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Abstract. Despite being little known and poorly
documented, LEX is part of the family of typical
testors-finding algorithms that generally has better
performance than other much more divulged similar
algorithms. The recently published relationship between
typical testors and minimal hitting sets, potentially
extends the usefulness and applicability of this algorithm
to the hypergraphs and data mining fields. Unfortunately,
the high time-complexity of both typical testors and
minimal hitting sets algorithms still remains a major
obstacle. Therefore, alternatives that can help overcome
difficult problems are constantly being researched. In
this paper we propose the inclusion of a symbolic
learning behavior into the implementation of the LEX
algorithm. The incorporated symbolic learning is a
general strategy for optimizing the search process, and
thus improves the efficiency of minimal transversals and
typical testors algorithms. In addition, the performance
of the resulting algorithm is assessed by using carefully
designed benchmark test matrices.

Keywords. LEX algorithm, learning strategy, minimal
transversals, hypergraph, irreducible testor.

1 Introduction

The publication of the theoretical convergence
between Typical Testors and Minimal Transversal
concepts [2] opened new possibilities for the

study, development, and application within the
hypergraph and testor theories. Particularly,
algorithms for computing the set of all typical
testors, as well as those for computing minimal
transversals, can now be applied interchangeably
in any of these areas.

Graph theory is one of the most relevant fields
of discrete mathematics because of its ability to
model a wide range of problems.

The concept of minimal transversal, also
known as minimal hitting sets [5], has been
applied in relevant areas such as artificial
intelligence, reliability theory, database theory,
integer programming, and learning theory [8, 12].

Whereas in Pattern Recognition, testor theory is
a useful tool for feature selection and evaluation
solving various practical problems like medical
diagnosis [17, 23, 24, 10], text categorization
[6], document summarization [13], document
clustering [14], stellar structure [17], dimension
reduction in image databases [19], reduction of
neural network models [25], number recognition
[18], etc.

However, the high time complexity that minimal
transversal finding algorithms have [13, 9] limits
the possibility of applying these concepts in
situations that require handling large amounts of
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Algorithm 1. LEX (original)
Input: The incidence matrix B of a simple hypergraph H
with n vertices.
Output: the set of all minimal transversals of B.
1: Sort B: Find the row with minimum amount of 1’s, if there

is more than one, choose any of them. Put it as first row in
B. Sort columns of B putting as first the ones that have 1 in
the first row.

2: Initialization: L = [ ], v = v1 (v first candidate of L).
3: Candidate Evaluation

a. If L = [ ] and the column corresponding to v has zero in
the first row then END.
b. If v is exclusive with L ((1) and (2)) go to 4.
c. If r(i,L+ [v]) > 0 for every row i of B, then save L+ [v]
go to step 4.
d. If v = vn go to step 4 (–).
e. Do L = L + [v]. Update r(i,L) for all rows of B and
F (vt,L) for all vt elements in L.

4: Selection of new candidate
a. If v ̸= vn then let j be the index of v in B, do v = vj+1

and go to step 3.
b. If L = [ ] then END.
c. If L+[v] was a minimal transversal or v was not exclusive
with L find vp gap of L+ [v]. Do v = vp+1. Remove from L
all items from vp to the last vertex of L (–). Update r(i,L)
for all rows of B and F (vt,L) for each vt in L.
d. Else there is no vp, END (–).

5: Do v = vq , where vq is the last vertex of L and L =
L \ [vq ]. Update r(i,L) for all rows of B and F (vt,L) for
each vt of L.

6: Return to step 4.

data, cases that would paradoxically be the most
interesting and useful ones. The above limitation
has encouraged the search for alternatives
that allow an increase in the performance of
these algorithms, so that the lowest possible
computational cost can be reached.

The LEX algorithm [22] is a particular case of
these algorithms: it imposes a lexicographic order
over the power set of all vertices/features and uses
that order for generating combinations of columns
from its input Boolean matrix, which represents an
incidence matrix of a hypergraph.

In order to deal with its exponential complexity
and facilitate LEX application in a wider range
of problems, improving its efficiency becomes a
matter of major significance.

In that same context, the recent initiative
of embedding learning strategies into minimal
transversal computation algorithms [11] also
becomes relevant.

This technique can be applied to a wide range
of algorithms for computing typical testors and
minimal transversals.

The symbolic model learned, as the host
algorithm progresses, guides the search process
for these algorithms by adding rules that allow a
faster traversal of the search space, thus offering
the possibility of a more efficient exploitation of the
background knowledge, as well as of the newly
acquired knowledge.

Since its publication, this technique has been
tested only on two algorithms, BR [15] and YYC
[4], in the same article where the technique was
originally proposed.

However, in that article there is no description of
the methodology for using it with other algorithms,
nor are the modifications to the original algorithms
made explicit.

Consequently, a more detailed explanation of
the integration between a learning strategy and a
host algorithm can help pave the way for using this
technique on other algorithms.

On the other hand, since the BR and YYC
algorithms use a very different search strategy, it
is completely unknown whether a learning strategy
can benefit the LEX algorithm in the same way.

Thus, in this article we incorporate a learning
strategy into the LEX algorithm and test the result
to assess its performance improvement over the
original version of the same algorithm.

First, we determine the stages of the original
algorithm in which the learning strategy can be
used, then we proceed to integrate it and we show
the code of the new algorithm, which we have
called LEX*.

For testing purposes, we designed a set of
benchmark matrices [1] varying the number of
rows and columns. Among the test matrices
there are some with high density of minimal
transversals, that is a high number of minimal
transversals with respect to the cardinality of the
power set of features.

Also there are others with large dimensions but
few minimal transversals. Also, the comparison
criteria for assessing the performance of LEX*
is clearly defined and uniformly used in all
experiments. Finally, results from the experiments
are reported and conclusions are drawn.
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Fig. 1. Evaluation candidate i in LEX using the table of accumulated knowledge K

2 Conceptual and Theoretical
Background

In graph theory, an hypergraph is a generalization
of the graph concept, i.e. an ordered pair
H = (V, E) where V = {v1, . . . , vn} is a finite set
of objects and E = {E1, . . . , En} a covering of V
(Ei ̸= ∅, i = 1, . . . ,m and ∪m

i=1Ei = V), where each
Ei is called an hyperedge. H is simple if for every
pair (Ei, Ej), Ej ⊆ Ei ⇒ j = i.

A transversal or hitting set of a simple
hypergraph H is a subset of vertex that intersects
all edges, i.e. a subset τ ⊆ V such that ∀Ei ∈
E , τ ∩ Ei ̸= ∅. τ is minimal if no proper subset of τ
is a transversal of H.

The incidence matrix A = [aij ]m×n of H is a
matrix whose rows and columns correspond to the
vertices and hyperedges of H respectively, in such
a way that aij = 1 if vi ∈ Ej and aij = 0 otherwise.

2.1 Relation Between Minimal Transversals
and Typical Testors

The terms irreducible testor and typical testor
are used indistinctly in the following references.
In [2], a theoretical convergence between the
concepts of minimal transversals and typical
testors was presented.

As in most research work, in testor theory a
Boolean pairwise comparison matrix A = [aij ]m×n

is considered, which holds the information of all
objects contained in a partition set U of k disjoint
classes described by a set of n features.

When an element aij = 1, it means that
objects within pair i have different values in feature
j, and aij = 0 as objects within pair i have
similar values in feature j. The matrix is called a
difference matrix.

Let RA be the set of rows and FA be the
set of columns in A respectively, the matrix
A|τ is a submatrix containing all columns in the
subset τ ⊆ FA.

A subset of columns τ ⊆ FA is called a testor if
A|τ does not have any row composed exclusively
by zeros, and is a typical testor if no proper subset
of τ is a testor.

Generally, a difference matrix is commonly
reduced for applications to a matrix called basic
matrix. By analyzing the definitions of basic
matrix, incidence matrix and simple hypergraph,
the following theorems are stated and proved in [2]:

Theorem 1. A transposition over the incidence
matrix of a simple hypergraph, results in a
matrix that fulfills all required properties to be a
basic matrix.
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Theorem 2. Let ψ∗(B) = {τ1, . . . , τs} be the
complete family of typical testors from a basic
matrix B. Let Tr(H) be the transversal hypergraph
for a simple hypergraph H whose incidence matrix
is exactly the transposed matrix of B⊺, then
ψ∗(B) = Tr(H).

Through this equivalence, computing the
minimal transversals of a simple hypergraph H
and computing the irreducible testors (also called
typical testors) from the transposed incidence
matrix of H can be done with either an algorithm
for computing typical testors or an algorithm for
computing minimal transversals.

2.2 Definitions and Properties of the
LEX Algorithm

The strategy of LEX is to construct vertex lists
that are minimal, i.e. lists where none if its
subsets intersects the same amount of edges, and
check whether this set is a transversal (originally
presented as properties of typicality and testor
respectively). LEX imposes a lexicographic order
over the power set of all vertices, which is the
reason of its name.

The order is denoted with the symbol ≪.
For example, if we consider the set of vertices
V = {v1, v2, v3} and the lists [v1, v3], [v2, v3],
[v1, v2, v3] then [v1, v2] ≪ [v1, v2, v3] ≪ [v2, v3].

Let L be a vertex list and vt a vertex of an
incidence matrix A, we use the following notation:

– F (vt,L): the set of hyperedges that contain vt
but do not contain any other vertex of L.

– r(i,L): the total of vertices v in L such that v
belongs to Ei.

– Gap of L: the maximum of the indexes in
L such that the index of the next element is
not consecutive.

For example, consider the following matrix:

v1 v2 v3 v4 v5


E1 0 0 1 0 1

E2 0 1 0 1 1

E3 1 0 1 0 0

. (1)

Algorithm 2. LEX*
Input: An incidence matrix B of a simple hypergraph H with n
vertices.
Output: the set of all minimal transversals of B.
1: Sort B: Find the row with minimum amount of 1’s, if there is

more than one, choose any of them. Put it as first row in B.
Sort columns of B putting as first the ones that have a 1 in
the first row.

2: Initialization: L = [ ], v = v1 (v first candidate of L).
3: Candidate Evaluation

a. If L = [ ] and the column corresponding to v has zero in
the first row then END.
b. If L+ [v] ⊇ k, where k ∈ K, then go to 4.
c. If v is exclusive with L ((1) y (2)).

If for all rows i, r(i,L+ [v]) > 0 go to step 4

Else: If (1) is met, let S be the smallest sub list of L such
that vjk ∈ s and F (v,S) ⊆ U . If (2) is met, let S be
the smallest sublist of L such that F (v,S) is empty. Add
S + [v] to K. Go to step 4.

d. If r(i,L+ [v]) > 0 for every row i of B, then save L+ [v]
is a minimal transversal, go to step 4.
e. If v = vn go to step 4 (–).
f. Do L = L + [v], the candidate is accepted. Update the
values of r(i,L) for all rows of B and F (vt,L) for all vt
elements in L.

4: Selection of new candidate
a. If v ̸= vn then let j be the index of v in B, do v = vj+1.
b. Go to step 3.
c. If L = [ ] then END.
d. If L+[v] was a minimal transversal or v was not exclusive
with L find vp gap of L + [v]. Do v = vp+1. Remove from
L all items from vp up to the end (–). Update r(i,L) for all
rows of B and F (vt,L) for each vt in L.
e. Else there is no vp, END (–).
f. Do v = vq , where vq is the last feature of L and L =
L \ [vk]. Update r(i,L) for all rows of B and F (vt,L) for
each vt of L.
g. Return to step 4.

If L = [v1, v3] then F (v3,L) = {E1}, r(1,L) = 1,
r(3,L) = 2 and L has gap 1. In [22], it is proven
that the following statements are true:

Let be L and vt a vertex not belonging to L.

(1) Let U be the set of hyperedges that contain vt.
If there is vk ∈ L such that F (L, vk) ⊆ U , then
vt will not be part of any minimal transversal
together with all the elements of L.

(2) If F (vt,L) is empty then vt will not be part of
any minimal transversal together with all the
elements of L.
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Table 1. Design of the benchmark matrices set

Matrix Operator N Columns Rows Minimal Transversals

A

θ 1 to 5 4N 5N 4N

φ 1 to 5 4N 5 4N3

γ 1 to 10 4N 5N 4N

B

θ 1 to 10 10N 2N 4N

φ 1 to 10 10N 2 4N2

γ 1 to 10 10N 2N 4N

C

θ 1 to 4 9N 12N 8N

φ 1 to 5 9N 12 5N2 + 2N +N3

γ 1 to 5 9N 12N 8N

If either of the above cases is met, vt is said to
be exclusive with respect to L. Let L be a vertex
list that contains the vertex of the last column in the
incidence matrix. In all of the following the symbol
¡¡ is used with the semantics of not including ends.

– If L is a minimal transversal and has a gap
p. Let L′ be a vertex list obtained removing
from L all the vertices from vp up to the end
and adding the vertex vp+1. A list λ such that
L ≪ λ ≪ L′ is a subsets of L and thus, λ is not
a minimal transversal.

– If L is a minimal transversal that has no gaps. A
list λ such that L≪ λ is a subset of L and is not
a minimal transversal.

– If L is not a transversal and p is a gap of L. Let
L′ be a vertex list obtained removing from L all
the vertices from vp up to the end and adding the
vertex vp+1, then a list λ such that L ≪ λ ≪ L′

is a subset of L+ [v] and it is not a transversal.

The original LEX algorithm is outlined in
Algorithm 1.

3 Experimental Assesment

3.1 Implementing the Learning Strategy in LEX

The proposed learning strategy takes advantage
of both the knowledge acquired during the search,

and some prior knowledge about the nature of the
objects sought (minimal hitting sets), identifying
incompatible vertex sets.

In order to identify incompatible vertex
combinations inside an incidence matrix A of
a simple hypergraph H = (V, E), the strategy
analyzes its structure.

If A|τ is the submatrix obtained by removing
all vertices from A that are not in τ with τ ⊆
V, it is possible to characterize transversals and
minimal sets in structural (symbolic) terms: τ is a
transversal iff the submatrix A|τ does not contain
any row composed exclusively by zeros.
τ is minimal iff A|τ contains all the rows of an

identity matrix. If τ satisfy both, it is a minimal
transversal. If neither of them is satisfied, the set
is undetermined.

Considering these concepts, the following
relation between vertices can be defined:

Definition 1 (Domination). Vertex v1 dominates
vertex v2 iff ∀Ei ∈ E , v2 ∈ Ei =⇒ v1 ∈ Ei. That
is, if in any row of the incidence matrix A, where v2
has a one, v1 also has it (single domination). This
relation can also happen as a subset of vertices
dominating another vertex (multiple domination).

Therefore, the following rules are defined:

– When finding a transversal not minimal, all its
supersets are excluded from the rest of the
search process since they cannot be minimal.
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Table 2. Results for matrices generated from A

Matrices N Rows Columns
Minimal

Transversals
Percentage

tests reduced
Accumulated

knowledge

θN (A)

1 4 5 4 0.00% 2

2 16 10 8 23.24% 6

3 64 15 12 27.83% 9

4 256 20 16 29.05% 12

5 1024 25 20 29.61% 15

γN (A)

1 4 5 4 0.00% 2

2 8 10 16 31.02% 7

3 12 15 64 36.13% 11

4 16 20 256 36.87% 15

5 20 25 1024 37.00% 19

φN (A)

1 4 5 4 0.00% 2

2 4 10 32 16.00% 13

3 4 15 108 25.00% 33

4 4 20 256 30.32% 62

5 4 25 500 33.80% 100

6 4 30 864 36.24% 147

7 4 35 1372 38.05% 203

8 4 40 2048 39.44% 268

9 4 45 2916 40.54% 342

10 4 50 4000 41.43% 425

– When finding a minimal set, all of its subsets
are also excluded because they cannot be part
of a transversal.

– When finding a minimal transversal, all of its
subsets and supersets are excluded, as they
cannot be minimal transversals.

– Any other set found (undetermined) contains at
least one pair of incompatible vertices and that
pair must also be excluded from the rest of the
search process.

Whereas rules 1 to 3 are embeded into the
search strategies of all minimal transversals and
irreducible testors finding algorithms, rule number
4 is commonly not considered and consequently it
is of main interest for the implementation.

Moreover, it does not represent a potential risk
to performance of the algorithm. Incompatibilities
can be found as the host algorithm searches for
minimal or trasnversal sets.

Notice that in LEX the algorithm excludes
candidates if it finds that the current list and the
current vertex candidate are exclusive, i.e. both
meet rules 1 or 2. Thus, the steps where these
conditions are checked, are essential to include
rule number 4.

Considering all of the above, it seems clear
that the crucial stages to incorporate the strategy
are: partitioning the search space, identifying the
order the algorithm follows and identifying the
contribution the strategy can reach.
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Table 3. Results for matrices generated from B

Matrices N Rows Columns Minimal
Transversals

Percentage
tests reduced

Accumulated
knowledge

θN (B)

1 2 10 4 31.58% 7
2 4 20 8 68.63% 16
3 8 30 12 77.27% 24
4 16 40 16 79.67% 32
5 32 50 20 80.50% 40
6 64 60 24 80.68% 48
7 128 70 28 80.98% 56
8 256 80 32 81.11% 64
9 512 90 36 81.17% 72

10 1024 100 40 81.20% 80

γN (B)

1 2 10 4 31.58% 7
2 4 20 16 71.2% 16
3 6 30 64 79.2% 24
4 8 40 256 81.0% 32
5 10 50 1024 81.5% 40
6 12 60 4096 81.7% 48
7 14 70 16384 81.8% 56
8 16 80 65536 81.8% 64
9 18 90 262144 81.8% 72

10 20 100 1048576 81.8% 80

φN (B)

1 2 10 4 31.58% 7
2 2 20 16 48.65% 18
3 2 30 36 54.55% 33
4 2 40 64 57.53% 52
5 2 50 100 59.34% 75
6 2 60 144 60.55% 102
7 2 70 196 61.42% 133
8 2 80 256 62.07% 168
9 2 90 324 62.58% 207

10 2 100 400 62.98% 250

First, the candidate evaluation steps are going to
define the search space.

3.2 Partition of the Search Space in LEX

In LEX, the candidate evaluation (step 3 in
algorithm 1.) is the key to the classification of vertex
sets in an incidence matrix through proposition
(1) and (2). The current list and vertex are saved
as indicated in rule 4, in a table of accumulated
knowledge named K, for later use of the algorithm.

The combination between the background
knowledge and the learned knowledge makes
possible a smarter selection for the next vertex
to evaluate.

When an exclusive vertex exists in LEX, it means
the combination evaluated is a transversal not
minimal, or an incompatible set. To fill K, the
second case is of major interest.

– When a vertex set meets (1), it means the
current candidate removes the minimal property
from the analyzed vertex list. In other words,
let i and L be the vertex and the list being
reviewed in LEX respectively, where L + i meet
(1), then there is a subset S ⊆ L that dominates
i (definition 1).

– Another incompatible pair can be found by
applying a similar reasoning to case (2). When
the candidate to evaluate fits in this case means
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Table 4. Results for matrices generated from C

Matrices N Rows Columns
Minimal

Transversals
Percentage

tests reduced
Accumulated

knowledge

θN (C)

1 12 9 8 6.12% 1
2 144 18 16 10.09% 2
3 1728 27 24 10.99% 3
4 20736 36 32 11.23% 4

γN (C)

1 12 9 8 6.12% 1
2 24 18 64 50.27% 78
3 36 27 512 57.05% 117
4 48 36 4096 57.78% 156
5 60 45 32768 57.91% 195

φN (C)

1 12 9 8 6.12% 1
2 12 9 32 20.52% 11
3 12 9 78 27.53% 30
4 12 9 152 31.64% 58
5 12 9 260 34.32% 95

it has 1’s where one or more vertex of L already
have unit values. Therefore, there is a subset
S ⊆ L such that S + i dominates some vertex j
in L, with j not in S.

Briefly, the candidate evaluation process for any
vertex i and list L is explained in figure 1.

3.3 The New Algorithm

Finally, we show the LEX algorithm with the
learning strategy using the established partition of
its search space explained above. The pseudo
code is presented in algorithm 2.. We call the new
algorithm LEX*.

The host algorithm selects a vertex using its
predefined lexicographic search order. With the
acquired knowledge stored in table K, the tested
subset is classified. If it includes a pair of exclusive
vertex and sublist ((1) and (2)) the pair is classified
as incompatible and K is updated.

Since the new steps reduce the number of
elements tested by the algorithm, its performance
is enhanced.

3.4 Experiments

Since we are improving an algorithm that is
known for its exponential complexity [14], it seems
necessary to perform a more detailed analysis of
all experimental results.

The learning strategy incorporated into the
original LEX algorithm aims at predicting all
possible incompatibilities, that the imput matrix
contain, and that the host algorithm will test.

Therefore, the performance of the proposed
algorithm (LEX*) will be assessed with two relevant
criteria: the number of vertex sets that the
algorithm tests and the overall execution time.

We focus the assessment on the total number
of vertex subsets and the proportion of omitted
sets for obtaining conclusions because these
criteria does not depend on the hardware
characteristics of the equipment or on the
programming language used.

Moreover, as the main reason for the use of the
strategy is reducing the number of tested sets, this
analysis seems more appropiate.
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Table 5. Results for matrices from real-world data

Dataset Rows Columns Transversals
Percentage

test reduced

Accumulated

knowledge

Sponge 81 44 6177 82.28% 26329

QSAR-biodeg 276 41 2881 66.89% 10180

Flag 195 29 1243 52.53% 5696

Cylinder 163 69 844 34.37% 1171

3.4.1 Description of the Benchmark Matrices
Used in the Performed Experiments

In order to avoid testing an algorithm with a biased
set of problems, we referred to [3, 1] where a set
of matrix operators (θ, γ,φ) is defined in order to
design test matrices.

These test matrices are usefull because the
total number of minimal transversals they contain
is known in advance. Starting from considerable
small matrices, the operators allow the generation
of new matrices with various characteristics.

Our experiments include matrices with high
density of minimal transversals, as well as
matrices with large dimensions but very few
minimal transversals.

The operators allow the construction of matrices
with a growing number of rows and columns
in different ways, so we get three methods for
generating our matrices by applying several times
the same operator: growing the number of rows
(using operator θ), growing the number of columns
(using operator φ), and growing the number of rows
and columns (using operator γ).

When an operator is applied N consecutive times
over an incidence matrixM , we use θN (M), γN (B)
or φN (M) to represent the resulting matrices.
Consider the following matrices:

M1 =


1 1 1 0 0
1 1 0 0 1
1 0 1 1 0
1 0 1 0 1

 , (2)

M2 =


1 0 0 0 0
0 0 1 0 1
0 1 0 1 1
0 1 1 0 0

 , (3)

M3 =

1 1 1 0
0 1 1 1
1 0 1 1

 , (4)

M4 =

[
0 0 1 0 0
0 1 0 0 0

]
. (5)

The initial incidence matrices used in these
experiments possess the following structures:

– A matrix whose number of rows is similar to
its number of columns, that is, it resembles a
square matrix. We took the 4× 5 matrix M1 and
we renamed it A.

– A matrix whose number of columns is greater
than the number of rows. We applied operator
φ twice to the 2 × 5 matrix M4 obtaining a new
matrix of dimension 2× 10. We named it B.

– Finally, a matrix such that the number of rows
is greater than the number of columns. We took
matricesM2 andM3 and in that order we applied
operator θ obtaining a matrix of dimension 12×9
named C.

Starting from these three matrices, a benchmark
matrix set is generated by consecutively applying
the operators to each matrix for different values
of N as shown in table 1. Notice that the θ
operator generates the desired matrices with large
dimensions but few minimal transversals, while γ
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(a) Time for matrices θN (A) (b) Time for matrices φN (B) (c) Time for matrices γN (C)

Fig. 2. Run time comparison between LEX and LEX*

(a) Tests for matrices θN (A) (b) Tests for matrices φN (B) (c) Tests for matrices γN (C)

Fig. 3. Tests comparison between LEX and LEX*

generates matrices with high density of minimal
transversals; matrices with these properties are
very common in practice.

On the other hand, the θ operator allows the
creation of matrices with a large number of rows,
while the φ operator yields matrices with large
number of columns. It is possible to reach some
relevant conclusions based on these parameters.

Lastly, we use real-world datasets from true
study cases to construct 4 incidence matrices:
Sponge, Flags, QSAR-biodeg and Cylinder.

The datasets are available in the UC Irvine
Machine Learning Repository [7] and are used on
different works by the machine learning community.

4 Discussion

In order to properly assess the experimental
results, we present tables containing the
number of rows and columns, the number of
minimal transversals, the number of registered
incompatibilities (knowledge), and the proportion
of omitted sets for each operator and each matrix.

In addition, two graphs are included, the first one
corresponds to the run time of the LEX algorithm
versus the time of LEX*, the other graph is the total
number of tests in LEX and LEX*.

In both graphics, the dotted line with circular
marker corresponds to LEX, and the dashed line
with cross marker corresponds to LEX*.

As it was expected, the gain resulting from
using the learning strategy increases when the
dimensions of the input matrix increase. Here is a
brief description of all experimental results tables,
starting with matrix A.

In table 2, we observe that for operator θ from
N = 2 between 20% and 30% of tests were
reduced. For operator γ applied to matrix A there
is up to 37% of omitted sets.

We see that there is more accumulated
knowledge than in operator θ. The results for
operator φ unveil that the number of sets in
accumulated knowledge increases.

Also, up to N = 10 there is more than 40%
of omitted tests. If we compare with previous
operators up to N = 5 we see that more tests are
dismissed than in θ but less than γ.
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The results for matrix B are presented in table
3. Notably, it can be seen that, thanks to the
learning strategy, the percentage of tests omitted
exceeds 80%.

Although the same amount of knowledge has
been accumulated in θ and γ matrices, the
proportion of reduced test in γ is slightly higher.

Again, for φ there are more sets in accumulated
knowledge. Fewer combinations are excluded than
in the previous matrices generated from B, but we
still get a good percentage of dismissed sets.

The difference between the performance of both
algorithms for φ, is appreciated in Figures 2b and
3b. In table 4 is also shown that for the matrices
obtained from basic matrix C the learning strategy
reduce the number of reviewed candidates to
minimal transversals in any of the three operators.

As in A and B scenarios, the highest percentage
of reduced tests is obtained for the γ operator.
Lastly, Figures 2c and 3c evidence the benefit of
the strategy in matrices constructed from C for
operator γ.

Finally, LEX* results for the real-world datasets
matrices are in table 5. As in the synthetic
matrices, there is a percentage of reduced tests for
all matrices, which is higher for the matrices with
more transversals.

5 Conclusions and Future Research

Results showed in the above section suggest how
the supplementary knowledge about the problem
search space supplied by the learning strategy
enhances LEX’s general efficiency.

The latter is measured through the number of
tests performed and the run-time achieved using
a set of designed benchmark matrices. However,
we have not limited ourselves to presenting
evidence of it, but also to studying how the
strategy acts within LEX through these results.
In all experiments the learning strategy identified
incompatibilities which make possible that the host
algorithm reduce further unnecessary set testing.

Although there is no procedure that allows to
establish which algorithm is better overall, we
can consider certain parameters that lead us to
determine certain interesting behaviors.

In our experiments, we have focused on matrices
with a large quantity of minimal transversals and
matrices with large dimensions and a small number
of minimal transversals.

Additionally, we have varied the number of
rows and columns of the base matrices to obtain
incidence matrices with diverse structures.

The knowledge table is consulted by the host
algorithm in accordance with its search method, in
the case of the LEX algorithm, the lexicographic
order enables the number of learned sets to be
small compared to the number of avoided tests.

An interesting observation is that all matrices
to which the γ operator is applied report a higher
percentage of dismissed sets.

It would not be appropriate to conclude that
matrices from a specific operation are handled
more efficiently by LEX*, as in practice not all
matrices come from any of the matrix operations
used in the experiments.

Nevertheless, the γ operator produces matrices
with considerable amount of testors. Thus,
according to the results obtained in this paper, the
incorporated learning strategy in LEX reduces
in greater proportion the number of tests
within matrices with large numbers of minimal
transversals in comparison with those with large
dimensions and few minimal transversals which
were obtained by using the operator θ. We also
notice a similar behavior in the real-world data
matrices from table 5.

Conversely, in θN matrices the number of
incompatible sets in the knowledge table is less
than or equal to the number of sets registered in
the remaining operators. This may be due to their
large size, or more specifically to the large number
of rows that characterize these matrices. In most
cases of φN matrices, whose distinctiveness is a
higher number of columns than rows, LEX* has
learned more than in θN and γN matrices.

In addition, matrices coming from B, which
contains a small number of rows and several
columns, show to be the ones where the strategy
is the most advantageous.

The number of revisions has decreased more
respect to the matrices coming from other base
matrices. Matrices generated from A, whose
structure is similar to a square matrix have a
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smaller percentage of reduced tests in contrast
with matrices coming from B. Lastly, those created
from matrix C, which contain more rows than
columns, are the ones with the lowest percentage.

Probably LEX* can reduce its search space
in matrices which number of columns is higher
than its number of rows, but also saves more
incompatibilities in the knowledge table.

The results reached in these experiments can
serve as a guide for future research work
that contribute to the theoretical development in
the testors field and, due to their theoretical
convergence between concepts, also in the field of
hypergraphs. Some of the following options may
be considered:

– Contrast the behavior of other algorithms, for
example these published in recent works [20, 21,
16], with symbolic learning integrated. Hence,
find relationships between the matrix structure
and the strategy’s ability to decrease the number
of tests if it is feasible.

– Likewise, check if there are certain search
methods within algorithms that are more efficient
than others when they are provided with the
learning strategy support.

– Besides varying the dimensions of the matrix,
it is possible to study the performance of LEX*
using other parameters such as the ratio of
inputs inside a basic matrix with unit values or
zeros. Moreover, analyze their behavior in row
echelon form matrices known to be difficult to
handle because of their exorbitant number of
minimal transversals.

– Comparing the number of learned
incompatibilities that are stored in different
types of algorithms, as well as how useful those
are, can also be an interesting point.

Finally, besides providing a more detailed
description of the functioning of the learning
strategy, and a demonstration of its impact, this
work motivated to contribute to the theoretical
development of the fields involved, makes
available the LEX* algorithm for applications
in various problems capable of being modeled
through minimal transversals or typical testors
when needed.
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