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Abstract. Recommender systems recommend items to 

users based on their interests and have seen 
tremendous growth due to the use of internet and web 
services. Recommendation systems have seen 
escalating growth rate since late 1990’s. A query on 
Google Scholar (famous research based search engine) 
gives 175,000 articles for the query “recommender 
system”. With such a large database of 
research/application articles, there arises a need to 
analyses the data so as to fulfill the basic requirements 
of effectively understanding the potential of the quantum 
of literature available so far. The study focuses on the 
topic of recommender system with various soft 
computing techniques such as fuzzy logic, neural 
network and genetic algorithm. The major contribution of 
this work is the demonstration of progressive knowledge 
for domain visualization and analysis of recommender 
system with soft computing techniques. The analysis is 
supported by various scientometric indicators such as 
Relative Growth Rate (RGR), Doubling Time (DT), Co-
Authorship Index (CAI), Author Productivity, Degree of 
Collaboration, Research Priority Index (RPI), Half Life, 
Country wise Productivity, Citation Analysis, Page 
Length Distribution, Source Contributors. This research 
presents first of its kind scientometric analysis on 
“recommender system with soft computing techniques”. 
The present work provides useful parameters for 

establishing relationships between quantifiable data and 
intangible contributions in the field of recommender 
systems. 

Keywords. Fuzzy logic, genetic algorithm, neural 

networks, recommender system, scientometric analysis, 

web of science. 

1 Introduction 

A recommender system in today’s context is a 
valuable tool for analyzing and predicting the 
user’s interest [1]. A recommender system is a 
software tool, which provides and recommends 
items to the users based on their interests and 
based on the interests of similar users [2, 3]. 
Recommender systems over the past decade have 
seen steady growth in various fields of computer 
science, operations research, telecommunication, 
automation and many more. The growth 
percentage of recommender systems in various 
fields is shown in Figure 1.  

A growth of nearly 88% is observed in computer 
science, followed by a 25% in other engineering 
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disciplines. The operations and research 
management have seen a rate of nearly 12% 
followed by telecommunications, automation, 
business economics, mathematics, library science 
and other areas. 

Traditional recommender systems used 
memory based techniques of collaborative filtering 
and content based recommendation [4, 5, 6, 7, 8, 
9]. With the advent of new technologies and growth 
of recommender systems in a company’s portfolio; 
it is observed that Computationally Intelligent (CI) 
techniques can be used in improving the efficiency 
and prediction accuracy in recommender systems. 

To improve the effectiveness of personalized 
recommendations, techniques like fuzzy logic [10-
18], neural network [19-21], genetic algorithms [22-
24], bio-inspired algorithms [25-28], swarm 
intelligence [29-31] are used. 

Recommender system is a popular research 
topic and the popularity is growing at a fast rate. 
This is due to the wide range of practical 
applicability of recommender system. 
Researchers, apart from focusing on native 
techniques of recommender system, combine soft 
computing techniques also.  

There is no hard line between these techniques 
and recommender systems in terms of content and 
application. However, these techniques have given 
a new face to the use and application of 
recommender system. The use of soft computing 
techniques marked a significant change in the 
application areas of recommender system. These 
techniques improved the quality of 
recommendation thus resulting in increased 
customer satisfaction. Fig. 2 contains the 
corresponding data. Left: A word cloud depicting 
the use of tools and methods of various soft 
computing techniques in recommender system. 
Right: The percentage of use of various soft 
computing techniques with recommender system. 

The researchers, scholars, readers can the 
advantage of this research in many ways. The 
analysis of this research provides the reader with 
the following benefits: 

– Helps to analyze the state-of-the art 
techniques and methods for recommender 
system. 

– Concerns with the exhaustive study of the 
quantum of literature in recommender system 

– Helps to explain the growth of Recommender 
System in the fields of fuzzy logic, neural 
network and genetic algorithms. 

– Studies the growth of information in 
recommender system with soft computing 
techniques using various quantitative metrics. 

– Justifies the different types of collaboration 
worldwide in the research field via analytical 
view of the literature. 

– Inter-relationship between the varied sub-
fields in the research front. 

– Contemplates the techniques and applications 
of recommender system in various domains. 

Despite the tremendous growth in the area of 
recommendation algorithm, it is surprising to note 
that not much work is devoted to the scientometric 
study of recommendation algorithms with soft 
computing techniques.  

An analytical/ scientometric study was done in 
[32, 33], which comprised of estimating the “size of 
science” in recommendation algorithm but only 
limited to a few quantitative parameters. 

The study lacked the major criteria on which the 
recommendation works now. It also did not focus 
on the amalgamation of recommendation system 
with fuzzy logic, neural networks and genetic 
algorithms. The studies did not give extensive 
attention to the domains where recommendation 
algorithms with soft computing techniques 
are  applied. 

 

Fig. 1. Growth percentage of recommender system 

across various fields 
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This paper analyzes the growth and advent of 
recommender system along with soft computing 
techniques in a detailed manner. In this paper, a 
total of 519 research articles were extracted from 
Web of Science database and were scrutinized 
carefully pertaining to a well framed query.  

Out of 519,328 articles were shortlisted with 
19,352 references and approx. 1,968 keywords. To 
the best of our knowledge, this is the first 
scientometric study on recommendation system 
with soft computing techniques. This study 
provides a broad platform based on empirical 
results in the exploration of the research front in 
recommendation system. 

It gives an insight into the pattern of growth 
using are Relative Growth Rate (RGR), Doubling 
Time (DT), Co-Authorship Index (CAI), Author 
Productivity, Degree of Collaboration, Research 
Priority Index (RPI), Half Life, Country wise 
Productivity, Citation Analysis, Page Length 
Distribution, Source Contributors. Anybody who is 
new to the field of recommendation system can 
find huge insights in the area with this 
scientometric study and can explore the potential 
growth areas easily. Scholars can find a great 
objective for diving into the field 
of recommendation. 

This analysis will also help them to finalize the 
future vision of their research. Till date, the field of 

recommendation system with soft computing 
paradigms from year 2002 – till date are an 
unexplored area by the means of scientometric. 

The rest of this paper is organized as follows. 
Section 2 presents the motivation behind the 
systematic literature survey on recommender 
system. Section 3 explains the objective behind 
this study. The dataset details and methodology is 
given in section 4. Section 5 discusses the various 
quantitative scientometric measures like Relative 
Growth Rate (RGR), Doubling Time (DT), Co-
Authorship Index (CAI), Author Productivity, 
Degree of Collaboration, Research Priority Index 
(RPI), Half Life, Country wise Productivity, Citation 
Analysis, Page Length Distribution, Source 
Contributors for corrective evaluation of the 
research front. Section 6 presents the conclusion. 
A discussion on the areas where recommender 
system can be improvised is summarized in 
section 7. 

2 Motivation 

The companies in today’s business oriented 
environment have to make informed and effective 
decisions for increasing their customer base. In 
market there are two scenarios to be considered. 
First, the cost of retaining a  customer  is  far  less  

 

 

Fig. 2. Current association of recommender system with various soft computing techniques 

Computación y Sistemas, Vol. 25, No. 1, 2021, pp. 193–221
doi: 10.13053/CyS-25-1-3891

A Scientometric Analysis of Transient Patterns in Recommender Systems with Soft Computing Techniques 195

ISSN 2007-9737



Table 1. Data set details 

Database Source Web of Science (WoS) 

Time Span 1989-2017 

Citation Indices SCI-EXPANDED, SSCI, A&HCI, ESCI. 

Query String for 
extraction of articles 

{“fuzzy recommender system or recommender system type 2 fuzzy set or 
recommender system intuitionistic fuzzy or recommender system fuzzy sets or 
recommender system deep learning or recommender system convolution neural 
network or recommender system ant colony or recommender system particle swarm 
optimization or recommender system evolutionary algorithms or recommender 
system bee colony algorithm or recommender system digital organisms or invasive 
weed optimization algorithm recommender system or lifestyle recommender system 
or recommender system online shopping or recommender system matrix 
factorization”} 

Total Count 328 

Accessed on [5-09-17] 

Table 2: Sample publication format from WoS database 

PT Publication Type (J=Journal; B=Book; S=Series): J 

AU Authors: Ji, K; Shen, H 

AF Author Full Name: Ji, Ke; Shen, Hong 

TI Document Title: Jointly modelling content, social network and ratings for explainable and cold-start recommendation 

SO Publication Name: NEUROCOMPUTING 

LA Language: English 

DT Document Type: Article 

DE Author Keywords: Collaborative filtering; Recommender systems; Explanation; Cold start; Tag-keyword 

ID Keywords Plus®: PREFERENCES; SYSTEMS 

AB Abstract: Model-based approach to collaborative filtering (CF), such as latent factor models, has improved both accuracy 
and efficiency of predictions on large and sparse dataset. However, most existing methods still face two major problems: 
(1) the recommendation results derived from user and item vectors of a set of unobserved factors are lack of explanation; 
(2) cold start users and items out of user-item rating matrix cannot be handled accurately. In this paper, we propose a 
hybrid method for addressing the problems by incorporating content-based information (i.e, users' tags and items' 
keywords) and social information. The main idea behind our method is to build content association based on three 
factors-user interest in selected tags, tag-keyword relation and item correlation with extracted keywords, and then 
recommend the items with high similarity in content to users. Two novel methods-neighbor based approach and 3 factor 
matrix factorization are proposed for building tag-keyword relation matrix and learning user interest vector for selected 
tags and item correlation vector for extracted keywords. Besides, we introduce a social regularization term to help shape 
user interest vector. Analysis shows that our method can generate explainable recommendation results with simple 
descriptions, and experiments on real dataset demonstrate that our method improves recommendation accuracy of 
state-of-the-art CF models for previous users and items with few ratings, as well as cold start users and items with no 
rating. (C) 2016 Elsevier B.V. All rights reserved. 

C1 Author Address: [Ji, Ke] Univ Jinan, Sch Informat Sci & Engn, Jinan, Peoples R China; [Shen, Hong] Sun Yat Sen Univ, 
Sch Informat Sci & Technol, Guangzhou, Guangdong, Peoples R China; [Shen, Hong] Univ Adelaide, Sch Comp Sci, 
Adelaide, SA 5005, Australia 

RP Reprint Address: Shen, H (reprint author), Sun Yat Sen Univ, Sch Informat Sci & Technol, Guangzhou, Guangdong, 
Peoples R China.; Shen, H (reprint author), Univ Adelaide, Sch Comp Sci, Adelaide, SA 5005, Australia. 

NR Cited Reference Count: 38 

TC Times Cited: 0 
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than attracting new customers for buying a 
particular product and second, the visitors have to 
be turned into real buyers. 

This implies that the companies/ manufacturers 
should use effective analytics to stay in the 
business market. 

In today’s time, a company pays an escalated 
attention to the design and modelling of its 
recommendation system, which provides the user 
with the most relevant as well as novel items of his 
interests. The use of recommendation system 

enhances the sale and purchase of a product 
directly by a large pool of users. 

In order to design an effective recommendation 
system, is becomes necessary to understand the 
interpretation and theoretic of the data relative to 
the quantum of literature already available.  

This motives us to present an analytical view of 
recommendation system, which is currently being 
used with many computationally 
intelligent  paradigm. 

PU Publisher: ELSEVIER SCIENCE BV 

PI Publisher City: AMSTERDAM 

PA Publisher Address: PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 

SN ISSN: 0925-2312 

J9 29-Character Source Abbreviation: NEUROCOMPUTING 

JI ISO Source Abbreviation: Neurocomputing 

PD Publication Date: Dec-19 

PY Year Published: 2016 

VL Volume: 218 

BP Beginning Page: 1 

EP Ending Page: 12 

PG Page Count: 12 

DI Digital Object Identifier (DOI): 10.1016/j.neucom.2016.03.070 

SC Subject Category: Computer Science 

GA Document Delivery Number: EC3VA 

UT Unique Article Identifier: WOS:000388053700001 

 
 

 

Fig. 3. Year-wise growth of recommender system with 

various soft computing techniques 

 

Fig. 4. Relative growth rate and doubling time of the 

research publication output 
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Table 3. Relative Growth Rate and doubling time 

S.No. Year 
No. of 

Published 
Articles 

Cumulative Articles 
Relative Growth Rate 

(RGR) 
Doubling Time(DT) 

1 2004 1 1 0 0 

2 2005 6 7 0.15415068 4.49655493 

3 2006 5 12 0.87546874 0.79174386 

4 2007 5 17 1.22377543 0.56640049 

5 2008 7 24 1.23214368 0.56255371 

6 2009 5 29 1.75785792 0.39431344 

7 2010 10 39 1.36097655 0.50930121 

8 2011 12 51 1.44691898 0.47905032 

9 2012 18 69 1.34373475 0.51583618 

10 2013 18 87 1.57553636 0.43994351 

11 2014 24 111 1.53147637 0.45260052 

12 2015 41 152 1.31030845 0.52899529 

13 2016 50 202 1.39624469 0.49643662 

14 2017 69 271 1.36801232 0.50668184 

15 2018 99 360 1.29098418 0.53691363 

16 2019 113 470 1.42534488 0.48630125 

  Mean 1.20580837 0.73522668 

Table 4. Author productivity 

Block 
No. 

Year SA TA MuA 3&4 MeA >4 Total CAI (SA) CAI (TA) CAI (MuA) CAI (MeA) 

1 

2004 0 1 0 0 1 0 188.888889 0 0 

2005 2 2 2 0 6 188.888889 62.962963 113.333333 0 

2006 0 5 0 0 5 0 188.888889 0 0 

2007 1 1 3 0 5 113.333333 37.7777778 204 0 

  Total 3 9 5 0 17 0.17647059 0.52941176 0.29411765 0 

2 

2008 0 1 5 1 7 0 44.1558442 121.428571 485.714286 

2009 0 2 3 0 5 0 123.636364 102 0 

2010 1 3 6 0 10 170 92.7272727 102 0 

2011 1 5 6 0 12 141.666667 128.787879 85 0 

  Total 2 11 20 1 34 0.05882353 0.32352941 0.58823529 0.02941176 
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3 Objective 

This study focuses on the quantitative analysis of 
the growth of literature in recommender system 
with Computationally Intelligent (CI) techniques 
like fuzzy logic, neural networks, genetic 
algorithms. It aims at the exploratory view of the 

trajectory of growth of recommender system with 
the help of various statistical tools and techniques. 

The study uses Web of Science (WoS) as the 
source database due to its large temporal 
coverage of over 90 million articles.  

The analysis of the data is also presented with 
various scientometric indicators Relative Growth 

3 

2012 1 4 10 3 18 80.1587302 80.1587302 119.385343 88.5964912 

2013 0 3 11 4 18 0 60.1190476 131.323877 118.128655 

2014 3 4 11 6 24 180.357143 60.1190476 98.4929078 132.894737 

2015 3 17 15 6 41 105.574913 149.56446 78.619616 77.7920411 

  Total 7 28 47 19 101 0.06930693 0.27722772 0.46534653 0.18811881 

4 

2016 4 14 26 6 50 238.545455 117.74359 104.638037 51.7894737 

2017 1 18 34 16 69 43.2147563 109.698997 99.1553303 100.076278 

2018 4 21 49 25 99 120.477502 89.1996892 99.597199 108.984583 

2019 2 25 54 29 110 54.214876 95.5710956 98.7841606 113.779904 

  11 78 163 76 328 0.03353659 0.23780488 0.49695122 0.23170732 

Table 5. Author productivity based on highest citations 

No Author Name No. of Documents Citations Total Link Strength 

1 Koren, y 2 1017 0 

2 Herrera-viedma, e 17 699 33 

3 Martinez, l 8 412 10 

4 Porcel, c 9 395 19 

5 Bobadilla, j 3 394 6 

6 Hernando, a 3 394 6 

7 Ortega, f 3 394 6 

8 Herrera, f 2 302 2 

9 Lu, j 8 218 15 

10 Zhang, gq 7 214 15 

11 Luo, x 10 153 29 

12 Xia, yn 8 149 25 

13 Hu, qs 7 146 22 

14 Zhang, gq 4 143 10 

15 Wu, ds 4 143 10 

16 Bharadwaj, kk 6 141 4 

17 Peis, e 4 133 10 

18 Perez, ij 3 131 3 

19 Tikk, d 4 118 3 

 

Computación y Sistemas, Vol. 25, No. 1, 2021, pp. 193–221
doi: 10.13053/CyS-25-1-3891

A Scientometric Analysis of Transient Patterns in Recommender Systems with Soft Computing Techniques 199

ISSN 2007-9737



Rate (RGR), Doubling Time (DT), Co-Authorship 
Index (CAI), Author Productivity, Degree of 
Collaboration, Research Priority Index (RPI), Half 
Life, Country wise Productivity, Citation Analysis, 
Page Length Distribution, Source Contributors.  

The motive is to provide the reader with the 
cumulative information pack of recommender 
system with CI techniques. 

4 Data Collection and Data Set 
Methodology 

The data (research papers) on recommendation 
system have been extracted from Web of Science 
database for a period of almost 14 years. It starts 
from the growth of recommender system in the 
market in years 2002-2003 with all the 
developments that have occurred in recommender 
system till 2017. 

The database source for extraction of articles is 
Web of Science (WoS), previously known as ISI 
Web of Knowledge. It has a temporal coverage 
since 1900 to present. WoS is chosen due to its 
large coverage of records (nearly 90 million). The 
details of the dataset acquired from WoS are 
presented in Table 1.  

A total of 519 articles were obtained. Out of 
these, the initial screening of the articles gave 83 
cleaned articles in the database. Out of 436, 108 
articles were not found suitable and 
cleaned  manually.  

The articles are discarded and regarded as 
inappropriate because of irrelevance to the 
context, incomplete or redundant information or not 
relevant to the search string. The refined set of 328 
articles is given in the reference section [1-240, 
243-330]. 

The downloaded research publications have 
various fields per publication. Table 2 gives a 
sample publication format from the 
WoS Database. 

The in-depth scientometric analysis has been 
done on Authors, Author Keyword, Source, Title, 
Abstract, Year of Publication, Times cited, 
Beginning and Ending page count, subject 
category, Publisher. 

5 Analysis 

The research articles have been studied under the 
umbrella of scientometrics indicators. The major 
indicators, which have been studied, are Relative 

 

Fig. 5. Co-authorship analysis on a minimum document count of 2, out of which the largest set of items (authors) consists of 13 

authors 
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Growth Rate (RGR), Doubling Time (DT), Co-
Authorship Index (CAI), Author Productivity, 
Degree of Collaboration, Research Priority Index 
(RPI), Half Life, Country wise Productivity, Citation 
Analysis, Page Length Distribution, Source 
Contributors. Recommender systems have been 

extensively amalgamated with various soft 
computing techniques. 

The year wise growth of recommender system 
with fuzzy logic, neural network and genetic 
algorithms is shown in Figure 3. The detailed 
description of these indicators in given in this 
section and the results are tabulated for effective 
visual analysis. 

5.1 Relative Growth Rate (RGR) and Doubling 
Time (DT) 

The mean relative growth rate is presented in 
Equation  1: 

𝑅𝐺𝑅 =  (ln 𝑀2 − 𝑙𝑛𝑀1)/(𝑡2 − 𝑡1). (1) 

The relative growth rate is the average number 
of articles/pages published per unit time [31]: 

𝐷𝑇 =
(𝑡2 − 𝑡1) ∗ 𝑙𝑛2

𝑙𝑛 𝑐2 − 𝑙𝑛 𝑐1
 , (2) 

where, M1 and M2 are the amount of published 
articles in time period t1 and t2 respectively. 
Doubling Time (DT) is defined as the amount of 
time required by the research publications to get 
double of the existing amount. It is calculated from 
Equation 2 as follows:  

The RGR and DT for published articles since 
2002 is given in Table 3. 

5.2 Co-Authorship Index (CAI) 

Co-authorship Index (CAI) is the measure of 
collaboration between researchers for enhanced 
research productivity and increased specialization 
[241]. It is also well noted that effective 
collaboration leads to meaningful insights into the 
domain. This study uses 480 research articles for 
finding the CAI and to explore the relationships 
between the research output and amount of 
collaboration. A careful analysis of the articles is 
done on single author, two authors, and multiple 
author and mega author publications. Individual 
CAI’s are calculated. 

The results are tabulated in Table 4 (SA: Single 
Author; TA: Two Author; MuA: Multiple Author; 
MeA: Mega Authored). The author productivity is 
also computed based on citation count of the 
articles published by the author. A comprehensive 
list is given in Table 5. It is also interesting to note 
that the highest cited research article is authored 

 

Fig. 6. The graphical representation of Research 

Priority Index of different countries 

Table 6. Research Priority Index of different countries 

Country 
Peoples  

R China 
USA Spain Australia India 

Growth 101.79 96.36 109.6 107.7 79.34 

Table 7. VOS viewer analysis 

Areas Item Clusters Link 
Total 
Link 

Strength 

Genetic algorithm 
based 

Recommender 
System 

12 3 33 41 

Neural Network 
based  

Recommender 
System 

9 2 32 42 

Probabilistic 
theory based 

Recommender 
System 

16 15 27 28 

Fuzzy logic based 
Recommender 

System 
31 7 82 111 

Table 8. Percentage of distribution of page length 

Pages Frequency Percentage 

3-6 17 4.59 

6-10 75 20.27 

10-20 207 55.95 

20+ 71 19.19 

 370 100 
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by multiple authors and the author has a low 
research article count. This is shown in figure 5. 

5.3 Degree of Collaboration 

The degree of collaboration metric is used to 
indicate the research collaboration in a study Eq. 3: 

𝐶 = 𝑁𝑚/𝑁𝑚 + 𝑁𝑠 , (3) 

where C is the collaboration degree, Nm is the 
multiple authored papers and Ns is the number of 
single authored papers. The value of degree of 
collaboration is 0.94. 

 
Fig. 7. Network visualization of association of various countries 

 

Fig. 8. Density plot for prominent terms (indicative of the used techniques) 
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5.4 Research Priority Index (RPI) 

Research priority index is used to apply cross 
national comparisons. It is given by Equation 4: 

𝑅𝑃𝐼 =  
𝑝𝑖𝑗/𝑝𝑖𝑜

𝑝𝑜𝑗/𝑝𝑜𝑜 
∗ 100 , (4) 

where, pij is #publications of country i in j sub field; 
pio is the #publications of country i; poj is 
#publications of all countries in sub field j; and poo 
is #publications of all countries. Figure 6 shows the 
country wise research output of publication. The 
top 5 countries have been chosen to indicate the 
research priority index. 

The subfields for RPI are computer science, 
engineering, operations research and 
telecommunication. Table 6 shows the RPI of 
different countries which contribute to the research 
in recommender system using soft computing 
techniques in computer science.  

Evaluation of RPI=100 indicates average RPI; 
RPI>100 indicates higher RPI and RPI<100 
indicates lower RPI. Table 7 indicates the growth 

with respect to link strength (VOS viewer analysis) 
in genetic algorithm, neural network, probabilistic 
analysis and fuzzy logic. 

5.5 Half-Life 

The half-life of a quantum of literature is defined as 
the time by which one half of the article, which is 
published currently in the literature 
becomes obsolete. According to [242], the total 
number of cumulative articles is 380, which give a 
median of 190. So the half-life of this literature is 
observed by subtracting the year (which achieved 
a score card of 190) from the year which held the 
first article on recommender system.  

Therefore, the half-life of this quantum of 
literature is 12 years. A longer half-life is an 
indication of stable literature, which indicates that 
the tools and techniques do not change rapidly. On 
the contrary, a short half-life is equivalent to rapid 
obsolescence.  

This is also validated from Figures 9 and 10, 
which indicate that the tools and techniques 
applied to the designing of recommender system 
do not change at a very fast pace. 

5.6 Control Terms in Research Front 

There are terms, which are frequently used with 
the recommender system. The analysis of these 
terms and its very existence support the 
hypothesis that these areas are more influential 
than others. Figure 8 depicts the unique words 
from the corpora with the sum of their frequencies. 
It is observed that the terms corresponding to fuzzy 
logic are more prominent. 

Whereas terms belonging to other soft 
computing areas such as neural network or genetic 
algorithm are not very prominent. A careful 
analysis of the peer-reviewed publication reveal 
that the use of fuzzy logic is extensive in the area 
of recommendation system. 

The prominent terms were clustered into Figure 
8 to obtain a deep insight. Figure 11 depicts the 
sum of frequencies of unique keywords. These 
keywords are used to categorize the research 
publications in various areas. The categorization is 
done in three different areas – first, algorithms, 
data mining, e-commerce [243-261] second, fuzzy 
linguistic modelling, fuzzy logic and fuzzy sets 
[262-277] and third, personalization, 
recommendations [278-330]. 

 

 
Fig. 9. Half life of the quantum of literature 

 

 
Fig. 10. Average number of citations year-wise 
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5.7 Citation Analysis 

The term research front was first introduced by 
Price in 1965 [331]. He studied the tendency of a 
researcher to cite an article. He found that the 
researchers cite the most recently published 
articles first. Learning to analyze the citation 
pattern of recommendation system which use soft 
computing techniques show two types of cite 
patterns – one which have high citation count and 
two, which have peaks in short interval of time. 

Both the patterns have individual capacity to 
build the growth rate of the domain. Figure 12 
shows the citation count has a peak in year 2009, 
where the published article (although less in 
number) laid the foundation stone of the 
recommendation systems using matrix 
factorization (Koren et al.) method. Since then, the 
growth is uniform with citation peak falling in 
year  2009. 

5.8 Distribution of Page Length 

The distribution of page length is presented in 
Table 8. The maximum articles are with page 
length of 10-20 pages and contribute to 55.95% of 
the total number of articles of 370.  

The average length of page varies in four 
brackets as given in Table 8. The average page 
length distribution over the years have seen an 
increasing graph from year 2006-07, then a 
decrease in 2008 and again a high from 2009 to 
2016 with a slight decrease in 2012 (shown in 
Figure 13). 

5.9 Source Contributors 

The WoS database was accessed to find out the 
journals, which published the highest amount of 
research papers in recommender system with soft 
computing paradigm. Based on the analysis of the 
corpus, Expert System with Applications came out 
to be the highest contributor to the knowledge base 
with a total paper count of 40 peer-reviewed 
research articles.  

Following it are the Journal of Information 
Sciences and IEEE Transactions with a count of 26 
research articles each. Other journals like ACM 
Transactions, Neuro-computing, Knowledge and 
Information System, Engineering Applications of 
Artificial Intelligence, Fuzzy sets and Systems, 
Electronic Commerce Research and Applications, 

 
 

Fig. 11. Sum of frequency showing unique words (the 
figure boxes above illustrate the 
techniques/applications of recommender system with 
soft computing techniques in three broad zones: 
recommendation, fuzzy logic and data mining in e-
commerce) 

 

Fig. 12. Average number of citations (year-wise) 
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using fuzzy clustering/ Social 
Recommendations using Fuzzy 
Logic to link prediction/Geo-
demographic Analysis using 
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Multi-type clustering based 
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Value Decomposition and 
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Journal of Intelligent Information System and 
Journal of Computers are some of the popular 
publishing sources (Figure 14). 

6 Conclusion 

A large volume of literature on Recommender 
System with soft computing techniques for a period 
of 2002-2017 recorded in Web of Science has 
been studied and analyzed. Various scientometric 
tools have been employed to understand the 
pattern of growth in this field.  

Based on the results and findings, following 
observations have been made. A total of 370 (Out 
of 391) were studied for a period of 15 years. Till 
2009, the growth had a slow pace. After 2009, this 
research area has shown an escalating growth in 
the number of research publications. Significant 
growth in the literature has been noticed in the last 
nine years. More than 80% of the growth has been 
observed after 2009 (Figure 3). 

The maximum number of articles have been 
published from Peoples Republic of China (115 
records; 30%), followed by USA, Spain, Australia, 
India. India has a total 6.6% of share in total output. 

The growth rate has turned up linearly till 2007 
after which there is a slight decline in year 2008. 
After 2009 there has been a consistent growth of 
the output of published articles (Table 3). The 
mean relative growth rate and doubling time are 
1.20 and 0.73 respectively. 

With the growth of the research area in 
recommendation algorithms, it is important to note 
the nature of co-authorship pattern. Table 5 
summarizes the research articles published by 
single author, two authors, three and four authors 
and more than four authors.  

It can be observed that the CAI for initial block 
of four years is high for two authors, which 
gradually shifted to three and four authors in block 
2 and 3. Initially, the CAI (two author) is 33% and 
55% more than CAI (single author) and CAI 
(multiple author). The growth has seen significant 
increase in the co-authorship pattern around the 
year 2009, with nearly a rise of 70%.  

The applications of recommender system are 
studied on a total of 11 subfields (Computer 
Science, Engineering, Operations Research 
Management, Science, Telecommunications, 
Automation Control Systems, Business 
Economics, Mathematics, Information Science 
Library Science, Science Technology and other 
topics and Physics). Out of which “computer 
science”, “Engineering”, “Telecommunication” and 
“operations research” were considered (by 
understanding the importance of recommender 
system in these sub fields). 

The Research Priority Index (RPI) of Peoples R 
China, Spain and Australia >100 indicates a higher 
RPI whereas India and USA have lower RPI 
(<100). 

The collaborative degree is 0.94, which depicts 
that the collaborative nature of research is growing 
and shows a positive remark on the research front. 

On a more physical analysis of % of distribution 
of pages over a period of time indicate that 10-20 
page length has the maximum value as compared 
to 3-6, 6-10 and 20+. The citation pattern is 
analysed with the most cited article referred most 
of the time. Although the authors of highly cited 

 

Fig. 13. Year-wise average number of page length 

of articles 

 

Fig. 14. The major source contributors 
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research articles have a low document number 
(co-related from Table 6). 

In the last eight years, the problem of 
recommendation is studied on various specific 
applications as well as in domains like Cold 
Start/Convergence/Data Sparsity/Scalability/ 
Noisy Data; modelling and predicting user 
preferences/temporal dynamics of user 
preferences; Trust Model; Social 
Recommendation; Group Recommendation; 
Concept of Heterogeneous Network/feedback; 
context aware recommender system; Rating Matrix 
Optimization; Novel Approaches to Matrix 
Factorization; Location/Network Based 
Information; Optimizing Recommendations/ 
Improving Prediction Accuracy/Improving 
Similarity Measures/ease of access of information; 
Medical Diagnosis; Ontology Based solution; 
Quality of Recommendation; Multi-criteria Decision 
Making; Attacks/Privacy.  

This scientometric study comprehensively 
explains the momentum of recommender system- 
first, for designing a better recommendation 
system by carefully analyzing the previous 
researches and second, for modelling a new 
recommendation system which overcomes the 
limitation of previous recommendation systems. In 
this paper, two fold strategies for understanding 
recommender system with soft computing 
techniques is employed. 

First, for effectively designing and modelling a 
recommender system, we present a detailed 
analysis of the growth of recommender system in 
the last 15 years.  

This study justifies an elegant group of 
parameters, which help in the micro and macro 
level analysis of the literature. Second, a 
comprehensive analysis of the domains in which 
recommender system is employed with an 
emphasis on the solution strategy. The analysis 
further helps in understanding the two specific – 
areas, first, where there are research work in 
abundance and second, where is the scope of 
further improvements.  

This study can provide valuable information for 
the academicians, research scholars, and people 
interested in scientometric analytical views of 
recommender system.  

7 Discussion on Future Directions 

This age of recommendation systems has seen a 
lot of research focused on improving the prediction 
of ratings/user preferences/modelling user 
behavior under uncertainty/improving basic 
approaches to improve cold start on both user and 
item, reduce data sparsity and increase the 
accuracy of recommendation. The idea is to design 
a computationally affordable recommender 
system, which takes reasonable storage space, 
and have low learning complexity.  

During this study, the authors realize to 
highlight some points, which can be of use to the 
recommender community. The following points are 
enumerated for discussion, which leads to 
numerous future directions in field of design of 
recommender systems: 

1. Identify and deal with situations where 
demands are unclear and data is scarce. 

2. Design a recommender system, which has 
enhanced functionality, usefulness and ease 
of use for user requirements. 

3. Building a more reliable social trust network. 

4. Quality of recommendation should be 
enhanced and precision should be high. 

5. For low learning complexity of recommender 
systems, boosting and co-ordinate descent 
can be worked out. 

6. Using cognitive maps in different layers of 
analysis can be done with fuzzy rules, dynamic 
update of weights and formulation of 
mathematical equations. 

7. Designing effective ways to elicit implicit user 
information left on social media by the user. 

8. Finding innovative ways to attract the users to 
rate more and more web pages. 

9. Analyzing qualitative aspects that are 
important for users such as diversity, 
coverage, and serendipity in 
recommendations should also be considered. 

10. In Decision making problems – locality 
awareness, geo demographic analysis, rating 
sparsity, undetermined nature of ratings 
should be analyzed carefully. 

11. Recommender system for digital products like 
e-greeting card and medical diagnosis should 
be investigated more deeply. 

12. Analyzing the impact of the socio-cultural 
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aspect of users/ coupling relationships 
between users and ratings/ coupling learning 
has a great influence in business analytics. 

13. Evolutionary algorithms for user relevance 
feedback can be designed with effectiveness 
in recommendation. 

14. Identification of social trust network in 
recommendation system. 
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