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Abstract. Spoken language recognition is a research
field that has received considerable attention due to its
impact on several tasks related to multilingual speech
processing. While it has been demonstrated that the use
of contextual and auxiliary task information can enhance
the results within this field, this avenue has not been
fully explored. In the present work, we propose to
address the spoken language recognition task in short
utterances by considering two speech-related tasks as
auxiliaries in a multi-tasking architecture. The primary
task was language recognition, with sex and speaker
identity serving as auxiliary tasks. Three models from
disparate approaches were implemented and trained in
a single-task and multi-task learning paradigm. The
models considered were 2D-CNN based, one of which
was a proposed configuration designed to address less
than a second utterances. The experiments were
conducted on a subset of the VoxForge corpus, with
a markedly limited amount of signals. The results
demonstrate that the spoken language recognition
task benefits from multi-task learning by using sex
and speaker identity as auxiliary tasks over three
different models.

Keywords. Spoken language recognition, deep
learning, transfer learning, multi-task learning.

1 Introduction

Spoken language recognition (SLR) is the
automated process of identifying the language
spoken in a speech sample. It serves as a
foundational technology for various multilingual
speech-processing applications.

One challenge for voice assistant products
is the requirement for predetermined language
usage by the user, either explicitly declared or
automatically recognized by the system. A
reduction in the time required to identify the spoken
language in a signal would enhance the user
experience, particularly in tasks such as spoken
term detection, speech-to-text transcription, and
automatic spoken language translation.

Minimizing latency and processing time in
spoken language recognition, especially in online
mode, is crucial, making the length of the input
segment for inference and the size of the model
key parameters. At present, SLR systems rely on
deep learning models, either in the stage of feature
extraction by learning representations [18], or in
end-to-end architectures that jointly model feature
extraction and classification of the system [2].

Currently, deep neuronal networks with
end-to-end architecture lead SLR, especially for
short utterances (3 seconds) [23]. Compared with
long utterances, the feature representation of short
utterances has a large variation, which prevents
the model from generalizing well. The challenge of
improving the generalization of the model on short
utterances remains.

Most machine learning techniques are narrowly
focused and trained in isolation with a single task .
This approach, which we will refer to as single-task
learning, neglects certain fundamental aspects of
human learning.
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Fig. 1. Hard parameter sharing MTL architecture with
one main task and T − 1 auxiliary tasks

Humans enter each new learning task with
the knowledge acquired from prior learning
experiences. Yet, human learning frequently
entails addressing multiple learning tasks
concurrently. The set of techniques within
machine learning that allows joint learning of
related problems is called multi-task learning
(MTL [3]).

The basic idea of MTL is to improve the learning
of a main task through the use of the information
contained in the training signals of other tasks
called auxiliary and related to the main one, using
a shared representation. This is based on the
assumption that what is learned for each task
can help other tasks to be learned better. MTL
improves generalization by drawing on information
contained in related tasks [3].

Speech, as a component of the complex
voice signal, conveys semantic information
on the message it transmits, but also several
non-semantic characteristics, including the
speaker’s identity, sex, age, language, accent,
emotional and health state, and so forth
[24].The understanding of these characteristics
by automatic learning systems has two
main advantages.

First, it could help prevent bias and
discrimination in voice applications based on
artificial intelligence. Secondly, some studies
support the notion that the joint modeling of
this information has the potential to positively
influence spoken language classification [8].
State-of-the-art approaches, entirely based
on deep neural networks, have demonstrated

impressive performance for short utterances
in SLR [22]. Despite the progress that has
been made, these techniques are susceptible to
overfitting the training set or domain generalization
problems [1].

In this paper, the use of MTL in SLR is
evaluated, considering non-semantic tasks, using
three different approaches. A preliminary study
on this subject was conducted previously [16], and
the present work constitutes an extension of that
study. The former was the first attempt to assess
SLR based on non-semantic multi-task learning,
starting from the knowledge transferred from the
real images domain to audio classification tasks.

In this study, two additional approaches are
considered to test the hypothesis that the inclusion
of auxiliary information, such as the identity of
the speaker and its sex, could enhance SLR
performance for short and very short utterances
(less than 3 seconds).

The objective is to experimentally verify that
the proposed auxiliary tasks (speaker’s identity and
sex) for SLR yield benefits of multi-task learning,
particularly for very short-duration signals. This is
the main contribution of the present work.

The remainder of this paper is organized
as follows: section 2 is devoted to a review
of the methods required to build a 2D-CNN
multi-tasking setup and its applications to SLR.
The experimental protocol and dataset used during
experimentation are described in section 3, as well
as a description of the models assessed. The
results are presented and discussed in section
4. Finally, the final conclusions of this work are
summarized in 5.

2 Methods

The performance metric used is accuracy, defined
as the ratio of correctly classified samples
(prediction) to the total number of predictions. The
value of this metric ranges between 0 and 1 and is
expressed as a percentage (%):

Accuracy =
number of correct predictions

total number of predictions
. (1)
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Fig. 2. Scheme of MobileNet used in single-task (a) and
multi-task (b) setups

2.1 Multi-task Learning

Multi-task learning is a collection of techniques
intended to learn multiple tasks simultaneously
instead of learning them separately [3]. Beyond
the biological and pedagogical motivations, from
the machine learning perspective, learning multiple
related tasks leads to inductive bias, which helps
the models generalize better.

This generalization capacity represents a
significant aspect when little training data is
available and in facing very short-duration test
utterances, as addressed in the last model
proposed by the authors in the present paper.
The concept of multi-task learning (MTL) has been
a topic of interest for some time. The rationale
behind this approach is that if two related tasks
are present, then the learned features should be
related as well.

This is particularly relevant in the context of
deep models, such as deep convolutional neural
networks (CNNs), due to the presence of a
hierarchy of features [17].Even if the highest-level
features are task-specific, lower-level features
can likely be shared. This approach offers the
advantage of augmenting the data set for those
lower-level features by training them jointly on
related tasks.

The two most commonly used methods
for performing MTL in deep neural networks
are either hard or soft parameter sharing of
hidden layers.Hard parameter sharing is the most
commonly used [3] and involves sharing the
hidden layers between all tasks while maintaining
several task-specific output layers. The sharing
of representations between related tasks enables
the model to generalize better on the main task,
thereby reducing the risk of overfitting.

In soft parameter sharing, each task has its
own model, and the learning process penalizes
the distance between the different parameters.
Unlike hard sharing, this approach provides greater
flexibility for the tasks by only loosely coupling the
shared space representations.

In situations where it is necessary to solve
several classification tasks simultaneously, MTL is
an optimal solution. However, in most situations,
the focus is on the performance of a single task.

The relationship between tasks is a crucial
aspect of MTL, although it is challenging to assess
[29]. The application of MTL for SLR has primarily
focused on relating the phonetic information with
the language, either in end-to-end approaches [10]
as during the representation stage [29].

Additionally, there are instances where the
recognition of language or dialect serves as an
auxiliary task, with the primary objective being to
relate it to phonemes to enhance the efficacy of
speech recognition [13].

In the case of negatively correlated tasks, such
as language and domain differences, adversarial
MTL has been employed to develop a model that is
less reliant on the domain [1]. Some theoretical
advances have been made in understanding
task-relatedness ; however, there has been limited
progress towards this goal.

To compensate for this, researchers have
recently explored MTL from a more experimental
point of view, correlating performance gains with
task properties to achieve a better understanding
of when models can profit from auxiliary tasks
[10, 15].

This paper sheds light on the specific task
relations that can lead to gains from MTL models
over single-task setups in SLR. To the best of the
authors’ knowledge, the consideration of speakers’
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Fig. 3. Representation of Lozano’s single-task model
architecture, with 3 hidden layers of 5, 15 and 20 filters
respectively to discriminate among 5 languages

identity and sex as auxiliary tasks for spoken
language recognition in a multi-tasking setup has
not been explored before.

2.1.1 Auxiliary Tasks

It is not reasonable to assume that information
gathered through the learning of a set of tasks
will be relevant to the learning of another task that
has nothing in common with the already learned
set of tasks. From an engineering perspective,
speech recognition and speaker recognition are
independent tasks.

However, the human brain interprets
and decodes information from both speaker
traits and linguistic content from speech in
a joint corroborative manner [8]. Similarly,
unified frameworks for speaker and language
recognition have been attempted using a shared
deep neural network, which outperforms the
single-task implementation.

On the one hand, language and speaker
recognition tasks share numerous common
techniques, including cepstral feature extraction
and well-established Gaussian-based modeling.
On the other hand, researchers in both areas have
a history of learning from each other. For instance,
the success of i-vector [5] and x-vector [26]
representations originally proposed for speaker
recognition has been immediately transposed to

language recognition [25]. Several technologies
are shared between speakers and language
recognition. Consequently, the proposed ideas in
one application can be also used in another. In [4]
speaker identity and sex have been demonstrated
to be correlated, thereby establishing a link
between these non-semantic tasks and the identity
of the speaker.

As for selecting which auxiliary tasks to employ,
these studies have strongly encouraged us to
explore the benefits of using sex and speaker
identity to the SLR main task. The rationale
for employing both auxiliary tasks is to direct the
networks’ attention to the correlation between the
variability of language posteriors and two of the
speaker attributes. If the system can differentiate
the speaker’s characteristics, then this information
can be utilized for a more accurate interpretation
of the distortion introduced by one speaker in
comparison to another.

2.1.2 Multi-task Architecture

The multi-task architecture employs hard
parameter sharing, a technique originally proposed
by [3] that has remained the norm for almost 30
years. Figure 1 represents a hard parameter
sharing MTL model, with one main task and
T − 1 auxiliary tasks, where T is the number of
tasks. There are two fundamental aspects shared
between these MTL systems.

First, all tasks use the same base
representation of the input data. Second, the
task-specific portions of the network all begin with
the same representation from the final shared
layer, as all the tasks share the same network
weights until bifurcation. In this setup, each
task contributes to the cost function with its own
individual loss, as illustrated in equation 2.

For the sake of simplicity, lets consider T tasks,
denoted as T1, T2...TT . The training data of each
task is represented as DTt where t ∈ {1, 2, ...,T}.
Being LTt

(DTt , θ) the loss function of the task Tt
and θ the total parameters of the MTL model, the
objective is to estimate the model parameters θ∗

such that:

θ∗ = argmin
θ

T∑
t=1

λTtLt(DTt , θ), (2)
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Fig. 4. Representation of multi-task frame level model

where λTt is the non-negative weight, which
considers the impact the particular task Tt will have
on the estimation of the system parameters.

In most cases, the auxiliary tasks are dropped
at test time, keeping only the main task outputs.
For single-task setup, only the main task remains.

2.2 2D-CNN

The three models assessed are CNN-based.
Deep convolutional neural networks (CNNs) have
been demonstrated to be effective in reducing
spectral variations and modeling correlations in
acoustic features [28], and have been utilized
in a multitude of audio classification tasks [9].
There exist CNN-based approaches that utilize
raw or minimally preprocessed audio as an
input, employing one-dimensional convolutions.
However, the majority of outcomes have been
achieved through the utilization of two-dimensional
(2D) CNNs on spectrograms [19].

In general, deep CNN models comprise multiple
convolution layers connected to one or several fully
connected layers. The convolution layers may
be regarded as feature extraction layers, while
the fully connected layers may be considered as
classification layers. To feed the 2D-CNN-based
models, acoustic features were extracted from the
audio signals and presented in the time domain
as spectrograms.

The acoustic features were computed using
Kaldi [20]. The signal is subjected to a
pre-emphasis filter, then divided into 20 millisecond
frames (with 10 ms overlap), and a window
function is applied to each frame. Subsequently, a
short-time Fourier transform is computed to obtain
the power spectrum.

Subsequently, a triangular Mel scale filter bank
and the logarithm of the energy output of the
individual bandpass filter are applied, resulting in
a representation of 40-dimensional vectors known
as a spectrogram or log Mel filter bank (log
Mel-FBank). MFCCs [6] are the most widely used
input features for speech analysis tasks.

To obtain MFCCs, a discrete cosine transform is
applied to the log Mel-FBank, retaining a number
of the resulting coefficients while discarding the
rest. It has been found that the last step
removes information and destroys spatial relations;
therefore, it is usually omitted, which yields the log
Mel-FBank output, a popular feature across the
speech community.

3 Experimental Setup

3.1 Corpus

The corpus utilized was VoxForge [12], a free and
open-source corpus of voices containing samples
of more than 18 different languages. The data
consisted of audio files of approximately 5 to
10 seconds in duration, accompanied by the
transcription of the spoken text, as well as labels
related to the language, sex, and identity of
the speaker.

As the corpus is comprised of audio samples
submitted by individuals from diverse geographical
and linguistic backgrounds, the quality of the
samples varies according to the recording
conditions and equipment used by the contributors.

This results in a significant variation of speech
quality between samples, which is representative
of real-world scenarios. For experimentation,
we defined a VoxForge subset consisting of five
languages: German, Spanish, French, English,
and Russian. Approximately 38 minutes per
language were allocated for the creation of training,
validation, and test sets, ensuring a balance of
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Table 1. Language accuracy comparison of single and
multi-task architectures using MobileNet base model

Setup Acc train (%) Acc val (%) Acc test (%)

STL 100 80.9 76.5

MTL 99.7 82.86 83.42

Table 2. Language accuracy comparison of
single and multi-task architectures using Lozano’s
model adaptation

Setup Acc train (%) Acc val (%) Acc test (%)

STL 96.67 93.92 91.39

MTL 98.24 97.65 96.44

female and male speakers. Although this is not
an objective pursued in this research, the defined
scenario has a very low data-resources profile
compared to other speech-related applications.

3.2 Models Description

The influence of MTL on spoken language
recognition across three distinct models is
evaluated. The main task for all models is
language recognition. The first model introduces
speaker identity as auxiliary task, while the
next two models employ both speaker and sex
identification tasks as auxiliaries.

Whereas the initial two models (MobileNet
pretrained model and Lozano’s model) utilize
short utterances (3-second duration samples), the
proposed third model employs very short duration
utterances (110 ms). The parameter tuning for
each of the investigated methods was conducted
over the validation set.

3.2.1 MobileNet Pre-trained Model

The first SLR approach evaluated is an end-to-end
architecture based on a CNN pre-trained on a set
of images [21], for a more detailed explanation,
please refer to previous work [16]. This technique
of transferring knowledge is known as transfer
learning. In this case, the parameters of the
initial network are trained on images of real objects
that are very different from the spectrograms that
constitute the input to this method.

As input, we considered the use of
spectrograms of the audio signal. This
two-dimensional representation in the
time-frequency domain can be considered as
an image. The 300 initial temporal vectors from
the spectrogram of each signal were concatenated
to form a 40 × 300 feature matrix, which was
subsequently transformed into a gray-scale
image. Only the first three seconds of audio from
each signal were utilized after the initial silence
segments were eliminated.

To initialize the network, the MobileNetV2
[21] was employed as a pre-trained model.
MobileNetV2 was developed by Google and trained
on the Imagenet data set, which comprises 1.4
million images and 1,000 types of web images.
The proposed model comprises the MobileNetV2
with 53 layers of depth, of which the initial 30
remain fixed or “frozen” and the remaining network
layers are re-trained (see Figure 2). The initial
block will be referred to as pre-trained and can
be considered a high-level abstraction features
extractor, which transforms the input sequence into
a characteristics map.

The pre-trained block is succeeded by trainable
layers of the convolutional block, which are also
part of the MobileNetV2. However, unlike the
pre-trained block, their parameters are learned
over the training set. In the multi-task setup, with
MobileNet’s trainable layers, two individual task
branches are trained: language as the main task
and speaker identity as the auxiliary task [16].

The layers of the individual branches are dense
layers with 512 neurons, using the ReLU activation
function and a 25% dropout. The Adam optimizer
algorithm was employed, as well as a learning rate
of 10−4. It is important to note that the estimation
of the model parameters is directly affected by the
knowledge embedded in the frozen layers, which is
transferred to the trainable layers that follow it.

3.2.2 Lozano’s Model

The model proposed by [11] was one of the first
attempts to build an SLR system intended to deal
with short utterances using CNNs as end-to-end
approach. In the referenced paper, the network
was fed with speech segments of three seconds, in
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Fig. 5. Accuracy with posteriors combination of
frame-level model using majority voting for language
recognition task over test set

the form of a matrix of dimensions 56×300, formed
by 300 frames.Each frame is represented with a
vector of 56 Mel Frequency Cepstral Coefficients
and its derivatives (MFCC-SDC) [27]. The
CNN system proposed then, obtained comparable
results to the i-vector approach, having much less
free parameters.

The CNN system proposed then obtained
comparable results to the i-vector approach, having
much less free parameters. We have replicated
Lozano’s network architecture, modifying the
dimensions of the input and output layers (see
Figure 3 for the modified version). This results in a
more streamlined configuration than the MobileNet
pre-trained model in terms of the number of
parameters to estimate, although it still faces the
challenge of recognizing speech signals of at least
three seconds in duration.

In the adaptation of Lozano’s model
presented in this work, instead of MFCC-SDC
acoustic features, log Mel-FBank features
composing the spectrogram were utilized. It
has been demonstrated that convolution on
mel spectrograms is more beneficial than on
decorrelated coefficients [14].

Each speech signal was segmented into
intervals of 3 seconds, with an overlap of 50%.
The aforementioned segments were represented
by a matrix of dimensions 40× 300 formed with the
log Mel-FBank features and were used to feed the
2D-CNN models.

Details about STL Lozano’s model can be seen
in Figure 3, where 3 hidden layers of 5, 15, and
20 filters define the architecture as proposed in
the original paper. In the case of the multi-task
setup, the output of the third convolutional layer
was flattened and passed on to the three branches
in parallel.

The language, speaker, and sex branches are
formed with two dense layers of 256 and 128
neurons, respectively, a dropout factor of 25%, and
a softmax activation function at the end. Regarding
the training of the network, the algorithm used is
stochastic gradient descent with a learning rate of
0.01 and based on minibatches of 32 samples.

3.2.3 Frame-level Model

The SLR frame-level approach, which was initially
proposed in [7], demonstrates how deep neural
networks are particularly well-suited for SLR in
real-time applications. This is due to their capacity
to emit a language identification posterior at each
new frame of the test utterance. In [7], the authors
compare their proposal with the i-vector approach
using very short test utterances (≤ 3s).

In contrast, our study aims to investigate the
potential contribution of MTL to the system under
similar test duration conditions. Our proposal
focuses on SLR with very short utterances, less
than 3 seconds speech segments. Each frame
is represented with its log Mel-FBank feature
vector, and spliced together with 5 left and 5 right
context features to form a 40 × 11 dimensional
feature matrix.

The spliced features are fed as input to the
2D-CNN, thus enabling the model to be trained
with samples corresponding to a temporal context
of 11 × 0.01 = 0.11 seconds. The spliced features
are fed as input to the 2D-CNN, so the model is
trained with samples corresponding to a context of
11× 0.01 = 0.11 seconds.
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Table 3. Language accuracy comparison of single and
multi-task architectures using frame-level model

Setup Acc train (%) Acc val (%) Acc test (%)

STL 95.39 79.08 78.35

MTL 97 88.82 88.11

Table 4. SLR multi-task models’ relative improvement
over test set. Accuracy(%) reported

Model STL MTL Improvement

Mobile 76.50 83.42 6.92

Lozano 91.39 96.44 5.05

Frame level 92.50 98.20 5.70

As illustrated in Figure 4, the lower-level
representations of the network across the tasks are
shared. The first pair of layers is fully connected
with 256 neurons, followed by a convolutional
layer comprising a convolution and max-pooling
operation. The convolution operation is achieved
by weight sharing across the entire training sample.
A total of 256 filters and ReLU activations are
employed, with each 2D convolution operated with
zero-padding using a 3× 3 kernel size.

A second convolutional layer is utilized to
model the local spectro-temporal correlations of
the speech spectrogram, this time using 128 filters
of the same size. The resulting feature map is
then flattened and passed on to dense layers for
language, speaker, and sex mapping, as illustrated
in Figure 4 of the MTL setup.

In the MTL setup, the individual branches
comprise four dense layers for language and
speaker classification and two dense layers for the
binary task of sex classification. The STL setup
employs a configuration similar to Figure 4 which is
designed to ignore the speaker and sex branches.

During single-task estimation, the output is
the classification label corresponding to the most
probable language. Due to the limited size of the
dataset, the network is susceptible to overfitting.
To address this issue, we employ dropout training
(with a factor of 0.25) in the feedforward network.

4 Results and Analysis

The results and analysis section presents the
findings of the experiments conducted. The three
models were trained and evaluated in single and
multi-task setups using the same data sets. The
results are presented on the training, validation,
and testing sets. The performance of the
models was assessed using the accuracy metric
formulated in equation 1.

Table 1 presents the results of the MobileNet
base model. The first row of the table exhibits
the accuracy achieved by the single-task model,
while the second row contains the accuracy of the
multi-task model trained using speaker identity as
an auxiliary task. The training process of the single
and multi-task models was stopped at epoch 20, as
the accuracy reached a plateau at that value.

From Table 1 it can be seen that the language
accuracy value on the test set for the multi-task
architecture is higher than in the single-task.
This could be indicative of the beneficial effect
of incorporating speaker identity information into
the proposed architecture, which enhances the
model’s discriminatory capacity in the SLR task.

It is also noteworthy that the discrepancy
in language accuracy between the validation
and testing sets diminishes as the single-task
model transitions to the multi-task architecture,
suggesting greater generalizability in the latter. In
the case of Lozano’s model adaptation, a second
auxiliary task (speaker’s sex) was included, and the
same behavior was observed in Table 2.

This table demonstrates that multi-task
outperforms single-task and that the gap between
validation and test accuracy is smaller for the
multi-task model. Table 3 presents the results of
our frame-by-frame SLR approach. As anticipated,
the performance of the SLR is degraded in
comparison to the Mobile and Lozano models,
given the 30-fold reduction in signal evaluation
time (0.11s vs. 3s).

However, at the frame level, the speaker’s
identity and sex contribution to the SLR is
well received by the multi-task model, which
consistently improves performance. A fair
comparison between the frame-level model and
those based on three-second spectrograms can
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Fig. 6. SLR multi-task models’ accuracy(%)

be made by deriving decisions about language
identification at the utterance level by combining
frame posteriors. A common and simple approach
used in the literature is majority voting, where,
at each frame, the language associated with the
highest posterior receives a single vote while the
rest receive none. The voting scheme aims to
control the negative effect of outlier scores. The
score for a given language l, sl, is then computed
by counting the received votes over all the N
frames as follows:

sl =

N∑
t=1

δ(p(Ll|xt, θ)), (3)

with δ function defined as:

δ(p(Ll|xt, θ)) =

{
1, if l = argmaxl(p(Ll|xt, θ)),
0, otherwise.

where p(Ll|xt; θ) represents the class probability
output for the language l corresponding to the input
example xt at time t, by using the model defined by
parameters θ.

Figure 5 collects the results of the majority
voting over 1, 2, and 3-second intervals for the
frame-level model. It is worth noting that for
equal test utterance durations (3s), the frame-level
approach performs better than the approaches of
Mobile and Lozano. The posterior combination
also demonstrates the improvement of the MTL
approach in comparison to the STL.

The combination of language posteriors places
frame-level model in a superior position in
terms of performance, as shown in Figure 6.
However, when considering the improvement of
MTL, as shown in Table 4, the three models
are quite similar, with a slight advantage for the
MobileNet-based model.

5 Conclusions

All of the evaluations demonstrated the superiority
of multitask learning for SLR when using
speaker-related non-semantic characteristics,
such as identity and sex, as auxiliary tasks.
Initially, the hypothesis was verified for signals
of three seconds, with and without image-based
pretraining. Subsequently, an approach to deal
with very short-duration utterances was proposed,
and for both frame and utterance levels, MTL
resulted in a superior SLR performance.

This article makes two main contributions:
first, it determines the auxiliary tasks that should
be used in a multi-task approach to SLR;
second, it verifies that this approach will be
beneficial. Additionally, it proposes a frame-level
model with a convolutional neural network (CNN),
which is a proposal much closer to real-time
applications. The study and deepening of MTL
for SLR offers possibilities for its use in low data
resources environments.
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