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Abstract. Detection and segmentation of Severe Acute 
Respiratory Syndrome Coronavirus 2 (SARS-COV2 or 
COVID-19) is a difficult task due the different kinds of 
shapes, sizes and positions of the injury. Medical 
institutions have vast challenges because there is an 
urgent need for efficient tools to improve the diagnosis 
of COVID-19 patients. Computer tomography images 
(CT) are necessary for medical specialists to diagnose 
the patient’s condition. Nevertheless, there is a lack of 
both in Medical Centers, mainly in rural areas. The 
manual analysis of CT images is time-consuming; in 
addition, most images have low contrast, and it is 
possible to find blood vessels in the background, so the 
difficulty of a suitable diagnosis increases. Nowadays, 
deep learning methods are an alternative method to 
perform the detection and segmentation task. In this 
work, we propose a novel light model to detect and 
identify COVID-19 using CT images: MiniCovid-Unet. It 
is an improved version of U-net; main differences reside 
on the decoder and encoder architecture, MiniCovid-
Unet needs fewer convolution layers and filters because 
it focuses only on COVID-19 images. Also, as a result of 
employing fewer parameters, it can be trained in less 
time, and the resulting model is light enough to be 
downloaded to a mobile device. In this way, it is possible 
to have a quick and confident diagnosis in remote areas, 
where there exists an absence of internet connection 
and medical specialists. 

Keywords. Deep learning, image segmentation, 
COVID-19, computer tomography, Mask R-CNN, Unet, 
MiniCovid-Unet. 

1 Introduction 

SARS-CoV2, better known as COVID-19 or 
Coronavirus, is an acute fatal disease identified in 
December 2019 in Wuhan province, China. This 
virus spread worldwide with great speed [1], 
declaring itself a pandemic on March 11, 2020 [2]. 
As of October 31, 2020, 45,428,731 cases have 
been confirmed in the world, causing 1,185,721 
deaths [3]. 

COVID-19 is spread through droplets of 
secretion released from the mouth and nose of an 
infected individual [4] and is transmitted by direct 
or indirect contact (through contaminated objects 
and surfaces) to mucosal areas of the skin such as 
the mouth, nose, or tear ducts. Symptoms may 
include dry cough, fever, headache, fatigue, 
shortness of breath, loss of taste or smell, and 
shortness of breath. Symptoms usually appear 2 to 
14 days after infection [5]. An early diagnosis is 
important because it is one of the most effective 
methods to stop the disease progression [6]. 

There are studies that have shown that 
COVID19 virus mainly attacks human lungs, after 
that there is a possibility of an infection and a lung 
disease [7]. Therefore, the diagnosis using a 
patient’s chest computed tomography (CT) is 
so relevant. 
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The main aspect in a CT image of COVID is the 
presence of ground glass opacity (GGO) [8,9]. 
Some experts have identified three main types of 
anomalies in CT lung images related to COVID-19: 
ground glass opacification, consolidation and 
pleural effusion [10,11]. 

The manual observation is the main technique 
to decide whether the patients are infected or not. 
However, the job is exhausted and there aren’t 
enough medical doctor’s staff to do the job. So, an 
automatic segmentation system is necessary in 
order to identify and delimit the boundary of the 
region of interest in the lung [12]. 

Deep Learning (DL), a subfield of Machine 
Learning, is a tool commonly used in re-search 
areas for speech recognition, computer vision, 
natural language processing, and image 
processing [13]. The main advantage of DL 
methods is that they do not require experts to 
perform feature extraction; it is done automatically 
and implicitly by multiple flexible linear and non-
linear processing units in a deep architecture. 

In recent years, Deep Learning has been a 
useful tool for classifying medical images [14], 
among its techniques the convolutional neural 
network (CNN) model [15] stands out; a neural 
network inspired by the connectivity of the animal 
visual cortex. CNN is a multi-layer neural network 
that uses minimal processing of convolution 
operations on the pixels of the images. This 
technique extracts the relevant features from 
image sets to detect features regardless of 
their position. 

Nowadays, the computer’s power has made it 
possible to apply deep learning in a wide range of 
applications in the medical field, such as deciding 
whether a tumor is in a radiograph [16] or detect a 
cardiovascular risk. For the task about semantic 
segmentation, there is a constant improvement in 
the accuracy of segmentation with models such as 
Fully Convolutional Network (FCN) [17], U-net [18], 
Fast RCNN [19] and Mask RCNN [18] 
among others. 

There are a lot of models that detect Covid19 
cases from chest x ray images [20–22], yielding a 
prediction value of 90% [23]. However, this kind of 
model cannot provide a quantitative analysis of 
infection severity because they just classify 
between Covid19 and regular pneumonia. 

2 Related Work 

2.1 Mask R-CNN 

Mask R-CNN Is a framework focused on instance 
segmentation. This task combines elements of 
object detection (classify individual objects and 
localize every instance with a bounding box) and 
semantic segmentation (classify every pixel in a 
set of categories). 

The Figure 1 shows a representation of the 
Mask R-CNN framework that contains two main 
phases; the first one consists of a Faster R-CNN 
architecture [19]. It has three elements: the 
backbone, the region proposal network (RPN) and 
the object detection [18]. The backbone takes 
advantage of a CNN architecture for image feature 
extraction and generating feature maps. 

The RPN uses these maps and creates 
proposed bounding boxes (anchors) to do the 
object detection task, dispersed over each feature 
map. These bounding boxes or anchors are 
classified in two classes: positive anchors or 
foreground, which refers to the anchors located in 
regions that represent features on the objects to be 
detected, and the negative ones or background 
which are located outside these objects. 

The positive anchors are used to perform a task 
called region of interest (ROI) alignment; they are 
centered to the located object and mark the ROIs 
for the next part. The object detection is the last 
part and classifies every class inside each ROI. 
The second phase consists of a new branch in 
order to do the instance segmentation task over 

 

Fig. 1. Framework of the Mask R-CNN method used 
for detection and segmentation COVID-19 in CT 
images 
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every detected object inside the image. This new 
branch is made by a fully convolutional mask [18]. 

2.2 Unet 

Unet is one of most popular models for the task of 
image segmentation in the medical field. It was 
developed to understand in a visual way different 
types of images. And it is based on an encoder 
decoder neural network architecture. There are 
two main parts: con-tractive and expansive. The 
contracting one is built with several layers of 
convolution, filters of size 3 x 3 and strides in both 
directions, with ReLU layers at the end. 

This part is important because it extracts the 
essential features of the input and the result is a 
feature vector of a particular dimension. The 
second part recover information from the 
contractive part by coping and cropping. However, 
the feature vector is built by convolutions and 
generate an output segmentation map. In this 
architecture the main component is the linking 
operation between the first and second part. 

In this way the network gets correct information 
from the first part, so it could generate an accurate 
segmentation mask [18]. 

2.3 SegNet 

SegNet is a deep fully convolutional neural network 
architecture for semantic seg-mentation [24]. It 
was originally designed for road and interior scene 
segmentation tasks. This requires the network to 
converge using an unbalanced dataset because 
the pixels of the road, sky, and buildings dominate. 
The main elements consist of an encoder network, 
a corresponding decoder followed by a pixel 
classification layer. 

The encoder network is almost the same as the 
13 convolutional layers of the VGG16 network [25]. 
The task of the decoder network is to map low 
resolution encoder feature maps to full input 
resolution feature maps for pixel classification. The 
main feature of SegNet is the way the decoder 
upsamples its lower resolution input feature maps; 
in this part, the decoder network uses clustering 
indices computed in the maximum clustering step 
of the corresponding encoder to perform non-linear 
upsampling. 

2.4 Dense V-Net 

Dense V-Net is a fully connected convolutional 
neural network that has performed well on the 
organ segmentation task. You can establish a 
voxel-voxel connection between the input and 
output images [26]. 

It consists of three layers of dense feature 
stacks whose outputs are concatenated after a 
convolution on the missing connection and bilinear 
oversampling [27]. There are 723 feature maps 
that are computed using a convolution step. 

It then continues with a cascade of convolutions 
and dense feature stacks to generate activation 
maps with resolutions of three outputs. A 
convolution unit is applied on each output 
resolution to reduce the number of features. At the 
end it generates the segmentation logit. 

 

Fig. 2. U-net architecture [18] 

 

Fig. 3. SegNet architecture [24] 

 

Fig. 4. Dense V-Net architecture [26] 
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Dense V-Net differs from V-Net [28] in several 
respects: the downsampling subnet-work is a 
sequence of three dense feature stacks connected 
by downsampling strided convolutions; each skip 
connection is a unique convolution to the output of 
the corresponding dense feature stack. The 
upsampling network comprises bilinear 
upsampling to the final segmentation resolution. 

2.5 MaskLab 

MaskLab is an instance segmentation model [29], 
refines object detection with ad-dress and 
semantic features based on Faster R-CNN [19]. 
This model produces three out-puts: box detection, 
semantic segmentation logits for pixel 
classification, and direction prediction logits to 
predict the direction of each pixel around its 
instance center. 

Therefore, MaskLab is based on the Faster R-
CNN object detector, the predicted frames provide 
precise location of object instances. Within each 
region of interest, MaskLab performs fore-ground 
and background segmentation by combining 
semantic and direction prediction. 

2.6 MiniCovid-Unet 

The ground glass opacities are important features 
of COVID-19 infection regions in CT images scans. 
However, these image characteristics cannot be 
extracted efficiently by conventional CNNs, where 
the original images are taken as input and the 
learning processes begin from pixel level features. 
Hence, to reflect more regional features of 
infections we use different filters to highlight the 
region of interest. 

As shown in Figure 6, the proposed COVID-19 
segmentation model applies the Unet like structure 

 

Fig. 5. MaskLab architecture [29] 

 

Fig. 6. MiniCovid-Unet architecture 
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as backbone. There are two basic sections: 
contractive and expansive. We have used the 
activation function Leaky Rely in all blocks of layers 
because it is faster and it reduces the complexity 
of the network. Every convolution layer has 32 
filters for images of 512 X 512 pixels. 

There are less layers of convolution because 
the improvement was slightly better, however it 
increased the time of training and the computer 
resources needed. The model we proposed has 
good performance for computers with limited 
resources and is small enough to use in a 
mobile device. 

3  Materials and Methods 

Images of the dataset are Computed Tomography 
(CT) scans that belong to the Italian Society of 
Medical and Interventional Radiology [30]. The 
dataset contains one hundred one-slice CT scans 
in png format, whose dimensions are 512 x 512. 
There are also masks that show the region labeled 
by experts of the medical field [31]. 

In the original dataset there are three kinds of 
injuries related with Covid19: ground-glass 
opacities, consolidation and pleural effusion 
(Figure 7). However, we just try to identify whether 
an image has an injury in the lung and where it is 
located. The images are of people who had been 
infected with COVID-19. 

The training of Mask R-CNN used a total of 72 
of lung CT images and lung segmentation masks 
labels, the original image’s size remained and no 
data enhancement was used for training. The 
validation set used 18 images and its masks. The 

training set iteration was 16 with 500 steps per 
iteration. The learning rate was 0.001. We set 
aside 10 im-ages to visualize the performance of 
the trained and validated model with the training 
and validation data sets. 

For this experiment the backbone CNN 
architecture used was ResNet50 because of the 
small graphic card [32]. The experiment used pre-
trained COCO weights [18,33]. The total number of 
parameters for Mask R-CNN is 44,662,942. 

There is a problem with imbalance classes, 
because the task is to segment only the COVID-19 
infected region. But with this configuration we have 
two classes: COVID-19 region and non-COVID-19. 
In this case, we have more pixels from healthy 
regions (2.4482e + 7) than from infected regions 
(2.119975e + 6). So, the unbalance ratio is 11 and 
the data set is unbalanced, that’s the reason we 
have chosen metrics for the segmentation task. 

3.1 Implementation Details 

The Jupyter notebook interactive development 
environment was used to build and visualize the 
model and results. Python 3.6 was used as a 
programming language and the hardware 
configured to execute the experiments was a 
personal computer with a processor Intel(R) Core 
(TM) i7-6700 CPU @ 3.40GHz with 8 cores. 
NVIDIA GeForce GTX 1050 Ti (GPU 0), CUDA 
Toolkit 10.0 and CUDNN 7.4.1 were used to drop 
the time training. 

Be-cause of the small GPU the training 
configuration was set to use one image in every 
step and it was needed to use a small backbone 
(resnet50). On average the full execution of this 
model took 57 minutes. 

3.2 Evaluation Metrics 

In order to evaluate the performance of the models, 
we used the following classification and 
segmentation measures: precision, recall, Dice 
coefficient and mean Intersection over Union 
(mIoU). These metrics are also used in the medical 
field, and are defined be-low. 

Precision is the radio of pixels correctly 
predicted as COVID-19 divided by the total 
predicted as COVI-19: 

 

Fig. 7. Image and mask sample. CT scan (left) and 
labeled classes (right), where dark gray is ground glass 
opacities, gray is pleural effusion and white 
is consolidation 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
்௉

்௉ାி௉
, (1) 

where TP is the true positive (i.e., the number of 
pixels labeled as COVID-19 correctly) and FP 
refers to the false positive (i.e., the number of 
pixels labeled as COVID-19 wrong). 

Recall is the radio of pixels correctly predicted 
as COVID-19 divided by total number of actual 
COVID-19: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
்௉

்௉ାிே
, (2) 

where FN refers to the false negatives (i.e., the 
pixels that are labeled wrong as non-COVID-19). 

However, these two measures are not 
frequently used as evaluation metrics because of 
their sensibility to segment size, in other words, 
they penalize errors in small segments more than 
in large ones [28, 34, 35]. 

Dice coefficient or Dice score (DSC) is a metric 
for image segmentation: 

𝐷𝑖𝑐𝑒 =
ଶ|஺∩஻|

|஺|ା|஻|
, (3) 

where A and B refers to the predicted and ground 
truth masks. 

4 Results and Discussion 

All models that we have used in this work predict a 
probability for every pixel and we have to set a 
threshold in order to identify if a pixel is in the 
segment of COVID-19 or is in the healthy part. So, 
we have decided that the threshold value of 0.9 is 
the best to do the Task. 

We used the validation method five-fold cross 
validation to evaluate the segmentation 
performance of the models on the COVID-19 
dataset. First of all, we set aside 10 im-ages to test 
the model after we have trained it. With the 
remaining 90 images, the new data set is used to 
apply five-cross validation. 

We divided the new dataset into 5 parts, one of 
which was selected as the validation set and the 
other four parts were used for the training set in 
order to train the model. When the training had 
finished the loss, metrics were calculated and we 
repeated all the experiments until all the parts were 
used as a validation set, then the average of 
metrics was calculated to get the performance 
evaluation value of the model. 

Figures 8 and 9 show the loss during the 
training and validation phase. At the beginning of 
the training phase, the difference between all the 
models is noticeable, but over time, all the ones 
converge. The models only detect where the lesion 
is, so we don’t ask about the class of lesion. 

Table 1 shows the metrics to evaluate the 
performance of the model. The Dice metric can be 
used to compare predicted segmentation pixels 
and their corresponding ground truth. Dense V-Net 
is the model that has the best performance in terms 
of metric accuracy. On the other hand, the 
proposed model achieves a better performance 
with respect to the Dice and Recall metric. 

All models were able to detect the foreground 
from the back-ground; however, they were unable 
to detect the lesion class of the background. The 
best scores were obtained during the training 
phase compared to the validation phase, as can be 
seen in Figures 10 and 11. 

 

Fig. 8. Loss during the training phase 

 

Fig. 9. Loss during the validation phase 
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4.1 Inference 

Figure 12 illustrates the segmentation results of 
lung infections from an example of lung CT slices 
taken from the test set using different 
segmentation networks. 

The original image is on the left side (a), the 
expertly labeled mask is on the right side (b). All 
models have located the correct position on the 
image of the COVID-19 related injury, but do not 
retrieve the exact shape of the injury. 

Unet misses true infected areas with small 
sizes. Mask RCNN works better than Unet to 
determine the infected region, however, some 
tissues close to infections are segmented 
incorrectly. Segnet and Dense V-Net provide good 
performance in segmenting medium-sized 
infection regions, but several overestimates of 
normal tissues as infections. 

MaskLab cannot provide full segmentation of 
some regions. On the contrary, the proposed 
MiniCovid-Unet provides superior performance to 

previous methods, regarding the recognition and 
segmentation of small and medium infections. 

The shape of the infected area was complex 
and could be located anywhere within the image, 
the contrast between the infected and healthy parts 
was low. 

In addition, the original Mask R-CNN model has 
been trained with millions of images of people and 
different types of objects, which could explain the 
low score against MiniCovid-Unet. 

Furthermore, the other models were unable to 
retrieve the exact shape of the COVID-19 lesion, 
as can be seen in Table 1. 

5  Conclusion and Future Work 

In this paper, we propose the MiniCovid-Unet 
network with novel structure for COVID-19 
infection region segmentation in lung CT slices. 
We also presented other models applied to detect 
and segment injuries related to COVID-19. 

The models were selected because it is simple 
to implement for a custom dataset of images. 
However, a GPU is necessary in order to train the 
model in a reasonable time. 

All models were able to identify the regions 
where lesions were found, but had difficulties in 
correctly segmenting the shape of the lesion. 
Figure 12 shows that a healthy lung could be 
differentiated from a diseased one, and even 
completely healthy lungs could be detected. 
However, the results for the segmentation task 
were poor. 

Although the models can identify the injury, it 
does not indicate the type of injury. We used a 
small dataset available for the segmentation task, 
however the MiniCovid-Unet’s results obtained so 
far in this work represent an alternative to use deep 
learning to help in the objective diagnosis of 
COVID-19 using CT images of the Lung. 

As future work, we want to get more images to 
train the framework. We also hope to be able to 
perform the segmentation taking into account the 
three existing classes in the dataset. 

It is also proposed to make a comparison 
against other models such as U-Net++ [36], which 
are frameworks focused on COVID-19 
medical images. 

Table 1. Performance metrics associated with different 
algorithms for the images in the testing dataset 

Method Dice Precision Recall 

Mask R-CNN 
Unet 
SegNet 
Dense V-Net 
MaskLab 

0.7801 
0.8202 
0.8001 
0.7905 
0.7885 

0.7857 
0.6190 
0.7667 
0.8667 
0.8001 

0.7333 
0.8667 
0.8333 
0.8467 
0.8402 

Proposed 0.8301 0.8254 0.8684 

 

Fig. 10. Dice coefficient during the training phase 
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