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Abstract. This article presents an approach for creating 
fuzzy predicates using genetic algorithms. The proposed 
method incorporates an internal genetic algorithm to 
optimize the membership functions of the linguistic 
variables involved in the discovered predicates, taking 
advantage of statistical data for the initialization of the 
population and taboo and weighted roulettes for the 
construction of the predicates. The generation of fuzzy 
predicates is based on the implication and equivalence 
operators, as well as on deductive structures, such as 
modus ponens. Furthermore, the evaluation of 
predicates on data sets is based on For All and Exists 
quantifier operators, which also guide the search for the 
best predicates according to their truth values. 
Furthermore, the popular Iris database is used as a case 
study to demonstrate the effectiveness and applicability 
of this approach. 

Keywords. Compensatory fuzzy logic, genetic 
algorithms, fuzzy inference, fuzzy interpretability, 
iris problem. 

1 Introduction 

Fuzzy logic has proven to be a tool for modeling 
uncertainty and imprecision in complex systems. 
However, manually creating fuzzy predicates can 
be laborious and error-prone. In this context, 

genetic algorithms (GA) have emerged as a 
technique for optimization and finding solutions to 
complex problems. 

Optimisation is another field where Fuzzy logic 
stands out because it helps decision-makers to 
solve optimisation problems considering the 
uncertainty that commonly occurs in application 
domains [1]. 

In this paper, an approach for creating fuzzy 
predicates using GA is presented, which includes 
an internal genetic algorithm to optimize the 
membership functions of linguistic states. Our 
method is based on the use of statistical data for 
the initialization of the population and the use of 
taboo and weighted roulettes for the construction 
of fuzzy predicates. 

Furthermore, the implication and equivalence 
operators are implemented, as well as the modus 
ponens deductive structure to compare the 
accuracy and precision in the classification of the 
generated fuzzy predicates. Likewise, the 
parameters of the membership functions that 
define the optimized linguistic states that are 
included in the constructed predicates are 
analyzed. To evaluate and validate this approach, 
we used the Iris database, which contains trait 
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measurements of different flower species and 
which are separated into three different types of 
this family, as a case study. The experimental 
results show that the proposed method is capable 
of generating efficient and accurate fuzzy 
predicates for flower species classification in the 
Iris database. 

In summary, this article presents a contribution 
to the field of compensatory fuzzy logic and genetic 
algorithms, providing techniques for the automated 
creation of fuzzy predicates with applications in a 
wide range of real-world problems. 

2 Fuzzy Logic 

Fuzzy logic is a formal system of logic that deals 
with propositions that can have truth-values, which 
are intermediate values between false and true, 
representing degrees of truth. In contrast to 
classical binary logic, where the result of 
evaluating a proposition is absolute, whether true 
or false, fuzzy logic allows for the representation 
and reasoning about uncertainty and imprecision 
in data [2]. 

Fuzzy logic (FL) is based on the idea that the 
way human thinking is constructed is not through 
numbers, but rather through linguistic labels. 
Linguistic terms are inherently less precise than 
numerical data, but they express knowledge in 
terms more accessible to human understanding 
[3, 4]. 

Vagueness and uncertainty can be considered 
using the fuzzy set theory proposed by L. Zade [5]. 
The fundamental concept in fuzzy set theory is the 
concept of the membership function [6]: 

Let � be a set, let � be an element of �, then a 
fuzzy subset A of M is defined as a set of ordered 
pairs {�, ��(�)}, ∀� ∈ � ��(�) which is a 
membership function characteristic that takes its 
values n a well-ordered set 
, which indicates the 
degree or level of membership of an element � to 
a subset �. 

2.1 Compensatory Fuzzy Logic 

Compensatory fuzzy logic (CFL) is an approach to 
multivalent logic different from the axiomatic norm 
(conjunction) and conorm (disjunction) 
approaches, which define functions of operations 

on fuzzy sets. The CFL has characteristics that 
allow it to be a support for decision-making [7]. 

The CFL is made up of a quatrain of continuous 
operators: conjunction (c), disjunction (d), strict 
fuzzy order (o), and negation (n), where: 

�[0, 1]� → [0, 1] 
�[0, 1]� → [0, 1] 
�[0, 1]� → [0, 1] 
�[0, 1]� → [0, 1] 

These operators satisfy the group of axioms for 
the FL, to which those of compensation and veto 
are added [7]. 

The compensation axiom states that, for the 
particular case of two components, the fact that the 
value of the operator is between the minimum and 
the maximum can be interpreted as the second 
value compensating the value of the first in the 
veracity of the conjunction. The idea is generalized 
to the case of n components [8]. 

The veto axiom grants any basic predicate of 
conjunction the ability to veto, that is, the ability to 
prevent any form of compensation when its value 
is equal to zero [8]. 

CFL satisfies the idea that under certain terms 
compensation is permissible, which is an 
interesting approach to modeling human 
decision- making. 

2.2 Fuzzy Predicates 

According to [6], a fuzzy predicate is a function 
�(��, ��, … , ��), defined in fuzzy variables 
��, ��, … , �� whose range of values is a statement 
whose truth is estimated by values of the interval 
(0, 1). This true value is obtained by the 
composition of fuzzy variables (known as individual 
fuzzy predicates) and fuzzy logic operators. 

2.3 Quantifier Operators 

The most common way to deal with precision in the 
inference of fuzzy systems is error-based [9, 10]. 
To calculate the precision of fuzzy predicates, the 
universal quantifier For All is used: 

∀�,�∈�, = "# ∑ %& ['(�,�)]. (1) 

Another quantifier used is Exists, which 
indicates that in a set of data, there are instances 
for which the evaluated predicate is fulfilled: 
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∃�,�∈�, = "# ∑ *� [�#'(�,�)]. (2) 

In this work, all operator is used to guide the 
search for the best predicates discovered. 

3 Fuzzy Inference Systems 

Through inference, observations of the world are 
used to discover unobserved facts or to identify 
causal effects from the data collected. In a broad 
sense, inference ranges from implication to the 
operational mental process that allows reaching a 
conclusion based on certain information [11]. 

From formal logic, inference has been 
understood as "the passage from one set of 
propositions to another; the first set can be called 
the class of premises and the second the class of 
conclusions." This definition presents inference as 
a syllogistic structure, that is, a three-level logical 
entity: two premises and a conclusion. Thus, 
inference not only reveals unobserved facts, but 
also follows a logical structure that facilitates the 
derivation of conclusions from given premises [12]. 

3.1 Mamdani Fuzzy Inference System 

The Mamdani fuzzy inference system (FIS), 
introduced by Ebrahim Mamdani in 1975, stands 
as one of the earliest and most prevalent systems 
in fuzzy logic. It serves as a technique for framing 
control issues using fuzzy logic principles, 
emulating human decision-making processes. This 
model is renowned for its simplicity and its ability to 
intuitively encapsulate expert Knowledge [13]. 

This model is characterized by its simplicity and 
the intuitive way it represents expert knowledge. 
Stages of the fuzzy inference system Mamdami 
based are (figure 1): 

1 Fuzzification: crisp input variables are 
converted into fuzzy sets through a MF. For 
each input is obtained how much belongs to a 
fuzzy set. 

2 Rule Evaluation: The system uses a set of if-
then rules that describe how input values 
translate into outputs. These rules are 
expressed in terms of fuzzy logic. 

3 Aggregation of Rule Outputs: Rules are 
evaluated and their fuzzy outputs are 
combined into a single fuzzy output set. 

4 Defuzzification: The fuzzy output is converted 
back into a crisp value. Common 
defuzzification methods include the 
centroid, weighted average, and maximum 
height methods. 

3.2 Takagi-Sugeno FIS 

The Sugeno fuzzy inference model, also referred 
to as the Takagi-Sugeno-Kang (TSK) model, was 
developed by Takagi and Sugeno in 1985. In 
contrast to the Mamdani model, which produces 
fuzzy set outputs for its rules, the Sugeno model 
generates outputs that are linear functions of the 
inputs [15]. 

Stages of the TSK model are listed next 
(figure 2): 

1 Fuzzification: Similar to the Mamdani model, 
crisp inputs are converted into fuzzy sets using 
membership functions. 

2 Rule Evaluation: The if-then rules in the 
Sugeno model are of the form: "If x is A and y 
is B, then z = f(x, y)," where f(x,y) is a 
polynomial function. 

3 Aggregation of Rule Outputs: The rule 
outputs are crisp functions (linear or 
constant) and are aggregated through a 
weighting process. 

 

Fig.1. Stages of the Mamdani’s FIS [14] 
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4 Defuzzification: Instead of defuzzifying a 
fuzzy set, the Sugeno model produces a crisp 
output directly by the weighted combination of 
the rule outputs. 

3.3 Comparison of Models Mamdani with 
TSK 

Table 1 shows a comparison of the Mamdani 
model with the Sugeno model: 

Analyzing the advantages and disadvantages 
that appear in both models, it was decided to work 
with the Mamdani model, since it presents the 
following characteristics [13, 5]: 

1 Intuitive rule representation: The rules in the 
Mamdani model are formulated in natural 
language, such as "if x is A and y is B then z is 
C". This structure closely mirrors human 
reasoning, making the system more 
understandable for domain experts who may 
not have a background in mathematics. 

2 Richness of output expression: The 
Mamdani model produces outputs as fuzzy 
sets, enabling a more nuanced and expressive 
depiction of uncertainty and partial truths. 

3 Ease of rules definition and maintenance: 
Since the rules are based on linguistic terms 
that directly correspond to expert knowledge 
and real-world observations, the system is 
easier to update and expand. 

4 Suitable for complex systems with multiple 
inputs and outputs: This feature makes the 
model ideal for applications where the 
relationships between variables are difficult 
to quantify. 

4 Classification Task 

In this work binary classification is performed, 
which means that the GA generates a predicate 
that determines if an instance in the dataset 
belongs to a category or not. 

If the instance belongs to the searched 
category, then is called a positive instance, 
otherwise it is considered a negative case. 

GA discovers the best predicates according to 
their truth value and is executed once per class in 
the dataset. If the dataset contains m classes, then 
the GA is performs m times the discovery of 
predicates to find the best ones corresponding to 
each class. To do this, the corresponding m 
symbolic predicates are created as part of the GA 
configuration, which are listed as follows: 

(+�, -�(�) �./00�) 

(+�, -�(�) �./00�) 

⋮ 

(+�, -2(�)3 �./002). 

For each instance, the classification task takes 
the best predicate according to its truth value to 
extract the premise or the generated sub-
predicates -4(�) to be evaluated and compared 

with the others. 

The -4(�) with the maximum truth value, is 

selected to get the class obtained for the instance. 

The accuracy for the classification task is given 
for [16]: 

��� =
5675�

5678675�78�
, (3) 

where: 

9-: (true positive) positive instances 
correctly classified. 

9�: (true negative) negative instances 
correctly classified. 

;-: (false positive) instances incorrectly 
classified as positives. 

;�: (false negatives) instances incorrectly 
classified as negatives. 

 

Fig. 2. TSK model [14] 
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5 State of the Art 

Data classification is a widely researched area in 
pattern recognition. It involves dividing the data 
space, known as pattern space, into different 
classes. Among various applications, 
there are: image processing, classification 
and segmentation; voice recognition and 
restoration; signal processing and, among others, 
financial data analysis; human action recognized in 
video [17]; facial geometry identification [18]. 

The design of a classifier is based on a set of 
data divided into categories, which comprises data 
vectors along with their expected labels, known as 
labeled data [19]. 

A well-designed classifier must have a property 
known as generalization, which is to accurately 
classify new and unseen data with a low error rate 
[19]. To this end, several methods have been used 
for several years, including those based on 
distance, statistical methods, neural networks, and 
fuzzy logic (FL) [20]. 

FL was introduced by Lofti A. Zadeh [5, 21], 
which uses membership functions to model 
knowledge. Membership functions quantify the 
degree to which a feature of data satisfies an 
attribute, with truth values ranging between 0 and 
1 in FL. 

Data acquisition has improved and accelerated 
through technological advances in recent decades. 
Likewise, improvements in hardware have been 
used to propose more computationally intensive 
algorithms for data processing. But despite the 
successes obtained in pattern recognition, 
approaches are required that facilitate the 
discovery of knowledge and allow the analysis of 
the extensive information contained in the 
data [22]. 

An approach that has gained strength in recent 
years is the automation of the definition of 
membership functions (MF) and the generation of 
predicates from a data set [23, 24] This approach 
allows the analysis of MFs and predicates 
eliminating the need for expert knowledge in the 
use of FL. 

Unlike the traditional way, in which an FL model 
was defined based on expert knowledge, it is now 
derived automatically from the data, this being a 
crucial aspect. According to Zadeh [25], MFs and 
predicates encapsulate the meanings of 

expressions in natural language, making their 
interpretation closely linked to knowledge. 
Preserving the semantic meaning of natural 
language expressions to achieve interpretable 
descriptions is essential; Otherwise, pattern 
recognition-based methods could supplant FL-
based models. 

On the other hand, the use of the CFL presents 
a series of advantages such as the following [7]: 

Compensation in fuzzy predicate evaluations: If 
a value does not completely meet one criterion, but 
largely meets another, these values can 
compensate for each other, providing a more 
balanced and realistic approach in modeling 
complex systems. 

Adaptability: can better adjust to the nuances of 
the relationships between variables. 

More informed decisions: Provides a stronger 
basis for decision making, especially in situations 
where decision criteria are conflicting or are not 
equally important. 

Flexibility: reduce the inflexibility of decisions 
based solely on strict individual criteria. 

In addition to these advantages, in this work the 
generalized membership function [10] (GMF, 
section 6.2) was used, which is a flexible function, 
with which any linguistic state can be represented, 
since it can take a sigmoidal, sigmoidal form. 

Table 1. Comparison of models Mamdani and TSK 

Attribute Mamdani  Sugeno 

Efficient Less efficient More efficient 

Computational 

Efficiency 
Intense 

Reduced 
computational 

cost 

Precision 
Limited 

precision 
Higher precision 

Intuitiveness 

Easy to 
understand; 
accessible to 

domain 
experts 

More difficult to 
understand; for 

experts with 
mathematical 

training 

Flexibility 

Can handle 
systems with 

multiple 
inputs and 

outputs 

Less flexible; to 
define the output 
functions can be 

difficult 

 

Computación y Sistemas, Vol. 28, No. 3, 2024, pp. 1257–1274
doi: 10.13053/CyS-28-3-5183

Compensatory Fuzzy Logic Genetic Algorithm for Classification Problems: A Case Study 1261

ISSN 2007-9737



negative, Gaussian or concave, based on 
its parameters. 

In this work, techniques were also explored to 
control the length and consistency of fuzzy 
predicates and types of predicates for the 
classification of instances in a data set were also 
explored, such as those that use the implication 
operator, the equivalence and also, the deductive 
structure Modus Ponens, complementing it with 
the existential quantifier. 

6 Proposal of Solution 

The objective of this work is to prove that a genetic 
algorithm that uses CFL provides a solid 
methodology that allows for solving classification 
problems through fuzzy predicates. 

To achieve this objective there is a dataset that 
contains a register of 150 instances of iris flower 
and measurements of sepal and petal of the flower. 
This dataset and a set of parameters of 
configuration are the input of a genetic algorithm, 
which implements a series of techniques to 
generate predicates that classify what type of iris is 
a flower according to its attributes. 

1 The dataset and a configuration set are the 
input of the GA, including a symbolic predicate 
that establishes what logical operator of 
equivalence or implication or a deductive 
structure is going to be used. 

2 The GA creates fuzzy predicates according to 
the input optimizing the parameters of the 
membership functions. 

3 The GA outputs a list of the best predicates 
according to their truth value. GA is executed 
for each class in the dataset (setosa, virginica, 
and versicolor) and, for each symbolic 
predicate (implication and equivalence 
operators and deductive structure 
modus ponens). 

4 Sub-predicates are extracted from generated 
fuzzy predicates to evaluate each instance in 
the dataset. 

5 For each instance, the truth value of the sub-
predicates corresponds to the implication, 
equivalence, and deductive structure modus 
ponens. Through the highest, the class for the 
instance is selected. 

6 The accuracy is calculated according to 
equation (3) and compared with the other 
proposals to get the highest. 

7 Genetic Algorithm 

The proposed genetic algorithm (GA) includes 
techniques to maximize the truth-value of results, 
such as: 

1 Multiple generators of sub-predicates with 
independent search configuration in the 
creation of chromosomes. 

2 Linguistic variables are defined by the 
generalized membership function. 

3 Initial population based on statistical data. 

4 Parameters optimization through an intern 
genetic algorithm. 

5 Taboo roulette to avoid 
inconsistent predicates. 

6 Weighted roulette to control predicate length. 

7 Calculation of universal and existential 
quantifiers in fuzzy predicates. 

8 Use of correct deductive structures as an 
objective function. 

The genetic algorithm is given for the next steps 
(Algorithm 1): 

The initial population is generated based on 
statistical data in the dataset, and then according 
to the total generations set in the configuration, the 
genetic operators: selection, crossover, mutation, 
optimization, and reduction of the population of 
chromosomes are performed. 

In the generation of initial population and 
selection, the taboo and probabilistic roulettes 
are used. 

The optimization of chromosomes is the 
generation of the best parameters of GMF of 
linguistic variables and it is performed through an 
internal GA. 

Algorithm 1. Genetic Algorithm 
 Input: 
 Search Algorithm configurations 
 D: Dataset 
Output: 
 R: Set of best fuzzy predicates based on 
truth-value 
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 R=Generate Initial Population 
 For i=1 to total Generations 
    parents=selection(R) 
   R=crossover(R,parents) 
   R=mutation(R) 
   R=optimize(R) 
   R=reduce(R) 
 R=sort(R) 
 return R 

The generation of initial population (step 1) is 
done through the creation of chromosomes and the 
initialization of the parameters of the MF defining 
the linguistic variables that are included (sections 
6.1 - 6.3). This operation also uses the taboo 
roulette to avoid the generation of inconsistent sub-
predicates (Section 6.8). 

The selection operator (step 3) generates the 
parents matrix, which contains n rows and 2 

columns to form pairs of chromosomes that are 
chosen to interchange genes. Selection operator 
works as follows: 

1 The first parent is the best chromosome 
available according to its truth value. 

2 The second parent is chosen through the 
weighted roulette, which provides a greater 
probability of being selected to the 
chromosomes with the best truth value. 

3 This operations are repeated to complete the 
required n pairs of chromosomes. 

4 The crossover, mutation and optimization 
operators are explained in sections 6.4 - 
6.6 respectively. 

5 The population of chromosomes is reduced 
by a percentage according to the 
GA configuration. 

6 After calculating the total number of 
generations, the population is ordered 
according to the truth value of 
the chromosomes. 

7.1 Chromosomes 

In the GA, which is a search algorithm, 
chromosomes are a representation of fuzzy 
predicates, which are evaluated over the dataset to 
calculate the truth value. 

The GA is configured through a list of 
parameters to generate fuzzy predicates that 
include (figure 3): 

1 A symbolic predicate that defines the structure 
of the searched predicates, i. e.: 

(OR “ ∗ 1” “ ∗ 2” “ ∗ 3”). 

2 Depth defines how many levels maximum is in 
the predicate. 

3 Logical operators included. 

4 Linguistic variables, among others. 

Symbolic predicates may include generators of 
sub-predicates, which are represented by stars 
and a consecutive number. These generators have 
an independent configuration with their parameters 
for the search algorithm (table 2). 

According to their configuration, generators 
create sub-predicates which include a set of 
parameters (Figure 3). 1=Generator, 2=Linguistic 
variables, 3=depth, 4=Logical operators. 
Algorithm 2 shows how are created the 
subchromosomes, a fragment of a chromosome 
corresponding to a generator: 

 

Fig. 3. Integration of sub-predicates in chromosome 

Computación y Sistemas, Vol. 28, No. 3, 2024, pp. 1257–1274
doi: 10.13053/CyS-28-3-5183

Compensatory Fuzzy Logic Genetic Algorithm for Classification Problems: A Case Study 1263

ISSN 2007-9737



Algorithm 2. Create subChromosome 
Input: 

 C: List of linguistic variables 
 �: List of logical operators 
 �: Search configuration 
Output: 
  0 = {∅}: subchromosome  
1. � = E�F."99". G"9H/.F"(depth) // return 

the amount of levels for the subredicate 
in [0, depth] 

2. I; � = 0 
3.    I��"� = 9/J��K�F."99"(C) 
4.    0 = 0 ∪ CM�NO� 
5.    E"9FE� 0 
6. I��"� = E�F."99". G"9H/.F"(o) 
7. �-"E/9�E = oQ&RST  
8. 0 = 0 ∪ {(", operator. ")} 
9. ;�E ."C". = 1 9� 9�9/. � 
10.    ;�E(I��"� = 1 9� 0I�" �; 0 
11.     currentLevel =

 0"/E�ℎ+�bFEE"�9c"C".(I��"�, ."C"., 0)  
12.     +; �FEE"�9c"C". = 9EF" 
13.      0M�NO� =

I�0"E9d-"E/��(0, I��"�, C, 9/J��K�F."99")

14. E"9FE� 0 

The method searchInCurrentLevel verifies that 
element i corresponds to the current depth level 
within the subpredicate and returns true if so and 
false otherwise. 

The insertOperando method looks for the index 
element in s and inserts an operator or a linguistic 
variable, which are selected randomly. 

If an operator is selected, then: 

0 = {0�, 0M�NO�} ∪ {(",operator, ")"} ∪

{0M�NO�7�, 0�	, 
where operator is selected randomly. 

If a linguistic variable is selected, then: 

0 ! �0_1, 0_I��"� 	 ∪ C_I ∪ �0_�I��"� f 1�, 0_�	, 
where 

I ! 9/J��K�F."99"�C�. 
7.2 Linguistic Variables 

The linguistic states are presented as linguistic 
variables initially, in which the parameters of the 
membership functions (MF) are going to be 

optimized to maximize the truth value of the 
predicate. The MF used to define the linguistic 
variables is the generalized membership function 
GMF [10]: 

��g ! hMi2��,j,k�l��#hMi2��,j,k��mnl
o . (4) 

With 0IG3��, p, q� ! �
�7Onr�snt�. 

Here � ! 32�1 u 3��#2 and 

1 p defines the center of the graphic of the 
function, 

2 q defines the breadth of the function, 

3 3 modifies the form of the function. 

The advantage of the GMF over other 
membership functions is that it has the flexibility to 
change the shape of the function and can be used 
to model different linguistic variables, unlike other 
functions such as triangular or trapezoidal that 
require other types of functions to model different 
linguistic states (figure 4). 

Table 2. Configuration of the search algorithm 

1 2 3 4 

 

*1 
state1, state2, state3, 

state 5 
1 AND 

*2 state3, state4, state5 2 AND, 
OR 

*3 state1, state3, state5 1 NOT 

 

Fig. 4. GMF with parameters m=0 (GMF1), m=0.5 
(GMF2) and, m=1 (GMF3) 
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7.3 Membership Function’s Parameters 
Initialization 

In the discovery of fuzzy predicates, the first data 
is separated into two parts by attributes. The first 
part includes the attributes of the condition, 
meaning all of them will be used to create sub-
predicates that correspond to the attribute of 
decision, which is the second part of attributes in 
the dataset. 

For each attribute in the dataset, it is calculated 
the values of the parameters through percentiles 
and according to the number of linguistic variables 
associated with each attribute. 

For each variable, the gamma parameter is 
calculated according to the percentile that 
corresponds to it, for example, if there are three 
linguistic variables for an attribute, the 
corresponding percentiles are 25, 50 and 75 and 
the gamma values are those that correspond to 
these percentiles. 

The dataset is normalized, and all attributes of 
the condition and all instances take values in the 
range [0, 1]. This normalization allows the 
parameters of the GMF p and 3 to take values also 
in [0, 1] and q is standardized in [10, 50]. 

According to the linguistic variable I defined for 
the attribute of condition v,  algorithm 3 shows the 
definition of each linguistic variable s: 

Algorithm 3. Definition of GMF 
Input 
 w: Dataset normalized 
Output 
 
: Set of linguistic variables  

1. Let � be the set of attributes in w 

2. For each / ∈ � 

3.   Let �x the number of linguistic    

       variables for / 

4.   For I ! 1 9� �x 

5.       "*yzO* ! /�y2O f I 
6.       "y55{Mz|5O ! /�y2O 

7.       "o} ! "��g" 

8.       "j !
��I0" ~�/.�,"E�"�9I." �/, ���M

��7��� 

9.       "k ! ��I0"�35 E/���0, 1� f
15� 

10.       "2 ! ��I0" � 2�#2m
2��#2m� 

11.       
 ! 
 ∪ "  

12.   return 
 

The method noise injects random variations in 
range [-0.05,0.05] to the computed parameters. 

7.4 Crossover Operator 

In the crossover operator, the chromosomes 
selected as parents generate copies of themselves 
and then the created chromosomes exchange 
information. On each chromosome created, a 
crossover point is selected, which can point to a 
linguistic variable or a complete sub-predicate 
(Figure 5). 

The linguistic variable or the corresponding 
sub-predicate is taken from each chromosome and 
is integrated into the other at the crossing point that 
corresponds to each one. 

It is validated that the new chromosomes 
comply with the restrictions of the GA search 
algorithm configuration; if not, the operation 
is repeated. 

If they comply with the configuration, the truth 
value of the altered chromosomes is calculated 
and they are integrated into the population. 

 

Fig. 5. Crossover operation 
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7.5 Mutation Operator 

In the mutation operator, a chromosome is 
selected to be altered. On that chromosome, a 
point is randomly selected at which a linguistic 
variable or a sub-predicate can be found (figure 6). 

This variable or sub-predicate is extracted from 
the chromosome and is replaced by an optimized 
sub-predicate or variable. 

It is validated that the new chromosome meets 
the restrictions of the search algorithm 
configuration and if it does not, this operation 
is repeated. 

If the new chromosome meets these 
constraints, then its truth value is calculated and it 
is returned to the population. 

7.6 Optimization of Parameters in 
Membership Functions 

The optimization of parameters for GMF is done 
through an internal GA that first extracts the 
parameters to build a new population of 
chromosomes that work with q, p, and m related to 
the linguistic variables in the fuzzy predicates 
(Figure 7, steps 1 and 2 of algorithm 4). In the 
generation of the initial population, the parameters 
of the MF are injected with noise. 

The algorithm 4 shows how genetic operators 
such as selection, crossover, and mutation are 
applied to the population of parameters’ 
chromosomes for the number of generations set in 
the GA configuration. 

In this algorithm, whenever a chromosome is 
altered, the parameters in it are substituted into the 
predicate to obtain the truth value of 
the chromosome. 

The selection operator works in the same way 
as in algorithm 3.  

In the crossover operator, the parent 
chromosomes create copies of themselves and in 
them, they go through parameter by parameter and 
exchange the values randomly. If exchanges could 
not be carried out, the operation is repeated. 

In the mutation operator, the selected 
chromosome is traversed parameter by parameter 
to alter some of them by selecting them randomly. 

Finally, the fuzzy predicate is returned with the 
set of parameters that maximize the truth value 
in it. 

Algorithm 4. Parameter Optimizer 
Input 
 w: Dataset normalized 
  -: Fuzzy predicate 
Output 
 �: Predicate with best set of parameters 

of MF according to their truth value 
1. E ! "�9E/�9,/E/3"9"E0�-� 

2. � ! G"�"E/9"+�I9I/.,�-F./9I���E� 

3. For I ! 1 9� 9�9/.�"�"E/9I��0 

4.   -/E"�90 !  0"."�9I���� 

5.    � ! �E�00�C"E��, -/E"�90� 

6.   � ! 3F9/9I����� 

7. E"9FE� � ! max5{|5��y*|O �    

 

Fig. 6. Mutation operation 

 

Fig. 7. Extraction of the parameters of the predicate to 
create the parameter’s chromosome 
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7.7 Weighted Roulette 

Logical operators have different arity (Table 3). In 
the case of conjunctions and disjunctions, to avoid 
predicates with a high number of linguistic states 
that increase the complexity of their reading, a 
weighted roulette is proposed that assigns a 
greater probability of choosing a smaller number of 
linguistic states in the operation. 

Given the following: If EM ! �M#� where � ! 0.5 <I < 1 and I ! 2 9� � is the number of operands, 
then the cumulative probability that the selected 
operator has i linguistic states as operands is 
given  by: 

-M ! EM∑ EM�M��
f � 0 I; I ! 2,-M#� I; I > 2, (5) 

with i ! 2 to n. 

7.8 Taboo Roulette 

Taboo roulette is implemented to avoid 
inconsistent predicates, which are those that in the 
logical operations contain duplicate linguistic 
variables in the case of implication, equivalence, or 
disjunction operators, for example: 

�IMP high chlorideshigh chlorides� 

�OR "���� � ¡¢�¢ " "���� � ¡¢�¢ "  
".�£ -¤"� 

In the case of conjunctions, inconsistent 
predicates, besides incorporating duplicate 
linguistic states, also can include contradictory 
linguistic states, that is, they correspond to a fuzzy 
partition and generate contrary meanings that 
result in low truth values. An example is 
the following: 

�"�¥w" ".�£ �ℎ.�EI�"0" "ℎIGℎ �ℎ.�EI�"0"�. 
In disjunctions, to avoid the generation of 

contradictory predicates in the initial population, a 
taboo roulette is used, in which in the list of 
participating slots, once a linguistic state is 
selected, it is eliminated from the roulette and 
added to a taboo list. This will be done for each 
logical operation in the predicate. 

In conjunctions, when a linguistic state is 
selected, all states with the corresponding attribute 
are taken to the taboo list. 

Once the selection of linguistic states in a sub-
predicate is completed, the roulette wheel restarts, 
returning all states in the taboo list to the list of 
participating slots. 

Each slot includes: 

1. Name of the linguistic state 

2. Attribute to which the linguistic state belongs in 
the data set. 

7.9 Calculation of Universal and Existential 
Quantifiers in Fuzzy Predicates 

In this genetic algorithm it was implemented the 
evaluation of quantifiers included in the fuzzy 
predicate, to calculate the truth value of the 
quantifiers, first, they are evaluated and the result 
obtained replaces the partial operation in the 
predicate, for example: 

�AND  �EXIST  "sepal-length"� �FORALL  "sepal-width"� petal-length�. 

First, evaluate �EXIST "sepal-length"�, then 
evaluates �FORALL "sepal-width"� and the 
resulting predicate remains as follows: 

�AND 0.5789 0.3724 "petal-length"�. 
The resulting predicate can now be evaluated 

for the instances in the dataset. 

7.10 Use of Correct Deductive Structures as 
the Objective Function 

The implication operator has a combination that 
results in ineffective like the following: 

Table 3. Operators' arity 

Operator Arity  

Negation (NOT) 1 

Implication (IMP) 2 

Equivalence (EQV) 2 

Conjunction (AND) 2 to n 

Disjunction (OR) 2 to n 
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g/.0" → ³EF" ⟹ ³EF". 
In CFL, the combination of:  

.�£ truth value ⟶ ℎIGℎ truth value⟹  ℎIGℎ truth value. 
Which means that a premise with a low truth 

value implies a conclusion with a high truth value, 
which is not correct, that is, you can have a 
predicate that evaluated can indicate that an 
instance corresponds to a result or a class to which 
is not related. 

For this reason, it was implemented a correct 
deductive structure as an objective function such 
as modus ponens, which is combined with the 
existential quantifier. In this way, the objective 
function is defined like this: 

∃, ⋀�, → ·�. 
The predicate notation in the algorithm is as 

follows: 

¸AND �EXIST *1"� �IMP *1" "class" �º. 

8 Experimentation 

As a case study, the Iris set was used for 
experimentation. The data set contains 50 samples 
of each of the three Iris species (setosa, virginica, 
and versicolor). Four traits were measured for each 
sample: the length and width of the sepal and 
petal, in centimeters. 

The data set with 150 records was divided into 
two parts, one for discovery and the other for 
inference, each part with 120 and 30 respectively. 

The data set was used for the classification 
task, where a class was assigned for each type of 
Iris species and, this attribute is defined as the 
decision variable within the classification. 

On the other hand, the length and width 
attributes of the sepal and petal are defined as the 
condition variables, that is, those by which it is 
possible to find which type of Iris each instance in 
the data set corresponds to. 

The following configuration of the search 
algorithm was used for the discovery of fuzzy 
predicates (Table 4): 

The following are symbolic predicates: 
1 The implication 

�+�, "*1"  "setosa"�, 

2 The equivalence 

�
·H "*1"  "setosa"�, 
3 The modus ponens deductive structure 

��¥w �
»+�³ "*1"��+�, "*1"  "setosa"��. 
In the same way, the symbolic predicates for 

the classes virginica and versicolor. 

To calculate the accuracy of this work it was 
used k-cross-validation and to get the number of 
folds it was calculated by: 

¼ ! ln�9�9/. I�09/��"0� ! ln�150� ! 5.01 ! 5. 

9 Results 

Table 5 shows the best predicates obtained for 
each class using the implication operator, in the 
same way, tables 6 and 7 show the best predicates 
using equivalence and correct deductive 
structure, respectively. 

Sub-predicates that act as a premise are 
extracted from each predicate and evaluated to get 
its truth value for each instance. 

For equivalence, the sub-predicates 
extracted are: 

1 ��¥w petal_widthpetal_length�, 
2 ��¥w sepal_lengthpetal_width "-"9/._."�G9ℎ"�, 
3 ��¥w sepal_lengthpetal_length�. 

Table 4. Configuration of GA 

Parameter  Value 

Máximum Results 10 

Total generations 10 

Minimum truth-value 0.8 

Mutation percentage 0.05 

Initial Population 50 

Depth 1 

Máximum Results 10 
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For implication: 
1. (�¥w "-"9/._£I�9ℎ" "-"9/._."�G9ℎ"), 

2. (�¥w sepal_length 

"-"9/._£I�9ℎ" "-"9/._."�G9ℎ"), 

3. (�¥w "0"-/._."�G9ℎ" "-"9/._."�G9ℎ"). 

For the correct deductive structure: 
1. (�¥w "-"9/._."�G9ℎ" "0"-/._£I�9ℎ"), 

2.  (�¥w sepal_lengthsepal_width 

"-"9/._."�G9ℎ" "-"9/._."�G9ℎ") 
3 (�¥w "0"-/._."�G9ℎ" "-"9/._£I�9ℎ") 

Table 5. Best fuzzy predicates obtained for each class for implication operator 

Class Predicate 

Setosa (EQV (AND "petal_width" "petal_length") “setosa”) 

Virginica (EQV (AND "sepal_length" "petal_width" "petal_length") “virginica”) 

Versicolor (EQV (AND "sepal_length" "petal_length") “versicolor”) 

Table 6. Best fuzzy predicates obtained for each class for implication operator 

Class Predicate 

Setosa (IMP (AND "petal_width" "petal_length") “setosa”) 

Virginica (IMP (AND "sepal_length" "petal_width" "petal_length") “virginica”) 

Versicolor (IMP (AND "sepal_length" "petal_length") “versicolor”) 

Table 7. Best fuzzy predicates obtained for each class for correct deductive structure 

Class Predicate 

Setosa (AND (EXIST (AND "petal_length" "sepal_width") (IMP (AND "petal_length" 
"sepal_width") “setosa”)) 

Virginica (AND (EXIST (AND "sepal_length" "sepal_width" "petal_length" "petal_length") (IMP 
(AND "sepal_length" "sepal_width" "petal_length" "petal_length") “virginica”)) 

Versicolor (AND (EXIST (AND "sepal_length" "petal_width") (IMP (AND (EXIST (AND 
"sepal_length" "petal_width") “versicolor”)) 

Table 8. Fragment of results of classification task for equivalence operator 

RC Se Vi Ve OC Cl 

1 0.998 0.086 0.000 1 Hit 

3 0.000 0.287 0.622 3 Hit 

3 0.000 0.142 0.912 3 Hit 

2 0.000 0.635 0.079 2 Hit 

2 0.000 0.603 0.202 2 Hit 

2 0.000 0.635 0.125 2 Hit 

1 0.991 0.050 0.000 1 Hit 

1 0.994 0.091 0.000 1 Hit 

1 0.987 0.070 0.000 1 Hit 

3 0.000 0.342 0.601 3 Hit 
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Table 9. Classification results for an equivalence operator 

Fold 
Setosa Virginica Versicolor 

P N TP TN FP FN P N TP TN FP FN P N TP TN FP FN 

1 11 19 11 19 0 0 11 19 11 18 1 0 8 22 7 22 0 1 

2 8 22 8 22 0 0 12 18 12 16 2 0 10 20 8 20 0 2 

3 10 20 10 20 0 0 7 23 7 18 5 0 13 17 8 17 0 5 

4 9 21 9 21 0 0 11 19 11 15 4 0 10 20 6 20 0 4 

5 12 18 12 18 0 0 9 21 8 20 1 1 9 21 8 20 1 1 

Table 10. Classification results for implication operator 

Fold 
Setosa Virginica Versicolor 

P N TP TN FP FN P N TP TN FP FN P N TP TN FP FN 

1 11 19 11 19 0 0 11 19 11 18 1 0 8 22 7 22 0 1 

2 8 22 8 22 0 0 12 18 12 16 2 0 10 20 8 20 0 2 

3 10 20 10 20 0 0 7 23 7 18 5 0 13 17 8 17 0 5 

4 9 21 9 21 0 0 11 19 11 15 4 0 10 20 6 20 0 4 

5 12 18 12 18 0 0 9 21 8 20 1 1 9 21 8 20 1 1 

Table 11. Classification results for the correct deductive structure 

Fold 
Setosa Virginica Versicolor 

P N TP TN FP FN P N TP TN FP FN P N TP TN FP FN 

1 12 18 12 18 0 0 7 23 6 18 5 1 11 19 6 18 1 5 

2 10 20 10 20 0 0 9 21 9 16 5 0 11 19 6 19 0 5 

3 7 23 7 23 0 0 12 18 11 13 5 1 11 19 6 18 1 5 

4 7 23 7 23 0 0 16 14 15 12 2 1 7 23 5 22 1 2 

5 14 16 14 16 0 0 6 24 5 17 7 1 10 20 3 19 1 7 

Table 12. Accuracy for equivalence operator 

F Accuracy 

Setosa Virginica Versicolor Av 

1 100% 97% 97% 98% 

2 100% 93% 93% 96% 

3 100% 83% 83% 89% 

4 100% 87% 87% 91% 

5 100% 93% 93% 96% 

   Total 94% 
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Respective truth values are compared to get the 
highest, which indicates the selected class for each 
instance (table 8). 

RC=Real class, �", HI, H" = truth-value for 
setosa, virginica, and versicolor, in bold the highest 
truth-value, OC=Obtained class, Cl=Hit or error 
in classification. For each class -, �, 9-, 9�, ;-, and 
;� are obtained to get their accuracy, given in 
tables 9, 10, and 11 for equivalence 
and implication, operators and the deductive 
structure modus ponens. 

Based on the results of classification with 
proposed symbolic predicates their accuracy was 
calculated (Tables 12, 13, and 14): 

Comparing the accuracy of operators and 
deductive structure modus ponens proposed the 
equivalence obtained the highest (table 15): 

For the experiment, 30 runs were executed and 
Table 16 shows a fragment of the comparisons of 
these runs between the operators of implication, 
equivalence and the deductive structure 
Modus Ponens. To compare the proposals and 
determine if one is significantly better than the 
others, the Wilcoxon test was used. For each pair 
of proposals, the following were compared: 

1. the logical operators of implication and 
equivalence, 

Table 13. Accuracy of classification for implication operator 

F Accuracy 

Setosa Virginica Versicolor Av 

1 97% 50% 53% 67% 

2 100% 80% 80% 87% 

3 100% 67% 67% 78% 

4 100% 63% 63% 76% 

5 100% 63% 63% 76% 

   overall accuracy 76% 

Table 14. Accuracy of classification for deductive structure modus ponens 

F Accuracy 

Setosa Virginica Versicolor Av 

1 100% 80% 80% 87% 

2 100% 83% 83% 89% 

3 100% 80% 80% 87% 

4 100% 90% 90% 93% 

5 100% 63% 63% 76% 

   overall accuracy 76% 

Table 15. Comparison of accuracy of operators and CDS Modus Ponens 

Proposal Accuracy  

Equivalence 94 % 

Implication 76 % 

Modus Ponens 88 % 
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2. the equivalence operator with the modus 
ponens deductive structure and, 

3. the equivalence operator with the deductive 
structure modus ponens. 

The p-value is compared to 0.05, if it is lower, 
then there is a significant difference between the 
proposals and otherwise, there is no significant 
difference. Table 17 shows the p-values between 
the proposals. 

All comparisons of the proposals obtained a p-
value less than 0.05, so it is concluded that there 
is a significant difference between them. 

Since there are significant differences between 
the proposals, the post hoc Bonferroni test is 

executed, obtaining the results shown in table 18: 
According to the results of the Bonferroni test, it is 
concluded that the significant difference is in favor 
of using the equivalence operator over the 
implication operator and the modus ponens 
deductive structure. 

10 Conclusions 

This work proved that a genetic algorithm that uses 
CFL provides a solid methodology that allows for 
solving classification problems through 
fuzzy predicates. 

Table 16. Fragment of the Comparison of accuracy of operators and CDS 

Run Imp Eqv MP 

1 76.5 93.6 87.9 

2 77.3 90.7 83.6 

3 78.7 90.7 87.6 

4 84.9 90.8 83.1 

5 77.8 91.4 85.1 

6 77.3 94.3 90.4 

7 75.6 95.6 81.8 

8 76.4 87.8 82.1 

9 76 97.8 83.1 

10 77.8 94.8 78.7 

Table 17. Bonferroni’s test results 

G1 G2 stat PV-Cor Rej 

EQV IMP 16.01 0 True 

EQV MP 10.21 0 True 

IMP MP -6.85 0 True 

G1=Group1, G2=Group2,PV-Corr=pvalue-Corrected, Rej=rejected 

Table 18. p-values 

 IMP EQV 

IMP - 1.86E-9 

EQV 1.86E-9 - 

MP 1.41E-6 1.86E-9 
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Moreover, the use of the equivalence (EQV) 
operator and the correct deductive structure 
modus ponens (MP) as a model compared with the 
implication operator contributes to a new level 
of classification. 

The combination of a genetic algorithm that 
uses EQV or MP with classification models based 
on compensatory fuzzy logic generates predicates 
that tend to show better accuracy in the 
classification task. 

Results of this comparison indicate that there is 
a tendency to obtain better accuracy using the 
equivalence operator with 94% over the implication 
with 76% and 88% of the predicate using the 
correct deductive structure. 

Results are proof that this model allows to solve 
classification problems and these results serve in 
decision-making processes, data analysis, and 
data diagnosis, among others. 

As future work, more experimentation remains 
to be done using other classification datasets as 
well as other methods of classification and the 
implementation of inference tasks. 
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