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Abstract. This paper addresses the problem of
finding a collision-free trajectory between two points
with known positions using the electric field concept.
Analogous to an electric dipole, two strong electric
point charges with opposite signs (positive and negative)
are positioned in the navigation space at the starting
and target points, respectively. Additionally, static
obstacles are represented as slightly negative point
charges. In this scenario, a hypothetical positive
charge is considered a mobile particle that is released
from the starting position with a specific angle in the
vector field map sketched by the field lines created
by the electric dipole. The trajectory produced by
this hypothetical charge constitutes a path for avoiding
obstacles from the origin to the destination points. To
ensure that the computed trajectory remains inside
a specified area, the navigation space is bounded
by a rectangular border generated by a vector field
function. Furthermore, to reduce the computational
cost of the field map calculation (running time and
memory consumption), the L1-norm is employed to
describe distances instead of the traditional L2-norm
(Euclidean norm). Numerical simulations demonstrate
the effectiveness of this approach, as well as the
reduction in computational cost by using the L1-norm.

Keywords. Collision-free, trajectory, electric-field,
L1-norm.

1 Introduction

One of the most intuitive methods for determining
obstacle avoidance trajectories for autonomous
mobile robots is the so-called artificial
potential-based method, whose principle of
operation is based on the use of vector field
functions [13, 8]. Its primary advantage lies in its
simplicity: it offers a straightforward approach that
is easy to understand and implement. In general
terms, this method works by defining attractive
forces toward a target point and repulsive forces
away from obstacles, allowing robots to effectively
navigate through complex environments while
avoiding collisions [7, 14, 11].

However, this simplicity gives rise to certain
drawbacks and challenges, such as restrictions
on path optimization and an intensive requirement
of computational resources [12, 15]. In this
paper, we address these shortcomings with the
aim of providing alternative numerical strategies
to achieve better performance of this method.
Specifically, our interest focuses in two particular
aspects: (1) reducing the demand for computing
resources, and (2) providing the capability to define
an enclosed navigation area.
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Fig. 1. Illustration of a Cartesian coordinate plane.
Two points, Pn(xn, yn) and P (x, y), are marked. The
directional vector between these points is Rn, and
the x and y increments are denoted as ∆x and
∆y, respectively

Fig. 2. Numerical simulation of vector computation.
From 1 to 20,000 consecutive coordinate points using
the L1-norm (aRn1 ) and the Euclidean norm (aRn2 ).
Comparison of running times (in seconds). The results
obtained using the L1 norm are depicted in red, while
the results obtained using the Euclidean norm are
presented in blue

In this sense, it is important to note that
although many of the proposals reported for
the calculation of collision-free trajectories use
mathematical vector functions without any physical
meaning, we have directly employed the concept

of the electric field, which incorporates clarity
and simplicity into the analysis [10, 9], but, as
mentioned earlier, it also exhibits shortcomings
in computational performance and navigation
space. For example, the formulation for the electric
field requires distance calculations expressed in
the form of the Euclidean norm (L2-norm), which
implies massive numerical operations of addition,
exponentiation, and square root.

This leads to a high demand for computational
resources that impacts the memory needed to
store the resulting vector field function and the
running time required for its evaluation.

Moreover, although it is possible to ensure
the tracing of a path of field lines that emerge
from the position of a source charge (positive)
and converge to the position of a target charge
(negative), it is not possible to guarantee that
such a trajectory will remain within a defined
navigation area. To overcome these shortcomings,
we propose replacing the use of the Euclidean
norm with the L1 norm [6, 4] and including vector
field functions that act as an artificial boundary to
enclose a defined spatial region.

2 Electric Field Computation

Let’s consider the two-dimensional XY -coordinate
plane of Fig.1 where Pn (xn, yn) represents
the position of any point charge, and P (x, y)
corresponds to any arbitrary coordinate point. We
also consider the existence of an electric field,
denoted as EPn

, which is created by a positive
point charge Q located at Pn (xn, yn).

Now, let’s suppose that we are interested in
determining the electric field at the point P (x, y),
which is represented as EP . Based on electrostatic
principles, the magnitude of vector EP can be
expressed as:

|EP | = K
Q

r2
, (1)

where K is the Coulomb’s constant (K = 8.99 ×
109 Nm2/C2), and traditionally, r is the distance
(expressed as Euclidean norm) between the point
charge and the arbitrary point where the electric
field is evaluated (in accordance with our case of
study, P ).
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Fig. 3. Numerical simulation result when the source
point (in black) is located at (-50, 0) m, the target position
(in blue) at (50, 0), and obstacles at: (-30, 30) m,
(-20, 0) m, (10, 30) m, and (30, 0) m. The resulting
obstacle-avoidance trajectory is highlighted in green

Algorithm 1 Construct of function EPU

Require:
Source and target coordinate points:

S (xi, yi), T (xf , yf ).
n-obstacle coordinate points:

O1 (x1, y1) , . . . ,On (xn, yn).
Strong charge dipole:

+QS , −QT , at the source and target points.
Weak positive charges:

+Q1, . . . , +Qn at the obstacle points.

Ensure: Vector field function:
EPU

= EPUx (x, y)i + EPUy (x, y)j.

Sum EP ← 0
Point← {(xi, yi) , (x1, y1) , . . . , (xn, yn) , (xf , yf )}
Charge← {+QS , +Q1, . . . , +Qn,−QT }

(n+ 2) charges
for k from 1 to (n+ 2) do

Substitute: the k-th coordinate Point[k], and
the k-th Charge[k] in EP

SumEP ← SumEP +EP

end for
EPU

←
(

SumEP

|SumEP | 1

)

Now, if we define the directional vector
Rn = (x− xn)i + (y − yn)j (where i and j are
unit vectors), then the distance r between the two
points, Pn(xn, yn) and P (x, y), can be described by
the norm or magnitude of Rn.

With this, Equation 1 can be rewritten as:

|EP | = K
Q

|Rn|2
. (2)

And the normalization of Rn, here denoted as
aRn

, is given by:

aRn =
Rn

|Rn|
. (3)

Hence, using Equation 2 and Equation 3,
the electric field vector EP = |EP |aRn

can be
expressed in a general form as:

EP = K
Q

|Rn|2
Rn

|Rn|
= KQ

Rn

|Rn|3
. (4)

3 Euclidean Norm Versus L1-norm

In the traditional scheme of electric field
computation, the variable r in Equation 1 is
given by the Euclidean norm (L2-norm) of Rn.
However, in accordance with our proposal, we
replace r by the L1-norm of Rn. Formally, the
norm of any vector is defined as follows:

Definition 1. Given a n-dimensional vector
V = [x1, x2, · · · , xn]

T , its vector norm |V|p, for
p = 1, 2, · · · , n, is defined as:

|V|p =

(
n∑
i

|xi|(p)
)1

p
. (5)

Based on Definition 1, we have the magnitude
of |Rn|:

– In L1-norm:

|Rn|1 = |x− xn|+ |y − yn|. (6)

– In L2-norm (Euclidean norm):

|Rn|2 =
√
|x− xn|2 + |y − yn|2. (7)

And the corresponding normalization of Rn, is
now expressed as:

– In L1-norm:
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Algorithm 2 Tracing of the collision free trajectory

Require:
Source and target coordinate points:

S (xi, yi), T (xf , yf ),
Vector field function: EPU

,
Starting angle θ: (tan θ = ∆y

∆x ),
Step size h.

Ensure: Collision free trajectory: Path
k ← 1

x0 = xi +∆x

(
∆x =

∆y

tan θ

)
y0 = yi +∆y (∆y = (∆x) tan θ)
while Condition← false do

x← xk−1

y ← yk−1

xk ← x+ hEPUx

(EPUx is the i component of EPU
)

yk ← y + hEPUy

(EPUy is the j component of EPU
)

k ← k + 1
(Repeat M -times until Condition← true)
end while
Path={(x0, y0) , (x1, y1) , . . . , (xk, yk) , . . . , (xM , yM )}

aRn1
=

Rn

|Rn|1
. (8)

That can be written explicitly as follows:

aRn1
=

∆xn

|∆xn|+ |∆yn|
i+

∆yn
|∆xn|+ |∆yn|

j. (9)

Or in L2-norm (Euclidean norm):

aRn2
=

Rn

|Rn|2
. (10)

Which can also be written as:

aRn2
=

∆xn√
|∆xn|2 + |∆yn|2

i+
∆yn√

|∆xn|2 + |∆yn|2
j. (11)

With ∆xn = x − xn, ∆yn = y − yn. Clearly,
a higher complexity in the numerical evaluation
of Equation 10 compared to Equation 8 can be
observed. This premise is supported by the
numerical simulation results depicted in Fig. 2
(performed in MAPLE), where the running time
necessary for the computation and addition of a
set of normalized vectors aRn1

, from 1 to 20,000

consecutive coordinate points, is contrasted with
the corresponding running time required for the
computation and addition of aRn2 within the same
set of points. Considering the results shown in
Fig. 2, we propose using the L1-norm instead
of the traditional Euclidean norm (L2-norm) for
calculating the electric field. Hence, the electric
field vector expressed in Equation 4 can be
rewritten as:

EP = KQ
Rn

|Rn1|3
. (12)

And after substituting Equation 6 we obtain:

EP =
KQ∆xn

(|∆xn|+ |∆yn|)3
i+

kQ∆yn

(|∆xn|+ |∆yn|)3
j. (13)

From this result, a generalized expression for
the field generated by N -charges, at any arbitrary
coordinate point P (x, y), can be expressed as:

EP =

N∑
n=1

KQ
Rn

|Rn1|3
. (14)

Or in the form of a vector field as follows:

EP = EPx(x, y)i + EPy (x, y)j. (15)

With its respective components:

EPx(x, y) =

N∑
n=1

KQn∆xn

(|∆xn|+ |∆yn|)3
. (16)

And:

EPy
(x, y) =

N∑
n=1

KQn∆yn

(|∆xn|+ |∆yn|)3
. (17)

Finally, it is possible to express the
normalization of the vector field EP (here denoted
EPU

) as:
EPU

= EPUx
i+ EPUy

j, (18)

where

EPUx
=

EPx(x, y)

|EPx
(x, y)|+ |EPy

(x, y)|
. (19)

And

EPUy
=

EPy (x, y)

|EPx
(x, y)|+ |EPy

(x, y)|
. (20)
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(a) (b)

(c) (d)

Fig. 4. Numerical simulations for the case of study with three obstacles (in red) at (0, 30) m, (0, 0) m, and (0, -30) m.
The source point (in black) at (-50, 0) m and the target point (in blue) at (50, 0). The charge of the electric dipole is
±10 × 10−6 µC while each one of the obstacle charges is 1 × 10−6 µC. Four different starting angles are considered:
(a) 0.057◦, (b) −0.057◦, (c) 45◦ and (d) −45◦. The resulting obstacle-avoidance trajectory is highlighted in green. The
dashed black line indicates the upper and down spatial boundaries in the two-dimensional space

4 Path Planning Proposal

Consider a two-dimensional navigation space with
a set of obstacles. Suppose we are interested
in finding an obstacle-avoidance trajectory that
connects two arbitrary positions defined as source
and target points. To overcome this problem,

we set two point charges, positive and negative,
into the source and target location, respectively.
These charges must be not only opposite in sign
but also strong in value to form a predominant
electric dipole whose vector field could be able
to provide a natural path from the source to the
target coordinate.
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Fig. 5. Graph of function y+
a = m|x− β|

Fig. 6. Graph of function y+
l = m (x− β)

Fig. 7. Graph of function y+
p =

m

2
(|x− β|+ (x− β))

Moreover, to ensure achieving a collision-free
trajectory, we must locate at each obstacle position
one weak positive charge. The viability of this
approach can be verified by the case study shown
in Fig. 3.

In this example, an electric dipole of charges of
±10 × 10−6 µC is considered. The positive charge
is placed at the source coordinate (-50, 0) m (in
black), and the negative one at the target point (50,
0) m (in blue). Four weak positive charges (each
one of 1× 10−6 µC) are also placed at the obstacle
positions (in red): (-30, 30) m, (-20, 0) m, (10, 30)
m, and (30, 0) m.

Under this scenario, and considering all
of these charges, our approach is based on
determining the vector function of the total electric
field that results from the sum of the single
electric field contributions produced by each
charge (in accordance with Equation 18). Hence, a
collision-free trajectory is directly obtained from the
vector function EPU

.
In this regard, it is important to mention that

there are multiple paths that can be selected by
considering the graph of the total electric vector
field map. The chosen path will depend on the
starting angle of the trajectory. In this case of study,
a 45◦ angle was used. In Fig. 3, the graph of the
vector field function is plotted in gray color.

As it can be observed, the electric field lines
always points away from the positive dipole charge
(source) toward the negative dipole charge (target),
and in accordance with the chosen starting angle,
the expected obstacle avoidance trajectory was
successfully achieved (highlighted in green).

The numerical procedure to trace the
collision-free trajectory from the source to target
points is divided into two algorithms: Algorithm 1,
which addresses the problem of constructing the
vector field function EPU

, and Algorithm 2, which
evaluates the constructed vector field function to
trace the collision-free trajectory.

However, while this approach consistently
allows us to find a collision-free trajectory from
the source positive charge to the target negative
charge, there is a shortcoming that needs to be
addressed. This problem involves the uncertainty
of ensuring that all the generated paths will remain
within a two-dimensional bounded space.

To exemplify this problem, consider the four
trajectory scenarios shown in Fig. 4 where the
following positions are considered: source (-50, 0)
m, target (50, 0) m, and obstacles (0, -30) m, (0, 0)
m, and (0, 30) m.
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(a) (b)

Fig. 8. Graph of vector functions used to define a virtual border boundary at β = 80, (a) E
y+
p

where y+
p = −40 +

x

2
+

|x− 80|
2

, (b) -E
y+
p

(using −y+
p )

(a) (b)

Fig. 9. Graphs of functions: (a) The general graph of y−
p , (b) Graph of the vector function E

y−
p

used to define the virtual

border at β = −80. The corresponding y−
p function in this example is y−

p = −40− x

2
+

|x+ 80|
2

The charge of the electric dipole is ±10 ×
10−6 µC while each one of the obstacle charges
is 1 × 10−6 µC. As it was already mentioned,
the obtained trajectory is highly dependent on the
starting angle. The scenarios shown in Fig. 4
illustrates the following cases:

a) Slight positive angle (0.057◦) to force avoiding
the central obstacle by passing over it.

b) Slight negative angle (−0.057◦) to force
avoiding the central obstacle by passing
bellow it.

c) A 45◦ angle in order to achieve a trajectory
passing over the obstacle in (0, 30) m.

d) A −45◦ angle in order to achieve a trajectory
passing bellow the obstacle in (0, -30) m.

Now let us assume that we are restricted
to the region that is bounded by two borders
at Y = ±60 m. Clearly it can be observed that the
scenarios illustrated in Fig. 4a and Fig. 4b fulfill
this spatial restriction, in contrast, the trajectories
achieved in the cases reported in Fig. 4c and Fig.
4d, do not satisfy it because both trajectories cross
out the set boundaries. In this sense, the inability
of restricting the trajectory into a defined region of
interest, is a limitation that must be overcome in
order to achieve a practical application:
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Fig. 10. Construction of vertical field border walls. The
graph of the vertical field border function expressed by
the sum: −E

y+
p
+E

y−
p

is highlighted in red.

Fig. 11. Construction of horizontal field border walls.
The graph of the horizontal field border function
expressed by the sum: −E

x+
p
+E

x−
p

is highlighted in blue

Fig. 12. Graph of the vector function Eb that models
the four sides of the bounded rectangular space. In this
example the delimiting functions are (21)-(24)

y+p = −40 + x

2
+
|x− 80|

2
, (21)

y−p = −40− x

2
+
|x+ 80|

2
, (22)

x+
p = 40− y

2
− |y − 80|

2
, (23)

x−
p = −40− y

2
+
|y + 80|

2
. (24)

5 Defining a Spatial Area of Interest for
the Generated Trajectories

In this section, we address the problem of
defining a rectangular area of interest for all
the source-to-target trajectories derived from the
computation of the total electric field.

To achieve this objective, we propose to model
the rectangular space with a vector field produced
by piecewise-linear functions [5, 3, 1, 2], here
denoted as y+p , y−p , x+

p and x−
p .

To clarify this issue, we present the procedure to
obtain these functions, their algebraical form, and
their graphical characteristics. Firstly, we consider
the functions y+p and y−p . In this regard, let us
introduce the shifted form of the absolute value
function y+a as follows:

y+a = m|x− β|. (25)

Fig. 5 shows that the graph of Equation 25 is
composed of two symmetrical straight lines: one
with a negative slope −m and one with a positive
slope +m. This graph is shifted to the breakpoint
(β, 0). We also consider the form of a shifted linear
equation y+l given by:

y+l = m (x− β) . (26)

Fig. 6 shows the graph of Equation 26 whose
shape consists of a horizontal shift to the right
straight line with a vertical intersection at the point
(0,−β). Hence, we create a new function y+p by
adding Equation 25 and Equation 26, and dividing
by 2 as follows:

y+
p =

y+
a + y+

l

2
or y+

p =
m

2
(|x− β|+ (x− β)) . (27)
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Fig. 13. The same situation shown in Fig. 4c, but
in these new simulation, a square region enclosed by
a vector field function (in the form of Equation 41) for
β = 60, has been included

Fig. 14. The same situation shown in Fig. 4d, but
in these new simulation, a square region enclosed by
a vector field function (in the form of Equation 41) for
β = 60, has been included

The purpose of creating y+p is to construct a
function whose value is equal to zero for a domain
defined from −∞ to the breakpoint (β, 0), and once
this point is reached, it monotonically increases its
value by a constant ratio.

Based on this premise, the graph of y+p (shown
in Fig.7) can be obtained by the sum of each one
of the slopes of the straight line segments given
in the graphs of y+a and y+l . As expected, it can
be verified that along to the X-axis (in the interval
x ≤ β) there is an horizontal segment due to the
slope cancellation (+m − m = 0), while in the
interval x ≥ β there is a linear segment with a slope
of +m (obtained by 1

2 (m+m) = m). From this
result, we use Equation 27 to construct the vector
field function Ey+

p
as:

Ey+
p
=
(
y+p
)
i
. (28)

To illustrate this, consider the problem of
defining a rectangular region defined by the
vertices (-80, -80) m, (80, -80) m, (80, 80) m, and
(-80, 80) m. In accordance with Equation 27, for
this example we have:

y+p = −40 + x

2
+
|x− 80|

2
. (29)

With m = 1 and β = 80. Figure 8a shows
the field lines produced by the vector function Ey+

p
.

Clearly, it can be seen that this graph describes a
border which can be used to model one of the sides
of the required rectangular bounded space.

However, with the aim of using this field as
a barrier of trajectories, it must be opposite in
sign (-Ey+

p
) as shown in Fig. 8b. Following the

same procedure, and knowing that |x − β| =
| − x + β|, we replace x by −x in Equation 27 to
obtain the horizontal-reflected function of y+p , here
denoted as y−p :

y−p =
m

2
(|x+ β| − (x+ β)) , (30)

where:

y−a = m|x+ β|, (31)

y−l = −m (x+ β) . (32)

Similarly, we use Equation 30) to construct the
vector function Ey−

p
as:

Ey−
p
=
(
y−p
)
i
. (33)
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(a) (b) (c)

(d) (e)

Fig. 15. Simulations performed in order to evaluate the effectiveness of the border vector field function Eb by different
starting angles: (a) 45◦, (b) 0◦, (c) 90◦, (d) 315◦, and (e) 135◦

The general graph of Equation 30, and the
specific graph of Equation 33 for the example here
considered (β = 80), are depicted in Fig.9(a) and
Fig.9(b), respectively. In this case, it is important
to highlight that Equation 33 does not need to
change its sign to provide a suitable field barrier
of trajectories, and the corresponding y−p function,
for our case of study, is given by:

y−p = −40− x

2
+
|x+ 80|

2
. (34)

With m = 1 and β = −80. With all these
elements, we are able to construct the required
rectangular bounded space. To do this, we firstly
add the two vector fields (the negative of Equation
28 and Equation 33) in order to construct the two
vertical field borders shown in Fig.10.

Then, in a similar way, we perform the
change of variable x = y with the purpose of
constructing two horizontal field borders Ex−

p
and

Ex−
p

described as follows:

Ex+
p
=
(
x+
p

)
j
. (35)

And:
Ex−

p
=
(
x−
p

)
j
, (36)

where x+
p and x−

p have the form:

x+
p =

m

2
(|y − β|+ (y − β)) , (37)

x−
p =

m

2
(|y + β| − (y + β)) . (38)
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Fig. 16. Memory used by the symbolic expression (text
file size expressed in Kbytes) of the vector function,
depending on the number of obstacles considered
(1, 2, . . . , 10)

Fig. 17. Running time consumed by the simulation for
the evaluation of the vector field function (expressed in
seconds). Various scenarios with different numbers of
points to evaluate were taken into account (10 × 103,
20 × 103, 40 × 103, 60 × 103, 80 × 103, 100 × 103).
The results obtained using the L1 norm are depicted in
red, and the results obtained by the Euclidean norm are
highlighted in blue

Which, in accordance with our example, it can
be described as:

x+
p = 40− y

2
− |y − 80|

2
. (39)

With m = 1 and β = 80, and:

x−
p = −40− y

2
+
|y + 80|

2
. (40)

With m = 1 and β = −80. The graph of the
horizontal field border function given by the sum:
−Ex+

p
+Ex−

p
is shown in Fig. 11.

Finally, we merge both border fields, vertical
and horizontal, to construct the rectangular
bounded space shown in Fig. 12, where the vector
field function whose graph models the four sides of
the bounded rectangular space shown in Fig. 12,
is given by:

Eb = (Ev)i + (Eh)j . (41)

With:
Ev = −y+p + y−p . (42)

And:
Eh = −x+

p + x−
p . (43)

And in our case study, it is written as:

Ev = −x− |x− 80|
2

+
|x+ 80|

2
, (44)

Eh = −y − |y − 80|
2

+
|y + 80|

2
. (45)

6 Simulation Results

In Fig.13 and Fig.14, the same situations shown in
Fig. 4(c) and Fig. 4(d) are simulated. However,
in these new simulations, the area of interest is
delimited by a square region bordered by vector
field function (in the form of Equation 41) whose
vertices lie on the coordinate points:

– (-60, -60) m,

– ( 60, -60) m,

– ( 60, 60) m,

– (-60, 60) m.

With the inclusion of this border region, we
show that the source to target path always keeps
inside the enclosed area.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 18. Python simulations. Case of study: 40 obstacles arranged as 6 fixed linear obstacles (8 different scenarios).
The trajectories resulting from Euclidean norm computations are distinguished by an orange color, while the trajectory
derived from the L1-norm is represented in green color

6.1 Example 1: Different Starting Angles

To illustrate the effectiveness of the bounded
region produced by the vector field function Eb, we
consider five new cases of study. In these cases,
a situation with four obstacles at positions (-20, 0)
m, (-10, 0) m, (0, 0) m, and (10, 0) m, located in a
horizontal line as shown in Fig. 15, is considered.
Moreover, a border field with the vertices (-40, -40)
m, (40, -40) m, (40, 40) m, and (-40, 40) m, is
also considered.

The charge of the electric dipole is ±100× 10−6

µC while each one of the obstacle charges is
2×10−6 µC. The cases shown in Fig. 15a, Fig. 15b,
and Fig. 15c correspond with the starting angles:
45◦, 0◦, and 90◦, respectively.

In these specific cases, based on the direction
provided by their starting angles, it can be clearly
expected that the resulting path reaches the target
position. In contrast, in the cases shown in Fig. 15d
and Fig. 15e (starting angles of 315◦ and 135◦), the
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trace of a successful source to target path can not
be guaranteed. However, in all of these cases, it
can be observed that the field border not only helps
to establish limits or boundaries in a given region
of interest, but also aids to achieve a successful
source to target trajectory.

6.2 Running Time and Memory

In order to analyze the performance of the
proposed methodology, two parameters were
taken into consideration: the running time required
to trace the collision-free trajectory and the amount
of memory necessary to store the symbolic
expression of the vector field function.

Regarding the running time, it is important to
note that it is highly sensitive to the number of
evaluation points (step size), whereas the amount
of memory will primarily depend on the number of
obstacles (number of charges) considered.

To observe the behavior of these parameters,
simulations were performed by MAPLE where the
number of obstacles was gradually increased from
1 to 10. From these simulations, it was observed
that the symbolic expressions (saved in text format)
of the field vector functions derived from the
L1-norm required less memory than those obtained
from Euclidean norm.

Regarding the running time, simulations with
10 obstacles were conducted, considering various
numbers of points (10 × 103, 20 × 103, 40 ×
103, 60 × 103, 80 × 103, 100 × 103). From
these simulations, an exponential increase in the
time required to evaluate the vector functions and
trace the avoidance trajectory derived from the
Euclidean norm, was observed. These simulation
results can be observed in Fig. 16 and Fig. 17.

7 Example 2: More Obstacles and
Different Target Positions

In Fig.18, we consider a more sophisticated
simulation case of study (performed in Python) in
which 40 obstacles (charges) have been arranged
as 6 fixed line obstacles. In this case, the source is
located at a fixed coordinate, while the target point
is assigned to 8 arbitrary positions.

Moreover, in all of these cases, we have
restricted the trajectories into a region constrained
by the border field whose vertices are given
by the points: (-12, -12) m, (12, -12) m, (12,
12) m, and (-12, 12) m (depicted by dashed
lines). In order to ensure the attractiveness of
the target position, in this case, instead of an
electric dipole, an electric charge of −400 × 10−6

µC has been assigned to the target position while
200× 10−6 µC to the source position.

The line obstacles contain arrays composed
of a set of point charges; each of the obstacle
charges is 10 × 10−6 µC. With the purpose of
being able to compare the results obtained by the
two types of norms addressed in this study, the
trajectories generated by the L2-norm or Euclidean
norm (orange color) and L1-norm (green color),
have been depicted in Fig. 18.

Additionally, it is important to emphasize that
both norms let to achieve successful trajectories
between the source and target points. Moreover,
it was observed that the running time of
L1-norm (4.14 × 10−3 seconds) was shorter
than the running time of the Euclidean norm
(4.76 × 10−3 seconds). Similarly, the memory
required to store the symbolic vector field function
EPU

for the L1-norm (11844 bytes) is lower than for
the Euclidean norm (20503 bytes).

8 Conclusion and Future Work

In this paper, we introduce a novel approach
based on the physics concept of the electric
field for determining collision-free trajectories
between source and target points in a
two-dimensional space.

This approach considers two noteworthy
features: the substitution of the conventional
Euclidean norm with the L1-norm and the
integration of border field functions to delineate the
navigation area.

Through numerical simulations, we have
validated the efficacy of our proposal showing
that when compared to the traditional electric
field analysis based on the Euclidean
norm, our proposal significantly enhances
computing performance.
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For instance, employing the L1-norm requires
less memory for storing symbolic expressions of
the computed field than in the case of using the
Euclidean norm, and similarly, the evaluation time
for such expressions is also lower in the case of
L1-norm. Now, the future work of our research
focuses on finding criteria for selecting the value
of the positive and negative charges (at the source
and target positions) and obstacles. We are also
exploring the possibility of new vector functions to
delineate arbitrary navigation areas, not limited to
rectangular shapes.
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