. A neural network with 
18 neurons is observed to have better 
performance, with an MSE value of 0.26062 and a 
MAE of 0.2524. 

Table 2 shows the results of the metrics 
calculated with the validation data for the 
exploration of a 2-layer neural network with 
different number of neurons. It is observed that the 
architecture with 14 neurons has better 
performance, with an MSE value of 0.2363 and an 
MAE of 0.2399. 

Figure 6 shows the evolution of the loss function 
during the training of the 1-layer neural network 
with 18 neurons, in this case it is the average of the 
quadratic error. We can observe that the neural 
network converges approximately to the values of 
10 epochs. 

 

Fig. 10. Difference plot between the actual value expressed in degrees (°) and the prediction of the 1-layer model with 
18 neurons 
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Furthermore, the graph was plotted with an 
additional metric "mean squared error". In figure 7 
we can see how the model converges 
approximately at epoch 12. 

Figure 8 shows the evolution of the loss function 
during the training of the 2-layer neural network 
with 14 neurons per layer, in this case it is the 
average of the quadratic error. We can observe 
that the neural network converges approximately 
at the values of 10 epochs. 

On the other hand, the graph was also plotted 
with an additional metric "mean squared error". In 
figure 9 we can see how the model converges 
approximately at 20 epochs. 

Figure 10 shows the error graph in the 
validation of the single-layer neural network with 18 
neurons, where we can observe 12 sub graphs 
corresponding to each of the motors of the 
quadruped robot. 

These graphs represent the error of the neural 
network when making an inference and it is 
compared with the real value that is in the dataset, 
and it is observed that the error of inference for the 
validation data is in a range of +-2° degrees. 

Figure 11 shows the error graph in the 
validation of the 2-layer neural network with 14 
neurons, where we can observe 12 sub graphs 
corresponding to each of the motors of the 
quadruped robot. 

 

Fig. 11. Difference graph between the actual value expressed in degrees (°) and the prediction of the 2-layer model 

with 14 neurons each 

 

Fig. 12. Balance test on the new platform using the developed neural network 
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These graphs represent the error of the neural 
network when making an inference and it is 
compared with the real value that is in the dataset, 
and it is observed that the error of inference for the 
validation data is in a range of +-2° degrees. 

A single-layer architecture with 18 neurons was 
selected to keep the model simple, as it will be 
used on low-resource hardware. In addition, 
validation and commissioning was performed on 
the robot, using the Tensorflow 2.0 library to load 
the model that we previously designed and trained. 

Once the system was tested, we proceeded to 
run the balance control on the new platform. In 
figure 12 we can see the response of the front 
limbs to the tilt of the platform in such a way that 
only the Pitch angle is affected. The reaction of the 
model is fast and there are no jumps in the values 
of the inferences, so that a controlled and light 
movement can be appreciated. 

4 Conclusion 

This work showed the methodology for transferring 
existing knowledge from one commercial 
quadruped robot to another quadruped robot 
designed from scratch. The first robot was 
designed by the company Freenove, it can walk 
forwards, backwards and sideways, by means of 
classical control techniques such as calculating a 
trajectory that the robot limbs must follow and, as 
a result, it manages to generate walking patterns. 

This robot has a function called balancing, 
which has the purpose to always keep the robot 
torso horizontal. In this work it was possible to 
obtain a consistent database of the controller 
behaviour used for balance task and the 
measurements of the sensors (gyroscope and 
accelerometer) that the robot has. 

At the same time, a comparison of various 
neural network architectures was made by training 
with the acquired database. Hence, the optimum 
number of neurons and layers for the neural 
network was identified, this achievement gives to 
neural network better performance, with a very low 
error rate. 

With the above described, it was possible to 
transfer this knowledge to another quadruped 
robot platform taking some considerations such as 
the inertial reference axes and the reference axes 

of the motors, with these considerations the 
quadruped robot, without knowledge of the 
dynamic model or its morphology, managed to 
imitate the balance behaviour of the Freenove 
robot, having a good performance when executing 
the task, although the motors had to be calibrated 
manually, but it is a step that could later 
be automated. 
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