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Abstract. This paper conducts a comprehensive review 

of literature focusing on strategies applied in the realm 
of Machine Learning (ML) in a period from ten years ago 
to the present to address the Bin Packing Problem (BPP) 
and its various variants. The Bin Packing Problem, a 
renowned optimization challenge, involves efficiently 
allocating items of varying sizes into containers of fixed 
capacity to minimize the number of containers used. 
Despite the extensive body of research and the 
existence of heuristic algorithms, unresolved challenges 
persist in BPP's solution. This deep study systematically 
explores the landscape of ML applications, delving into 
innovative approaches and methodologies proposed for 
tackling BPP and its diverse extensions, including 2D-
BPP, 3D-BPP, Multi-objective BPP, and dynamic 
variants. The review critically examines the performance 
and contributions of ML-based strategies, shedding light 
on their efficacy in optimizing the packing process. Key 
findings highlight the promising directions taken by ML in 
solving complex optimization problems, emphasizing its 
potential to enhance BPP solution methodologies. The 
synthesis of diverse ML strategies and their integration 
with traditional heuristics forms a central theme, 

showcasing the evolving landscape of research in this 
domain. Additionally, this review identifies gaps and 
future research directions, emphasizing the relevance 
and effectiveness of ML as a valuable tool for improving 
performance in resolving BPP and its related challenges. 
The insights derived from this study aim to guide 
researchers, practitioners, and decision-makers in 
understanding the current state of ML applications in the 
context of Bin Packing Problems and inspire further 
advancements in this field. 

Keywords. Bin packing problem, machine learning, 

metaheuristics, techniques and strategies. 

1 Introduction 

In recent years, the convergence of machine 
learning (ML) and metaheuristics has sparked 
great interest and innovation to address complex 
combinatorial optimization problems. Among these 
challenges, the Bin Packing Problem (BPP) and its 
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various extensions are presented as complex 
problems that demand sophisticated solutions. 

This paper presents a comprehensive 
exploration of the synergies between ML and 
metaheuristics, focusing on their application to 
efficiently solve BPP and its various variants, such 
as 2D-BPP, 3D-BPP, multi-objective BPP, and 
dynamic BPP. 

BPP involves strategically packing items of 
different sizes into fixed-size containers to 
minimize the number of used containers. Despite 
decades of research and the existence of 
numerous heuristic algorithms, unresolved 
challenges remain in achieving optimal solutions. 
In response to the limitations of traditional heuristic 
approaches, there has been growing interest in 
leveraging ML strategies to improve problem-
solving capabilities. 

This study delves into the novel realm of 
employing ML techniques, exploring various 
optimization methods and problem variants within 
the domain of Bin Packing. This study is carried out 
by incorporating works from ten years ago to the 
present to analyze the evolution of the applied ML 
strategies. Preliminary results underscore the 
promising trajectory of ML in addressing complex 
optimization problems, shedding light on its 
potential to revolutionize not only BPP resolution 
but also similar intricate challenges. 

We examine the interaction between ML and 
metaheuristics, analyzing how ML contributes to 
problem modeling, decision-making, and adaptive 
search strategies to identify potential applications 
and chart a course for future research and 
developments in the pursuit of optimal solutions for 
container packing problems. 

2 Bin Packing Problem 

The Bin Packing Problem (BPP) is a classic 
challenge in combinatorial optimization. This 
problem is categorized as NP-hard due to its 
complexity [1]. In its most basic formulation, it is 
known as 1D-BPP (One-dimensional bin packing 
problem) and is presented with a set of elements 
of different sizes that must be assigned to 
containers of fixed capacity, seeking to minimize 
the total number of containers used. This problem 
is formally defined as follows: 

Given a set 𝑁 = {1, … , 𝑛} of items to distribute 
in bins of the same size (capacity), let: 𝑐 = capacity 

of each bin and 𝑤𝑖 = weight of item 𝑖, such that 0 <
𝑤𝑖 ≤ 𝑐 for 1 ≤ 𝑖 ≤ 𝑛. 

This problem consists of assigning each item to 
a bin in such a way that the sum of the weights of 
the items in each bin does not exceed 𝑐 and the 

number of bins 𝑚 used is minimal [2]. We seek to 

find the least number of subsets 𝐵𝑗, for 1 ≤ 𝑗 ≤ 𝑚, 

of a partition of the set 𝑁: 

⋃ 𝐵𝑗
𝑚
𝑗=1 = 𝑁. (1) 

Such as: 

∑ 𝑤𝑖 ≤ 𝑐

∀𝑖∈𝐵𝑗

     1 ≤ 𝑗 ≤ 𝑚, 𝑖 ∈ 𝑁 = {1, … , 𝑁}. (2) 

Eq. (1) represents the number of bins that are 
used to pack the set of 𝑁 items, while Eq. (2) 
indicates that the sum of the weights of the items 
contained in the subset 𝐵𝑗 does not exceed the 

bin’s capacity. 

This problem, fundamental in logistics and 
planning, has generated an extensive field of 
research that covers various variants adapted to 
real-world situations [3]. Some of the variants of 
the BPP are defined below. 

2.1 Problem Variants 

Two-dimensional Bin Packing (2D-BPP) 

In traditional BPP, elements are packed into a 
single dimension. However, in 2D-BPP are given a 
set of 𝑛 rectangular items 𝑗 ∈ 𝐽 = {1, . . . , 𝑛}, each 

characterized by its width 𝑤𝑗 and height ℎ𝑗, 

alongside an unlimited supply of identical 
rectangular bins, each with fixed width 𝑊 and 

height 𝐻. The objective is to assign, without 
overlap, all items to the fewest number of bins 
possible, ensuring that their orientations align with 
those of the bins' edges. It is assumed that the 
items remain in a fixed orientation throughout the 
packing process, meaning they cannot be rotated.  

Gilmore and Gomory [4] presented a 
mathematical formulation of 2D-BPP. They 
introduced a column generation strategy rooted in 
the exhaustive listing of all item subsets (known as 
patterns) that can be accommodated within a 
single bin. Here, let 𝐴𝑗 denote a binary column 
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vector comprising 𝑛 elements 𝑎𝑖𝑗 (where 𝑖 =

 1, . . . , 𝑛), with a value of 1 assigned if item 𝑖 is part 

of the 𝑗th pattern, and 0 otherwise. 

The set of all admissible patterns is thus 
denoted by the matrix 𝐴, which encompasses all 

conceivable 𝐴𝑗 columns (where 𝑗 =  1, . . . , 𝑀) [5]. 

The associated mathematical formulation is 
expressed as: 

𝑚𝑖𝑛 ∑ 𝑥𝑗

𝑀

𝑗=1

. (3) 

Such as: 

∑ 𝑎𝑖𝑗

𝑀

𝑗=1

𝑥𝑗 = 1           (𝑖 = 1, … , 𝑛), (4) 

𝑥𝑗 ∈ {0,1}          (𝑗 = 1, … , 𝑀). (5) 

This variant has many industrial applications, 
especially in cutting (e.g., wood, glass, and paper 
industries) and packing (e.g., transportation, 
telecommunications, and warehousing) [6]. 

Three-dimensional Bin Packing (3D-BPP) 

The 3D-BPP adds complexity by allowing the 
three-dimensional stacking of elements in three 
axes in bins. This results in greater flexibility in the 
arrangement of elements, but also poses new 
computational challenges when searching for the 
optimal three-dimensional configuration. 

Martelo et al. [7] described the 3D-BPP as given 
a set of 𝑛 elements of rectangular shape, each 
characterized by width 𝑤𝑗 , height ℎ𝑗 and depth 

𝑑𝑗(𝑗 ∈  𝐽 = {1, . . . , 𝑛}), and an unlimited number of 

identical three-dimensional bins having width 𝑊, 

height 𝐻, and depth 𝐷.The three-dimensional bin 
packing problem (3D-BPP) consists of 
orthogonally packing all items into the minimum 
number of containers. 

Let 𝑥𝑖𝑗 a binary variable that indicates whether 

element 𝑗 is placed in container 𝑖. It takes the value 
1 if the element is placed in the bin and 0 otherwise 
(Eq. (11)): 

𝑚𝑖𝑛 ∑ ∑ 𝑥𝑖𝑗

𝑛

𝑗=1

𝑀

𝑖=1

. (6) 

Such that: 

∑ 𝑥𝑖𝑗 = 1

𝑀

𝑖=1

          ∀𝑗 ∈ 𝐽, (7) 

∑ 𝑤𝑗 ∙ 𝑥𝑖𝑗

𝑛

𝑗=1

≤ 𝑊       ∀𝑖 ∈ 𝐼, (8) 

∑ ℎ𝑗 ∙ 𝑥𝑖𝑗

𝑛

𝑗=1

≤ 𝐻       ∀𝑖 ∈ 𝐼, (9) 

∑ 𝑑𝑗 ∙ 𝑥𝑖𝑗

𝑛

𝑗=1

≤ 𝐷       ∀𝑖 ∈ 𝐼, (10) 

𝑥𝑖𝑗 ∈ {0,1}          ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽. (11) 

Eq. (7) indicates that each element must be 
assigned to exactly one bin. Eq. (8), (9), and (10) 
respectively indicate that the sum of the widths, 
heights, and depths of the elements placed in a 
container cannot exceed the width, height, and 
depth of the bin. 

Multi-objective Bin Packing Problem 

The multi-objective variant of BPP (MOBPP) 
focuses on the simultaneous optimization of 
multiple criteria, such as minimizing the number of 
containers used, maximizing space utilization, and 
equitably distributing items among containers. This 
approach is especially relevant in situations where 
efficiency and performance objectives coexist and 
must be balanced. 

Geiger [8] presented a problem formulation of 
MOBPP: 

Given a number of 𝑛 items must be packed into 

𝑛 bins, each of capacity 𝑐. Each item 𝑗 is 

characterized by a weight 𝑤𝑗 and an additional 

attribute 𝑎𝑗. While the weights refer to the size of 

the items and therefore must be taken into 
consideration when filling up a bin to at most its' 
capacity 𝑐, the attributes 𝑎𝑗 describe the properties 

of the items on a nominal scale. Based on this 
description, a comparison of two items 𝑖, 𝑗 is 
possible such that they are either identical 
concerning 𝑎𝑖 and 𝑎𝑗, 𝑎𝑖 = 𝑎𝑗 or not: 𝑎𝑖 ≠ 𝑎𝑗. The 

goal of packing the items into bins can then be 
modeled as follows. 
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min 𝑧1 = ∑ 𝑦𝑖

𝑛

𝑖=1

, (12) 

min 𝑧2 =
1

𝑧1

∑ 𝑢𝑖

𝑛

𝑖=1

. (13) 

Such as: 

∑ 𝑤𝑗 ∙ 𝑥𝑖𝑗

𝑛

𝑗=1

≤ 𝑐 ∙ 𝑦𝑖        𝑖 ∈ 𝑁 = {1, … , 𝑛}, (14) 

∑ 𝑥𝑖𝑗 = 1          𝑗 ∈ 𝑁

𝑛

𝑖=1

, (15) 

𝑦𝑖 = 0 𝑜𝑟 1     𝑖 ∈ 𝑁, (16) 

𝑥𝑖𝑗 = 0 𝑜𝑟 1     𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁. (17) 

Eq. (12) minimizes the number of bins and the 
second objective given in Eq. (12) minimizes the 
average heterogeneousness of the bins. 

Dynamic Bin Packing Problem 

Unlike static versions, Dynamic BPP addresses 
problems where elements arrive sequentially, and 
the layout must be adjusted dynamically as new 
elements are introduced. Instead of knowing all the 
elements in advance, the challenge lies in making 
packaging decisions as the elements present 
themselves, requiring adaptive and efficient 
strategies. This scenario more accurately reflects 
real-time logistics situations and adds a layer of 
complexity to problem resolution. 

Coffman et al. [9] described Dynamic Bin 
Packing as an extension of the classical static 1D-
BPP model. The items to be packed will be 
described by a finite sequence or list 𝐿 (𝑝1,
𝑝2, … , 𝑝𝑛). 

Each item 𝑝1,  in 𝐿 corresponds to a triple 

(𝑎𝑖 , 𝑑𝑖 , 𝑠𝑖), where 𝑎𝑖 is the arrival time for 𝑝𝑖 , 𝑑𝑖 is its 

departure time, and 𝑠𝑖 is its size. The item 𝑝𝑖 
resides in the packing for the time interval [𝑎𝑖 , 𝑑𝑖), 

and we assume that 𝑑𝑖 − 𝑎𝑖 > 0 for all 𝑖. Without 
loss of generality, the common bin capacity will be 
taken always to be 1, so we also assume that each 
𝑠𝑖 satisfies 0 < 𝑠𝑖 ≤ 1 and that the items in 𝐿 are 

ordered so that 𝑎1 ≤ 𝑎2 ≤ ⋯ ≤ 𝑎𝑛. 

Packaging rules denote that items cannot be 
moved from one bin to another once packed and 
operating online, i.e., items are packaged as they 
arrive without any knowledge of future arrivals. 
Therefore, the elements in 𝐿 bins will be allocated 
in order of increasing index, under the only 
restriction that at any time there is no container 
containing "currently active" elements whose sizes 
sum to more than 1. 

This section provides a solid conceptual 
framework for understanding BPP and its various 
variants, laying the foundation for exploring how 
Machine Learning strategies address these 
challenges in the next section. 

3 Machine Learning in Metaheuristics 

The employment of Machine Learning (ML) in 
combination with metaheuristics has emerged as 
an innovative and effective approach to address 
combinatorial optimization problems, including the 
challenging BPP and its variants. This section 
explores the convergence of ML and 
metaheuristics, presenting a detailed view of their 
integration and application in efficiently solving 
these problems. 

Machine Learning focuses on the development 
of algorithms and models capable of learning 
patterns from data and dynamically adapting to 
new situations. This adaptive capacity is essential 
to address combinatorial optimization problems, 
where effective solutions must be discovered 
through the exploration and exploitation of 
multiple options. 

The synergy between ML and metaheuristics 
lies in the ability of ML models to improve 
metaheuristic adaptive capabilities. By 
incorporating machine learning techniques, 
metaheuristics can learn and adjust their search 
strategies adaptively as they interact with the 
solution space. 

Talbi [10] presents a general taxonomy of how 
metaheuristics incorporate machine learning. Fig. 
1., presents three ways of applying machine 
learning to a metaheuristic: 

– Problem-level Machine Learning support in 
metaheuristics: Machine Learning can play a 
crucial role in modeling optimization problems, 
addressing aspects such as the objective 
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function and constraints. In addition, it can 
contribute to the analysis of the problem 
landscape and its decomposition. 

– Metaheuristics with low-level ML support: 

Metaheuristics are made up of various search 
components. In this context, Machine Learning 
can drive any search component, from solution 
initialization to search variation operators such 
as neighborhoods in local search, as well as 
mutation and crossover in evolutionary 
algorithms. Likewise, it can be used to adjust 
the different parameters of a metaheuristic. 

– High-level ML-supported metaheuristics: 
This category focuses on the selection and 
generation of metaheuristics, as well as the 
design of hybrid strategies and cooperative 
metaheuristics in parallel. 

At the same time, other criteria related to 
learning time are used. For offline ML-supported 
metaheuristics, the learning process is performed 
before the execution of the problem solver, this 
allows the model to be trained in advance. 

On the other hand, in online ML-supported 
metaheuristics, the machine learning process is 
carried out concurrently with the search and 
resolution of the problem, allowing the model to 
accumulate knowledge in real time during the 
optimization process. 

Among the machine learning techniques most 
used in metaheuristics, some strategies stand out: 

– Supervised Learning: Uses labeled datasets 
to train models and guide adaptive capabilities 
in the metaheuristic. 

Applications: Used to model the objective 
function, constraints, and other aspects of the 
optimization problem. 
Benefits: Enhances solution quality by 
incorporating learned patterns from previous 
examples. 

– Unsupervised Learning: Explores patterns in 
unlabeled data, allowing the metaheuristic to 
discover hidden structures and adapt to 
problem complexity. 

Applications: Useful for analyzing solution 
spaces and dynamically adjusting the search. 
Benefits: Provides flexibility and adaptability to 
changing conditions. 

– Reinforcement Learning: Involves the 
dynamic interaction of the agent 
(metaheuristic) with the environment 
(optimization problem), aiming to maximize 
rewards over time. 

Applications: Guides exploration and 
exploitation of solutions, optimizing the 
metaheuristic's performance. 

Benefits: Adapts search strategies based on 
accumulated experiences, improving efficiency 
over time. 

– Deep Learning: Utilizes deep neural networks 
to learn complex representations and make 
predictions. 

Applications: Applicable in high-dimensional 
optimization problems, allowing the capture of 
more abstract patterns. 

Benefits: Improves modeling and generalization 
capabilities, especially in complex and 
nonlinear problems. 

– Hyperparameter Optimization: Uses ML 
techniques to dynamically adjust metaheuristic 
parameters during the search. 

Applications: Optimizes the metaheuristic 
configuration to enhance performance across 
different problems. 

Benefits: Improves adaptability and efficiency of 
the metaheuristic in diverse scenarios. 

– Artificial Neural Networks (ANN): 
Computational models inspired by the 

 

Fig. 1. Talbi´s general taxonomy of machine learning-
supported metaheuristics [10] 
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structure and function of the human brain, 
capable of learning complex patterns. 

Applications: Used to approximate objective 
functions, represent problem landscapes, and 
adapt in real-time during the search. 

4 Hybrid Methods in BPP 

Research aimed at addressing the challenges 
inherent in BPP has seen notable advances in 
recent years, especially with the incorporation of 
innovative strategies and advanced machine 
learning techniques. Over the years, various 
studies have significantly delved into these 
combinatorial optimization problems. 

In this section, a summary of the literature that 
has used various ML techniques to address BPP 
from ten years ago to the present is presented. The 
twenty selected works have been organized 
according to the different techniques used by the 
authors, thus providing a detailed overview of the 
diversity of approaches applied in research on 
this topic. 

4.1 Neural Networks 

De Almeida and Steiner [11] address the 1D-BPP, 
exploring different configurations of AugNN. The 
study provides a comparative analysis between 
AugNN and Minimum Bin Slack (MBS), offering 
insights through experimental design and 
statistical analysis. 

Sim et al. [12] present a hyperheuristic system 
that continuously learns over time to solve the 1D-
BPP. The system continually generates new 
heuristics and shows problems in its environment; 
Representative problems and heuristics are 
incorporated into a self-sustaining network of 
interacting entities inspired by artificial immune 
system methods. 

The network is plastic in both its structure and 
content, leading to the following properties: it 
exploits existing knowledge captured in the 
network to rapidly produce solutions; can adapt to 
new problems with very different characteristics; 
and is able to generalize over the problem space. 

Laterre et al. [13] developed a ranked reward 
algorithm (R2) utilizing deep neural networks for 
solving the 2D and 3D Bin Packing Problems. The 

algorithm estimates a policy and a value function 
using deep neural networks, combined with Monte 
Carlo Tree Search (MCTS) for policy improvement. 

Kroes et al. [14] utilize conventional neural 
networks to tackle the 1D-BPP. The study explores 
the hybridization of genetic algorithms and 
simulated annealing with traditional neural network 
heuristics for flexible container memory mapping. 

4.2 Deep and Reinforcement Learning 

Hu et al. [15] presented a new type of 3D-BPP, 
where a series of cuboid-shaped elements must be 
placed in an orthogonal-shaped container, one by 
one. The goal is to minimize the surface area of the 
container, reflecting real business scenarios where 
the cost of the container is proportional to its 
surface area. An approach based on Deep 
Reinforcement Learning (DRL), especially the 
Pointer Network, is applied to optimize the 
sequence of elements to be packed. 

Mao et al. [16] introduce a deep learning 
approach to the Variable-Sized 1D Bin Packing 
Problem (1D-VSBPP), using a large training 
dataset and techniques for automatic feature 
selection and rapid labeling. They demonstrate 
how to build an adaptive system that can select the 
best heuristics to generate high-quality container 
packaging solutions. 

Nanda and Hacker [17] employed deep 
reinforcement learning to consolidate active 
containers with different resource requirements 
into a minimal number of physical machines, 
proposing the RACC (Resource-Aware Container 
Consolidation) algorithm. Considers the resource 
demands of different types of tasks and the 
heterogeneity of physical machines. 

Li and Hu [18] developed a deep reinforcement 
learning-based job scheduling algorithm for the 
container packing problem in cloud data centers. 
DeepJS can automatically obtain a fitness 
calculation method which will minimize the 
makespan (maximize the throughput) of a set of 
jobs directly from experience and the results prove 
that DeepJS outperforms the heuristic-based job 
scheduling algorithms. 

Verma et al. [19] introduce a deep 
reinforcement learning algorithm for the online 3D 
Bin Packing Problem, focusing on decisions that 
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can be physically implemented using a robotic 
loading arm. 

This approach tackles a novel problem in two 
key aspects: Firstly, it assumes an unknown set of 
objects to be packed, with only a fixed number 
visible to the loading system upon arrival. 
Secondly, the objective is not merely to move 
objects but to optimize their location and 
orientation within the bin(s) to maximize 
packing efficiency. 

Goyal and Deng [20] present PackIt, a virtual 
environment for evaluating and potentially learning 
the ability to perform geometric planning. It models 
the 3D-BPP, where an agent needs to sequence 
actions to pack a set of objects into a box with 
limited space. They construct challenging packing 
tasks using an evolutionary algorithm, including 
model-free and heuristic-based learning methods, 
as well as optimization methods based on 
searches assuming access to the 
environment model. 

Silva-Gálvez et al. [21] introduced a solution 
model for the 1D-BPP that leverages unsupervised 
learning principles within a hyper-heuristic 
framework. The model dynamically selects from 
various heuristics during the search process, 
adapting to the problem state being explored. 

By employing the k-means clustering algorithm, 
they identify action regions and recommend 
heuristics based on performance analysis within 
these regions. The hyper-heuristic determines the 
most appropriate heuristic to apply based on the 
current problem state. 

Zhao et al. [22] present a restricted deep 
reinforcement learning method for the 3D Bin 
Packing Problem, using a feasibility predictor to 
modulate the output probabilities during training. 

They introduced a prediction-and-projection 
scheme: The agent first predicts a feasibility mask 
for the placement actions as an auxiliary task and 
then uses the mask to modulate the action 
probabilities output by the actor during training. 
Such supervision and projection facilitate the agent 
to learn feasible policies very efficiently. The 
method can be easily extended to handle 
lookahead items, multi-bin packing, and item 
re- orienting. 

Yang et al. [23] developed a flexible container 
packing framework based on slack, using 

reinforcement learning strategies to generate slack 
and improve container space efficiency. 

The performance-driven rewards are used to 
capture the intuition of learning the current state of 
the container space, the action is the choice of the 
packing container, and the state is the remaining 
capacity after packing. During the construction of 
the slack, an instance-eigenvalue mapping 
process is designed and utilized to generate the 
representative and classified validate set 

Zhang et al. [24] present an end-to-end learning 
model for bin packing using self-attention and deep 
reinforcement learning algorithms. They introduce 
the prioritized oversampling technique to 
accelerate policy learning. Their proposal is called 
Att2pack, which was initially proposed to address 
the offline 1D-BPP, however, they adapted it to the 
online BPP which also shows good performance. 

Jiang and Zhang [25] develop an end-to-end 
multimodal deep reinforcement learning agent to 
solve the 3D-BPP, addressing sequence, 
orientation, and position tasks. They use a 
multimodal encoder and maintain lightweight 
computation to learn the packing policy. 

Murdivien and Um [26] This study investigates 
the use of Deep Reinforcement Learning (DRL) to 
address dynamic logistics challenges, focusing on 
the real-time 3D sequential packing problem. It 
highlights the need for adaptive and autonomous 
manufacturing systems in the face of sudden 
changes in the supply chain. By employing neural 
networks in reinforcement learning, DRL shows 
promise in solving complex problems in 
manufacturing logistics. A game engine is used to 
train the DRL, allowing intuitive visualization of the 
learning process. 

Fang et al. [27] introduce a reinforcement 
learning algorithm based on Monte Carlo (MC) 
learning, Q-learning, and Sarsa-learning to 
address a 2D irregular packing problem. The 
proposed algorithm adapts reward-return 
mechanisms and updates strategies based on the 
irregular piece-packing scenario. 

Guerriero and Saccomanno [28] tackle the 1D-
BPP using a reinforcement learning strategy aimed 
at training an agent to mimic a reference heuristic. 
In particular, the reward is proportional to the 
agent's ability to make the same decisions as a 
particular heuristic when applied to a specific 
problem state. 
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4.3 Others 

Duan et al. [29] propose a multitask learning 
framework based on reinforcement learning for the 
Flexible 3D Bin Packing Problem (3D-FBPP). It 
focused on minimizing the plastic surface area 
used to wrap packages, which involves packing 
cuboid-shaped items in bins with the smallest 
possible surface area. 

Instead of designing heuristics, they proposed 
a multi-task learning framework based on Selected 
Learning to learn a heuristic-like policy that 
generates the sequence and orientations of the 
elements to be packed simultaneously. 

Mohiuddin et al. [30] focused on the challenges 
associated with cloud storage, such as inefficient 
use of resources and internal threats to 
stored data. 

It proposes a distributed storage allocation 
architecture to ensure equitable use of storage 
resources and an integrated security framework to 
protect data at rest in cloud storage from insider 
threats. The goal is to effectively address 
challenges related to resource management and 
data security in the cloud. 

The analysis of the works highlights the 
effectiveness of strategies based on neural 
networks, deep learning algorithms, and 
reinforcement learning methods to enhance the 
efficiency and quality of solutions in the field of 
container packaging. 

However, it is crucial to note that the dynamic 
variants of this problem have received limited 
exploration so far. This research gap could 
represent a valuable area of opportunity for future 
studies, as the dynamics of ever-changing 
environments present additional challenges that 
could benefit from innovative approaches. 

Additionally, it is worth noting that 
reinforcement learning (RL) and deep 
reinforcement learning (DRL) have emerged as 
preeminent strategies to address the challenges of 
container packaging, being recurrently used in the 
majority of the studies reviewed. 

The combination of these approaches with 
other methodologies has been shown to offer 
promising results, underlining the versatility and 
effectiveness of these techniques in this domain. 

5 Relevant State-of-the-Art Methods 

The previous section provided an overview of work 
related to the BPP, exploring machine learning 
strategies and highlighting techniques employed 
by various researchers. 

Now, we will immerse ourselves in a critical 
analysis, focusing on the selection of three 
representative works considering the number of 
citations of each one in the reviewed literature. 
These studies play a crucial role in the evolution of 
methods and approaches to optimize BPP. 

We will examine the techniques and algorithms 
implemented in these works. This analysis will not 
only highlight the strengths and limitations of each 
approach but will also establish a solid framework 
for understanding the broader landscape of 
research in this field. 

We also perform an in-depth examination of the 
practical implications and results obtained by the 
three selected methodologies for solving Bin 
Packing Problems. Table 1 presents the general 
characteristics of the three works selected as a 
case study. 

The name of the algorithm and author, year of 
publication, number of citations, BPP variant that is 
addressed, and the main ML strategies that apply 
are included. 

5.1 A Lifelong Learning Hyper-heuristic 
Method for Bin Packing 

Sim et al. [12] introduced a novel hyperheuristic 
approach designed to continuously learn and 
tackle combinatorial optimization problems. This 
system dynamically generates fresh heuristics 
when confronted with challenges in 
its environment. 

Representative problems and heuristics 
become integral parts of an autonomous network 
of interacting entities, drawing inspiration from 
artificial immune system methods. 

The flexibility in both structure and content 
within the network imparts noteworthy qualities: 
leveraging existing knowledge for swift solution 
generation, effective adaptation to new problems 
with diverse characteristics, and the ability to 
generalize within the problem space. 

The system's efficacy is evaluated using an 
extensive dataset of one-dimensional bin packing 
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problems (1D-BPP) and 1370 problems previously 
established in the literature. The results showcase 
exceptional performance in terms of solution 
quality across all datasets. 

The system exhibits efficient adaptation to sets 
of problem instances undergoing dynamic 
changes, surpassing the performance of 
previous approaches. 

The network's capacity to self-adjust and 
maintain a concise repertoire of problems and 
heuristics, functioning as a representative map of 
the problem space, underscores the computational 
efficiency and scalability of the system. 

Algorithm 1 presents the pseudocode of the 
work (NELLI) proposed by Sim et al. 

Algorithm 1: NELLI pseudocode 

Require: 𝓗 = ∅: The set of heuristics 

Require: 𝒫 = ∅: The set of current problems 

Require: ℰ = ℰ𝑡=0: The set of problems to be solved 

at time 𝑡 

1: repeat 

2: Optionally replace ℰ ∶  ℰ∗ ← ℰ∗ ∪ ℰ 
3: Add 𝑛ℎ randomly generated heuristics to 

𝓗  

with concentration 𝑐𝑖𝑛𝑖𝑡 
4: Add 𝑛𝑝 randomly selected problem  

instances from ℰ to 𝒫 with concentration  

𝑐𝑖𝑛𝑖𝑡 
5: Calculate ℎ𝑠𝑡𝑖𝑚∀ℎ ∈ 𝓗  
6:   Calculate 𝑝𝑠𝑡𝑖𝑚∀𝑝 ∈ 𝒫  
7: Increment all concentrations (both 𝓗 and 

𝒫) that have concentration < 𝑐𝑚𝑎𝑥 and  

stimulation > 0 by ∆𝑐  
8: Decrement all concentrations (both 𝓗 and 

  𝒫) with stimulation < 0 by ∆𝑐 
9:   Remove heuristics and problems with  

  concentrations ≤ 0 
10: until stopping criteria met 

Algorithm 1. The pseudocode of the NELLI algorithm 

presented by Sim et al. [12] 

The results reported by Sim et al. [12] include a 
comparison of the performance of the proposed 
algorithm (NELLI) against literature works 
previously developed by one of the collaborators: 
AIS I [31] and Island [32]. 

They used different instances to evaluate the 
Bin Packing Problem (BPP) such that Data Set 1, 
2, 3 [33], Uniform, and Triplets [34]. 

Table 2 presents the results obtained by NELLI, 
AIS I, and Island for a set of 685 instances tested 
by the authors. 

Table 3 presents the evaluation of NELLI vs 
Island for 1370 instances, taking into account the 
minimum, maximum, mean, and standard 
deviation of each of the algorithms for 
both comparisons. 

According to the analysis of Sim et al. [12] 
Tables 2 and 3 presents that both NELLI and 
Island systems generate solutions of identical 
quality on a data set of 685 and 1370 instances. 

However, it is important to highlight that NELLI 
has several advantages compared to the 
evaluated approaches. Its scalability is greater 
since it significantly reduces the calculation time 
compared to the evaluated approaches. 

Furthermore, NELLI has been shown to adapt 
efficiently to non-visible problems and dynamic 
environments, maintaining a memory of 
previous experiences. 

Table 1. General characteristics of works 

representative of the state-of-the-art 
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NELLI 

Sim et al. 
[11] 

2015 90 
1D-
BPP 

Hyper-heuristic 
system 
(artificial 
immune system 
methods and 
neuronal 
network). 

Packman 

Verma et 
al. [18] 

2020 40 
3D-
BPP 

Deep 
reinforcement 
learning 
algorithm with a 
focus on robotic 
loading arm 
implementation. 

RS 

Zhao et 
al., [21] 

2021 107 
3D-
BPP 

Deep 
reinforcement 
learning with a 
feasibility 
predictor 
scheme. 
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5.2 A Generalized Reinforcement Learning 
Algorithm for Online 3D Bin-Packing 

Verma et al. [18] introduced a Deep Reinforcement 
Learning (Deep RL) algorithm to tackle the 
challenge of online 3D bin packing (3D-BPP), 
accommodating a variable number and any 
container size. The approach focuses on decision-
making that can be physically implemented 
through a robotic loading arm, validated using a 
laboratory prototype. 

This problem presents innovation in two key 
aspects. Firstly, in contrast to the conventional 3D-
BPP, it assumes that the complete set of objects to 
be packed is not known in advance. Instead, the 
loading system observes a fixed number of nearby 
objects and must load them in the order they arrive. 

Secondly, the goal is not merely to move 
objects from one point to another through a 
feasible route, but to find the location and 
orientation for each object that maximizes the 
overall packing efficiency of the containers. 
Additionally, the learned model is designed to 

handle instances of problems of arbitrary size 
without the need for retraining. 

Simulation results indicate that the RL-based 
method outperforms state-of-the-art heuristics for 
online container packing, demonstrating 
improvements in terms of empirical competitive 
ratio and volume efficiency. The authors do not 
present the pseudocode of the proposed algorithm; 
however, they show the network architecture of the 
DQN agent used (Fig. 2). 

Verma et al. [19] propose the PackMan 
algorithm, which was trained using synthetically 
generated data sets, which contain randomly 
generated dimension boxes. However, they made 
sure that the dimensions matched so that each 
container could be filled (100% fill fraction). 

Each data set consists of 10 box bins (𝑂𝑝𝑡(𝐼)  =
10), and the number of boxes ranges from 230 to 
370 per episode. The initial baling efficiency of 
about 65% steadily improves to 82% in 1100 
episodes and remains stable thereafter. The 
number of containers used decreased from just 
over 16 to just under 13. 

Table 2. NELLI results vs related works for a set of 685 instances [12] 

A
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Problems solved 

Min Max Mean SD 

AIS I [30] 554 559 556 1.4 

Island [31] 552 559 557 1.4 

NELLI [11] 559 559 559 0 

Table 3. NELLI [12] results vs Island [32] for a set of 1370 instances 
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Problems solved 

Min Max Mean SD 

Island [31] 1120 1126 1125 1.1 

NELLI [11] 1125 1126 1126 0.3 
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Table 4 compares the algorithms on the 
competitiveness ratiometric (𝑐), the time taken per 
loading decision, average packing efficiency, and 
the fraction of test instances in which a given 
algorithm returned the best packing efficiency. 
Advanced Harmonic (AH) is known to have a 
theoretical upper bound of 𝑐 = 1.58, although this 
is with unconstrained rotation. 

Empirical results for robot stackable algorithms 
show that PackMan has the best empirical ratio of 
1.29, averaging 𝑇𝑢𝑠𝑒𝑑  = 12.9 bins compared to 

𝑂𝑝𝑡(𝐼) = 10. It also has the highest average 
packing fraction. While the difference in packing 
fractions is small, further investigation revealed 
that this was because there was significant 
variation among the instances, with some box 
streams favoring one algorithm over the others. 
The fact that PackMan returns the best efficiency 
in 57% of test cases implies that it retains a 
significant advantage over other algorithms across 
a variety of instances [19]. 

The boxplot shown in Fig. 3. illustrates the 
differences between the algorithms. While floor 
and column construction have almost identical 
results for the test data sets, WallE returns the best 
results among the heuristics.  

This is a result of their balanced approach to 
box placement, with no singular emphasis on floor 
or column construction. The average packing 
efficiency for PackMan is higher than all heuristics 
but has a larger spread in outliers. 

5.3 Online 3D Bin Packing with Constrained 
Deep Reinforcement Learning 

Zhao et al. [22] address a variant of the challenging 
but highly practical 3D Container Packing Problem 
(3D-BPP). In the proposed scenario, the agent has 
limited information about the items that need to be 
packed into a single container, and each item must 
be placed immediately with no option to readjust 
later. The arrangement of items is also influenced 
by constraints related to order dependency and 
physical stability. 

To address this online 3D-BPP, they propose a 
strategy based on the Constrained Markov 
Decision Process (CMDP). To solve this problem, 
they propose an efficient and easy-to-implement 
method based on constrained deep reinforcement 
learning (DRL), within the actor-critic framework. 

Specifically, they introduce a prediction and 
projection scheme: the agent initially anticipates a 
feasibility mask for location actions as an additional 
task and then uses this mask to adjust the action 
probabilities generated by the actor during training. 

This monitoring and projection approach make 
it easier for the agent to learn viable policies in a 
highly efficient manner. The results of a 
comprehensive evaluation demonstrate that the 
learned policy significantly outperforms state-of-
the-art methods in this context. 

To validate their work called RS, Zhao et al. [22] 
carried out comparisons with two different 
methods. First, they evaluated their online 
approach against the BPH heuristic [35], which 
allows the agent to select the next best element 
among 𝑘 anticipated elements (i.e., BPP-𝑘 
with reordering). 

In Table 5, it was specifically compared to the 
BPP-1 version of BPH. Also, in Fig. 4, the online 
BPH and the method under the BPP-𝑘 
configuration was compared. Second, they 
evaluated their method against the offline LBP 
method [7], which incorporates a baseline heuristic 
called the bounds rule method. 

The latter imitates human behavior by trying to 
place a new item next to already packaged items, 
seeking to keep the packaging volume uniform. 
The comparison in Figure 8 reveals that the 
proposed method outperforms all online methods 
on all three benchmarks and surprisingly even 
outperforms the offline approach on CUT-1 
and CUT-2. 

Table 5 presents the method proposed by Zhao 
et al. [22] compared against three other 
approaches both online and offline, the number of 
objects and the percentage of space used by each 
approach are measured. 

From the comparison in Table 5, the proposed 
method outperforms all alternative online methods 
on all three benchmarks and even beats the offline 
approach on CUT-1 and CUT-2. 

Through examining the packing results visually, 
we find that our method automatically learns the 
above “boundary rule” even without imposing such 
constraints explicitly. 

From Fig. 4, the method performs better than 
online BPH consistently with varying numbers of 
lookahead items even though BPH allows re-
ordering of the lookahead items. They also 
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conducted a preliminary comparison on a real 
robot test of BPP-1 (see our accompanying video). 
Over 50 random item sequences, our method 
achieves an average of 66.3% space utilization, 
much higher than the boundary rule (39.2%) and 
online BPH (43.2%). 

The reviewed works have provided valuable 
insights into the realm of BPP, shedding light on 
machine learning strategies and diverse 
methodologies employed by researchers. The 
critical analysis of three representative works has 
contributed to a deeper understanding of the field's 
evolution and progress. 

Sim et al. [12] approach introduces a 
groundbreaking hyperheuristic method, 
showcasing adaptability, swift problem-solving 
capabilities, and the ability to generalize within the 
problem space. The system's commendable 
performance across extensive datasets and 
dynamic problem instances underscores its 
computational efficiency and scalability. 

Verma et al. [19] Deep RL algorithm for online 
3D bin packing presents innovation by addressing 
unknown object sets and optimizing container 
packing efficiency. The model's ability to handle 
instances of varying sizes without retraining is a 
notable strength, outperforming existing heuristics 
in terms of competitive ratio and volume efficiency. 

Zhao et al. [22] strategy for the 3D Container 
Packing Problem stands out in its approach to 
immediate item placement, constrained by limited 
information and influenced by order dependency 
and stability considerations. The proposed CMDP-
based method, utilizing constrained DRL, exhibits 
remarkable efficiency in learning viable policies, 
surpassing state-of-the-art methods in the context 
of online 3D-BPP. 

When comparing the three approaches in the 
literature, different aspects and performances 
stand out. NELLI [12] has demonstrated notable 
advantages in terms of scalability and adaptability 
to dynamic environments, outperforming other 
previous approaches. For its part, the PackMan 
algorithm [19] presents significant improvements in 
packaging efficiency, achieving more efficient 
space utilization. 

However, it suffers from greater variability in 
results. Zhao et al. [22], with its reinforcement 
learning-based approach, exhibit outstanding 
superiority over online and offline methods, 

achieving efficient space utilization compared to 
traditional heuristics and even outperforming 
human players in certain scenarios. 

Together, these results underscore the diversity 
of approaches and particular strengths of each 
algorithm. Considering the specific characteristics 
of each problem and the requirements of the 
environment, the choice of the most appropriate 
approach will depend on the specific objectives 
and constraints of the application. 

In essence, these representative works 
contribute significantly to the ongoing 

 

Fig. 2. Network architecture for the DQN agent 

presented in Verma et al. [18] 

Table 4. Comparison of results on 100 episodes of test 

data between Packman vs other approaches from the 
literature [19] 

Algorithm  Comp. 
ratio 𝒄 

Time per 
box 
(sec) 

Avg. 
pack 

Best 
Pack 

AH 1.58 - - - 

Floor building 1.52 0.0002 81.0% 5% 

Column build 1.46 0.0001 81.0% 6% 

First Fit 1.47 0.0002 81.3% 7% 

WallE 1.41 0.0106 81.8% 25% 

PackMan 1.29 0.0342 82.8% 57% 
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advancements in BPP research, offering novel 
perspectives, innovative methodologies, and 
promising results. 

The field continues to evolve, and these 
studies serve as crucial milestones in shaping the 
landscape of optimization strategies for Bin 
Packing Problems. 

6 Conclusions and Future Directions 

6.1 Conclusions 

Despite promising advances in hybridizing 
machine learning strategies with the container 
packaging problem (BPP) and its variants, there 
are untapped areas of opportunity that deserve 
further exploration. Dynamic variants of BPPs 
emerge as relatively unexplored territory within this 
context, providing substantial space for future 
research and the development of novel 
hybrid strategies. 

Furthermore, while deep reinforcement learning 
is an effective tool in most of the studies reviewed, 
there is a pressing need to deepen our 
understanding of their applicability in various BPP 
scenarios. Opportunities abound to investigate and 
improve learning adaptability to changing 
conditions, as well as explore its integration 
with other machine learning techniques 
and metaheuristics. 

These areas of opportunity suggest that, 
despite commendable achievements to date, the 
trajectory of machine learning with BPP remains in 
a state of continuous evolution. The landscape 

continues to offer fertile ground for future research, 
driving continued refinement of the effectiveness 
and versatility of hybrid strategies. 

6.2 Future Directions 

The research landscape in the field of Bin Packing 
Problems (BPP) continues to evolve, driven by 
advancements in algorithms and methodologies. 
Building upon the insights gained from the analysis 
of the selected studies, several promising avenues 
for future research emerge. 

1 Dynamic and Adaptive Algorithms: While 
some studies have touched upon dynamic 
aspects of BPP, there remains ample room for 
the development of algorithms that can 
dynamically adapt to changing scenarios. 
Future research could focus on the design of 
algorithms capable of adjusting their 
strategies in real-time as the packing 
environment evolves. 

2 Integration of Hybrid Approaches: Combining 
the strengths of different algorithms and 
techniques can potentially lead to more robust 
and efficient solutions. Future research might 
explore the integration of machine learning, 
metaheuristics, and mathematical 
programming to create hybrid approaches that 
leverage the complementary advantages of 
these methods. 

3 Scalability and Generalization: Many existing 
algorithms excel in specific scenarios but 
struggle with scalability or fail to generalize 
across diverse problem instances. Future work 
could concentrate on enhancing the scalability 
of algorithms, enabling them to handle larger 
problem sizes, and improving their 
generalization capabilities to address a 
broader range of BPP variants. 

4 Real-world Implementation and Validation: As 
algorithms mature, practical implementation in 
real-world settings becomes crucial. 
Future research should aim at validating 
proposed algorithms through deployment in 
industrial or logistical environments, assessing 
their performance under actual 
operational conditions. 

5 Incorporating Environmental Considerations: 
With a growing emphasis on sustainability, 
there is an opportunity to integrate 

 

Fig. 3. Comparison of empirical compliance rates for the 

5 algorithms, over 100 test data sets presented in [19] 
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environmental considerations into BPP 
algorithms. Future research might explore how 
to optimize packing solutions with a focus on 
reducing ecological impact, considering 
factors such as fuel efficiency in transportation 
or eco-friendly packaging materials. 

6 User Interaction and Explainability: Developing 
algorithms that are interpretable and allow for 
user interaction can enhance their practical 
utility. Future research could delve into 
incorporating explainable AI principles and 
user-friendly interfaces, enabling stakeholders 
to understand and interact with the decision-
making process. 

7 Benchmark Datasets and Competitions: 
Establishing standardized benchmark 
datasets and organizing competitions can 
foster collaborative advancements in the field. 
Future efforts could focus on creating 
benchmark datasets that capture the 

complexities of real-world packing scenarios 
and organizing competitions to benchmark the 
performance of different algorithms on 
these datasets. 

In pursuing these future directions, researchers 
can contribute to the continued evolution of BPP 
methodologies, addressing emerging challenges 
and ensuring the practical relevance of 
their findings. 
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