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Abstract. In recent years, it has been shown that many 

correlation and association coefficients used in statistics 
can be viewed as functions defined on a set with an 
involution operation. In this case, the involution can be 
thought of as a mapping of elements of a set into 
“opposite” elements, with the correlation between 
mutually opposite elements being -1. The methods 
constructing such correlation functions using similarity 
and dissimilarity functions defined over a set with 
involution have been proposed, and many known in 
statistics correlation and association coefficients have 
been constructed in such a way. It was shown that these 
correlation functions can be obtained by rescaling 
bipolar similarity functions; for this reason, they are 
referred to as similarity correlation functions. The paper 
reconsiders and summarizes some basic results on 
methods of constructing correlation functions on sets 
with involution called here involutive sets. The 
considered methods can be used for constructing new 
correlation functions on sets with involution if a suitable 
similarity or dissimilarity function is defined. 

Keywords. Correlation, association, similarity, 

distance, involution. 

1 Introduction 

Correlation and association coefficients proposed 
in statistics play important roles in data analysis in 
biology, medicine, business, etc. [1-4]. Recently [5-
8], a general approach to the analysis of 
relationships between data has been proposed 
based on works on fuzzy relations [9,10], 
aggregation functions and pseudo-difference 
operations [11], measures of similarity and 
interestingness [12-14], etc. In the works [5-8], a 
functional-algebraic approach was applied to the 
analysis of similarity measures, correlation, and 
association coefficients, which were considered as 

functions of two arguments defined over a 
universal set with involution operation and 
satisfying several properties, such as symmetry, 
reflexivity, irreflexivity, inverse relationship etc. 

With this approach, similarity and dissimilarity 
functions can also be viewed as fuzzy relations [9, 
10]. The general methods forming new similarity 
and correlation functions with given properties on 
almost any domain are considered in [7]. Particular 
attention in [5, 6] is given to functions defined over 
sets with an involution operation, where the 
correlation and association coefficients are 
considered as correlation functions (association 
measures) satisfying the inverse 
relationship property. 

The functional-algebraic approach, which 
considers similarity measures, correlation and 
association coefficients as functions defined over a 
set with involution operation, made it possible to 
establish a connection between these functions 
and to propose methods for constructing new 
correlation and association coefficients from 
similarity measures and distances [5-8, 15-20]. In 
the paper, we introduce the concept of an 
involutive set, with some changes in definitions. 
We reconsider and give proof of all statements. 

The paper has the following structure. Section 
2 introduces the basic properties of sets with 
involution used further for defining similarity, 
dissimilarity, and correlation functions over these 
sets. Section 3 considers the properties of co-
symmetric functions and defines correlation 
function (association measure) over set with 
involution. 

Section 4 considers co-symmetric, consistent, 
and bipolar similarity and dissimilarity functions 
and the methods of constructing correlation 

Computación y Sistemas, Vol. 28, No. 4, 2024, pp. 1955–1960
doi: 10.13053/CyS-28-4-5218

ISSN 2007-9737



functions from them. Section 5 contains the 
conclusion and directions for future research. 

2 Involutive Sets 

Definition 1. Let Ω be a non-empty set. A function 

𝑁: Ω → Ω satisfying for all 𝑥 ∈ Ω the involutivity 

property: 𝑁(𝑁(𝑥)) = 𝑥, is called an involution on Ω. 

The involution is also referred to as a reflection 
or negation. The pair 〈Ω, 𝑁〉 will be called an 
involutive algebra. This is the simplest algebra 
with involution. 

For example, on the power set 𝒫(𝑋) of a non-

empty set 𝑋, the complement 𝐴 of subsets 𝐴 of 𝑋 

is an involution 𝑁(𝐴) = 𝐴 because 𝑁(𝑁(𝐴)) = 𝐴 =

𝐴 for any subset 𝐴. The algebra 〈𝒫(𝑋), 〉 is the 

involutive algebra associated with the Boolean 

algebra of sets 〈𝒫(𝑋),∩,∪, 〉. 
Definition 2. Let Ω be a non-empty set with an 

involution 𝑁: Ω → Ω. Such a set will be referred to 

as an involutive set. A non-empty subset 𝑉 of Ω will 

be called an involutive subset of Ω if 𝑉 is closed 
under 𝑁, i.e., 𝑁(𝑥) belongs to 𝑉 for all 𝑥 in 𝑉. 

An element 𝑥 ∈ Ω satisfying the property 

𝑁(𝑥) = 𝑥 is called a fixed point of 𝑁. A set of fixed 
points of 𝑁 in the set Ω will be denoted by 𝐹𝑃(Ω, 𝑁) 

or 𝐹𝑃. Depending on a set Ω and the definition of 

involution 𝑁 on Ω, it may have no fixed points, one 
fixed point, or a finite or infinite number of fixed 
points. 

For example, the complement 𝐴 of subsets 𝐴 ⊆
𝑋 in the power set 𝒫(𝑋) has no fixed points 

because 𝐴 ≠ 𝐴 for any subset 𝐴. The negation −𝑥 
of real numbers is an involution on the set of real 
numbers ℝ. It has one fixed point 0 because the 

equation −𝑥 = 𝑥 satisfied only for 𝑥 = 0. On the set 
of real-valued n-tuples ℝ𝑛 with elements 𝑥 =
(𝑥1, … , 𝑥𝑛) the operation 𝑁(𝑥) = (−𝑥1, … , −𝑥𝑛) is 

an involution with n-tuple (0, … ,0) as a fixed point. 

Theorem 1. Let Ω be a set with an involution 𝑁, 

and the set of non-fixed points Ω ∖ 𝐹𝑃(Ω, 𝑁) be 

non-empty. Then Ω ∖ 𝐹𝑃(Ω, 𝑁) is an involutive 
subset of Ω. 

Proof. If 𝑥 belong to Ω ∖ 𝐹𝑃(Ω, 𝑁) then 𝑥 is not 
a fixed point: 𝑁(𝑥) ≠ 𝑥, and from the involutivity of 

𝑁 it follows: 𝑁(𝑁(𝑥)) = 𝑥 ≠ 𝑁(𝑥). Hence, 𝑁(𝑥) is 

not a fixed point and belongs to Ω ∖ 𝐹𝑃(Ω, 𝑁). 

Therefore, the set Ω ∖ 𝐹𝑃(Ω, 𝑁) is closed under 𝑁, 
and it is an involutive subset of Ω  ∎ 

From theorem 1, it follows that the restriction 
𝑁|Ω∖𝐹𝑃 of the involution 𝑁 to Ω ∖ 𝐹𝑃 will be an 

involution on Ω ∖ 𝐹𝑃, and Ω ∖ 𝐹𝑃 will be an 
involutive set with involution 𝑁|Ω∖𝐹𝑃. Further, we 

define correlation functions on involutive subset 
without fixed points. Without the loss of generality, 
we will suppose that Ω has no fixed points, 
𝐹𝑃(Ω, 𝑁) = ∅,  Ω ∖ 𝐹𝑃 = Ω and 𝑁|Ω∖𝐹𝑃 = 𝑁. 

For example, the correlation of real numbers 
with involution 𝑁(𝑥) = −𝑥 will be defined on the set 

Ω = ℝ\{0} of real numbers without fixed point 𝑥 =
0, see [15] and example in Section 4. 

Below, we consider the main definitions and 
properties of (dis)similarity and correlation 
functions defined over involutive sets [5-8]. Some 
changes in definitions are based on the concept of 
involutive set introduced in this section. 

3 Correlation Functions 

Definition 3. Let Ω be a set with an involution 𝑁. 

The real-valued function 𝑅: Ω × Ω → ℝ is called a 
co-symmetric function if, for all 𝑥, 𝑦 in Ω, it satisfies 
the co-symmetry property: 

𝑅(𝑁(𝑥), 𝑁(𝑦)) = 𝑅(𝑥, 𝑦). (1) 

Theorem 2. Let Ω be a set with an involution 𝑁. 

The function 𝑅: Ω × Ω → ℝ satisfies co-symmetry 
property (1) if and only if for all 𝑥, 𝑦 in Ω it satisfies 
the property: 

𝑅(𝑥, 𝑁(𝑦)) = 𝑅(𝑁(𝑥), 𝑦). (2) 

Proof. Replacing 𝑥 by 𝑁(𝑥) in (1) from 

involutivity of 𝑁  obtain (2): 

𝑅(𝑁(𝑥), 𝑦) = 𝑅 (𝑁(𝑁(𝑥)), 𝑁(𝑦))  = 𝑅(𝑥, 𝑁(𝑦)). 

Similarly, from (2) and involutivity of 𝑁 replacing 𝑦 

by 𝑁(𝑦) obtain (1): 

𝑅(𝑁(𝑥), 𝑁(𝑦)) = 𝑅 (𝑥, 𝑁(𝑁(𝑦)))  = 𝑅(𝑥, 𝑦) ∎. 

Further, we will consider co-symmetric 
functions taking values in the intervals [-1,1] or 
[0,1]. Due to the equivalence of two forms (1) and 
(2) of the co-symmetry property, we usually 
consider only one of them. 

Definition 4. Let Ω be a set with involution 𝑁 

without fixed points. The function 𝐴: Ω × Ω →
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[−1,1] is called an association measure 

(correlation function) on Ω if for all 𝑥,𝑦 in Ω it 
satisfies the following properties: 

A1. 𝐴(𝑥, 𝑦) = 𝐴(𝑦, 𝑥),                            (symmetry) 

A2. 𝐴(𝑥, 𝑥) = 1,                                     (reflexivity) 

A3. 𝐴(𝑥, 𝑁(𝑦)) = −𝐴(𝑥, 𝑦),    (inverse relationship) 

A4. 𝐴(𝑥, 𝑁(𝑥)) = −1.              (opposite elements) 

Note that A4 follows from A3 and A2. 

Comments 1. Definition 4 is based on [5]. 
Further, the correlation functions will be obtained 
from similarity functions. They will also be referred 
to as similarity correlation functions to emphasize 
this property of correlation functions. 

Comment 2. In some papers (for example, in 
fuzzy set theory), the term correlation coefficient 
denotes the functions 𝐴(𝑥, 𝑦), taking values in the 
interval [-1,1] and satisfying the properties A1 and 
A2. Here, such functions will be referred to as weak 
correlation functions [6], and the correlation 
functions satisfying A1-A4 over involutive sets will 
be referred to as strong correlation functions or 
strong similarity correlation functions. 

Proposition 1. The strong correlation function 
is co-symmetric. 

Proof. Let us show that the strong correlation 

function satisfies for all 𝑥, 𝑦 in Ω the co-
symmetry property: 

𝐴(𝑥, 𝑁(𝑦))  = 𝐴(𝑁(𝑥), 𝑦). (3) 

From A3, A1, A3 and A1 obtain (3): 𝐴(𝑥, 𝑁(𝑦))  =

−𝐴(𝑥, 𝑦) = −𝐴(𝑦, 𝑥) = 𝐴(𝑦, 𝑁(𝑥)) = 𝐴(𝑁(𝑥), 𝑦) ∎. 

4 Similarity and Dissimilarity 
Functions 

Consider similarity and dissimilarity functions used 
for constructing strong correlation functions. 

Definition 5. Let Ω be a set with involution 𝑁 
without fixed points. The function 𝑆: Ω × Ω → [0,1] 
is called a similarity function if for all 𝑥, 𝑦 in Ω it 
satisfies the following properties: 

𝑆(𝑥, 𝑦) = 𝑆(𝑦, 𝑥),        (symmetry), (4) 

𝑆(𝑥, 𝑥) = 1.                 (reflexivity). (5) 

The function 𝐷: Ω × Ω → [0,1] is called a 

dissimilarity function if, for all 𝑥, 𝑦 in Ω it satisfies 
the following properties: 

𝐷(𝑥, 𝑦) = 𝐷(𝑦, 𝑥),        (symmetry), (6) 

𝐷(𝑥, 𝑥) = 0.                (irreflexivity). (7) 

Definition 6. Similarity and dissimilarity 

functions are called complementary if for all 𝑥, 𝑦 in 

Ω it is fulfilled: 

𝑆(𝑥, 𝑦) + 𝐷(𝑥, 𝑦) = 1. (8) 

These complementary functions can be 
obtained one from the other as follows: 

𝑆(𝑥, 𝑦) = 1 − 𝐷(𝑦, 𝑥),       𝐷(𝑥, 𝑦) = 1 − 𝑆(𝑦, 𝑥). (9) 

Definition 7. Let Ω be a set with involution 𝑁 
without fixed points. Similarity and dissimilarity 
functions 𝑆, 𝐷: Ω × Ω → [0,1] are called consistent if 
for all 𝑥, 𝑦 in Ω they satisfy the following 
consistency properties, respectively: 

𝑆(𝑥, 𝑁(𝑥)) = 0, (10) 

𝐷(𝑥, 𝑁(𝑥)) = 1. (11) 

When elements 𝑥 and 𝑁(𝑥) are considered as 
“opposite” elements, the consistency of the 
similarity and dissimilarity functions means the 
minimal similarity and maximal dissimilarity 
between the “opposite” elements, respectively. 

Definition 8. Let Ω be a set with involution 𝑁 
without fixed points. Similarity and dissimilarity 
functions 𝑆, 𝐷: Ω × Ω → [0,1] are called co-

symmetric if for all 𝑥, 𝑦 in Ω they satisfy the 
following co-symmetry properties, respectively: 

𝑆(𝑁(𝑥), 𝑁(𝑦))  = 𝑆(𝑥, 𝑦), (12) 

𝑆(𝑥, 𝑁(𝑦))  = 𝑆(𝑁(𝑥), 𝑦), (13) 

𝐷(𝑁(𝑥), 𝑁(𝑦))  = 𝐷(𝑥, 𝑦), (14) 

𝐷(𝑥, 𝑁(𝑦))  = 𝐷(𝑁(𝑥), 𝑦). (15) 

Theorem 3. Let Ω be a set with involution 𝑁 

without fixed points, and 𝑆: Ω × Ω → [0,1] be a co-
symmetric and consistent similarity function, then 
the function defined for all 𝑥,𝑦 in Ω by: 

𝐴(𝑥, 𝑦) = 𝑆(𝑥, 𝑦) − 𝑆(𝑥, 𝑁(𝑦)), (16) 
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will be a strong correlation function (association 
measure) satisfying A1-A4. 

Proof. From (16), symmetry (4), co-symmetry 

(13), and (4) obtain A1: 𝐴(𝑥, 𝑦) = 𝑆(𝑥, 𝑦) −

𝑆(𝑥, 𝑁(𝑦)) = 𝑆(𝑦, 𝑥) − 𝑆(𝑥, 𝑁(𝑦)) = 𝑆(𝑦, 𝑥) −

𝑆(𝑁(𝑥), 𝑦) = 𝑆(𝑦, 𝑥) − 𝑆(𝑦, 𝑁(𝑥)) = 𝐴(𝑦, 𝑥). 

From (16), reflexivity (5) and consistency (10) 

obtain A2: 𝐴(𝑥, 𝑥) = 𝑆(𝑥, 𝑥) − 𝑆(𝑥, 𝑁(𝑥)) = 1 −

0 =  1. 

From (16) and involutivity of 𝑁 obtain A3: 

𝐴(𝑥, 𝑁(𝑦)) = 𝑆(𝑥, 𝑁(𝑦)) − 𝑆 (𝑥, 𝑁(𝑁(𝑦))) =

𝑆(𝑥, 𝑁(𝑦)) − 𝑆(𝑥, 𝑦) = −𝐴(𝑥, 𝑦). 

A4 follows from A3 and A2: 𝐴(𝑥, 𝑁(𝑥)) =

−𝐴(𝑥, 𝑥) = −1 ∎. 

Dually to (16), we obtain from (16) and (9) a 
correlation function from the complementary co-
symmetric and consistent dissimilarity function: 

𝐴(𝑥, 𝑦) = 𝐷(𝑥, 𝑁(𝑦)) − 𝐷(𝑥, 𝑦). (17) 

Definition 9. Let Ω be a set with involution 𝑁 

without fixed points, and 𝑆, 𝐷: Ω × Ω → [0,1] be 
similarity and dissimilarity functions, respectively. 
These functions are called bipolar if for all 𝑥, 𝑦 in Ω 
they satisfy the following conditions, respectively: 

𝑆(𝑥, 𝑦) + 𝑆(𝑥, 𝑁(𝑦)) = 1, (18) 

𝐷(𝑥, 𝑦) + 𝐷(𝑥, 𝑁(𝑦)) = 1. (19) 

Theorem 4. Bipolar similarity 𝑆 and dissimilarity 

𝐷 functions are co-symmetric and consistent. 

Proof. From bipolarity (18) and reflexivity (5) of 

𝑆 obtain consistency (10) of 𝑆: 𝑆(𝑥, 𝑁(𝑥)) = 1 −

𝑆(𝑥, 𝑥) = 1 − 1 = 0. 

From bipolarity (18), symmetry (4), (18) and (4) 

obtain co-symmetry (13) of 𝑆: 𝑆(𝑥, 𝑁(𝑦)) = 1 −

𝑆(𝑥, 𝑦) = 1 − 𝑆(𝑦, 𝑥) = 𝑆(𝑦, 𝑁(𝑥)) = 𝑆(𝑁(𝑥), 𝑦). 

Similar results we obtain for bipolar dissimilarity 
function 𝐷 ∎. 

From Theorems 3, 4, and (18), we obtain the 
following result. 

Theorem 5. Let Ω be a set with involution 𝑁 

without fixed points, and 𝑆: Ω × Ω → [0,1] be a 
bipolar similarity function, then the function, 
defined for all 𝑥,𝑦 in Ω, by: 

𝐴(𝑥, 𝑦) = 2𝑆(𝑥, 𝑦) − 1, (20) 

is a correlation function (association measure) 
satisfying A1-A4. 

Dually, a bipolar dissimilarity function 𝐷 defines 
a correlation function by: 

𝐴(𝑥, 𝑦) = 1 − 2𝐷(𝑥, 𝑦). (21) 

From (20), it follows that the correlation function 
(association measure) is a rescaled bipolar 
similarity function. 

Corollary 1. Complementary bipolar similarity 
and dissimilarity functions define the 
correlation function: 

𝐴(𝑥, 𝑦) = 𝑆(𝑥, 𝑦) − 𝐷(𝑥, 𝑦). (22) 

Using (20) and (21), one can obtain bipolar 
similarity and dissimilarity functions from the strong 
correlation function: 

𝑆(𝑥, 𝑦) =
1

2
(𝐴(𝑥, 𝑦) + 1), (23) 

𝐷(𝑥, 𝑦) =
1

2
(1 − 𝐴(𝑥, 𝑦)). (24) 

From (8), (9), (18), and (19), it follows for bipolar 
complementary similarity and dissimilarity 
functions: 

𝐷(𝑥, 𝑦) = 𝑆(𝑥, 𝑁(𝑦)), (25) 

𝑆(𝑥, 𝑦) = 𝐷(𝑥, 𝑁(𝑦)). (26) 

Formulas (8), (9), (18) - (26) define a bipolar 
complementary correlation triplet 〈𝑆, 𝐷, 𝐴〉 that 
gives possibility to obtain from one function of this 
triplet other two functions. 

Example 1. In [15], it was considered the 
problem of constructing a correlation function on 
the set of real numbers with involution defined by 
the negation of numbers: 𝑁(𝑥) = −𝑥. This 

involution has a fixed point 𝑥 = 0. On the involutive 

set of real numbers without fixed points ℝ ∖ {0}, the 
bipolar similarity 

𝑆(𝑥, 𝑦) =
(𝑥+𝑦)2

2(𝑥2+𝑦2)
  

and dissimilarity  

𝐷(𝑥, 𝑦) =
(𝑥−𝑦)2

2(𝑥2+𝑦2)
  

functions have been introduced. These 
complementary functions define by (20) and (21) 
the following correlation function: 

𝐴(𝑥, 𝑦) =
2𝑥𝑦

𝑥2+𝑦2, 
(27) 
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satisfying the properties A1-A4 of 
correlation functions. 

5 Conclusion 

In statistics, the prevailing view is that correlation 
coefficients are functions based on the standard 
deviations of measurements. For example, it was 
shown that the Spearman correlation can be 
obtained from the Pearson correlation coefficient. 
The considered here methods for constructing 
correlation functions from similarity and 
dissimilarity functions can be viewed as a 
generalization of Spearman’s distance-based look 
on correlation coefficient defined by him by the 
distance between rankings similar to (21) [6, 8]. 

The essential point of the described here 
approach to the definition of correlation functions is 
considering them as functions defined over 
involutive sets that is not used in statistics. The 
new approach to constructing correlation functions 
and association measures shows [5-8] that many 
classical correlation and association coefficients 
can be introduced as functions defined on suitable 
involutive sets and satisfying the properties A3 and 
A4. 

They can be obtained by rescaling bipolar 
similarity functions as in (20). Moreover, there 
exists a one-to-one correspondence between 
bipolar similarity and dissimilarity functions and 
corresponding correlation function that compose a 
bipolar complementary correlation triplet 〈𝑆, 𝐷, 𝐴〉. 

This new approach makes it possible to 
introduce correlation functions over almost any 
involutive sets using suitable similarity and 
dissimilarity functions. These new functions 
describe relationships between domain data 
related to the symmetry corresponding to the 
involution operation defined on data. 

Based on the proposed methods, new 
correlation functions (association measures) for 
new data types have been introduced. For 
example, the paper [15] introduced correlation 
functions on the set of real numbers, see example 
(27) above. The paper [16] introduced the 
involutive negation on the set of finite probability 
distributions used in constructing correlation 
function on the set of finite probability distributions 

and relative frequency distributions defined on the 
set of categorical data [17, 18]. 

Also, the involutive negation of probability 
distributions was used to introduce new, co-
symmetric dissimilarity measures on the set of 
probability distributions [19]. The paper [20], based 
on the Jaccard similarity measure, introduced new 
strong similarity correlation functions on involutive 
sets of sets and binary n-tuples. 

We plan to use the considered methods for 
constructing correlation functions over new types 
of involutive sets. Also, we plan to use more 
sophisticated methods of constructing correlation 
functions (association measures). 
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