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Abstract. A new type of Neuro-Fuzzy Cognitive 

Temporal Models (NFCTM) is proposed for predicting 
multidimensional time series (MTS) taking into account 
the fuzzy trends of all MTS components. NFCTMS allow 
predicting the MTS in conditions of non-stochastic 
uncertainty, non-linearity of mutual influence, partial 
inconsistency and significant interdependence of the 
MTS components, as well as in conditions of small 
samples. This takes into account the direct and indirect 
mutual influence of all the MTS components with 
different time lags relative to each other. To carry out 
temporal changes in specific MTS components the 
original neuro-fuzzy models of RecANFIS (Recurrent 

Adaptive Neuro-Fuzzy Inference System/Model) type 
are applied, that: firstly, allow to save the predicted 
values of the MTS components in the range of “liding-
window” time series; secondly, identify fuzzy trends of 
the components of the MTS in the range of “sliding-
window” time series; thirdly, adaptively take into account 
fuzzy trends of the MTS components based on the fuzzy 
mappings. An original way of a coherent learning 
NFCTM is described, which lies: firstly, in training 
RecANFISs for each concept NFCTM (MTS component) 
taking into account fuzzy trends; secondly, in coherence 
of all RecANFISs between each other to maximize the 

prediction accuracy of each of the MTS components 
without compromising the prediction accuracy of at least 
one of the other MTS components. Experimental studies 
have been carried out and the results of using the 
proposed NFCTM for multidimensional forecasting of the 
urban environment state in Moscow in conditions of a 
complex epidemiological situation have been obtained. 

Keywords. Neuro-fuzzy cognitive temporal model, 

recurrent adaptive neuro-fuzzy inference system/model, 
multidimensional time series. 

1 Introduction 

Various approaches are used to predict 
multidimensional time series (MTS), which are 
usually based on methods for predicting one-
dimensional time series [1, 2]. Limitations of these 
methods are: complexity of accounting for the 
indirect influence of the interdependent MTS 
components in the conditions of uncertainty, the 
non-linear nature of their interaction [3, 4], their 
lack of consistency, and the complexity of 
identifying and accounting for the trends of each of 
the MTS components [5, 6]. 

Methods for predicting time series using fuzzy 
and neural network models are being actively 
developed. However, their limitations are the 
complexity of accounting for the direct and indirect 
interaction of the MTS components. 

Methods of fuzzy cognitive modeling allow us to 
take into account the direct and indirect interaction 
of the components of the MTS [7, 8, 9, 10]. 
However, the use of these methods to predict the 
MTS is limited by: the capabilities of the used 
system dynamics models of the MTS components; 
the lack of consideration of interference MTS 
components with their different time lags relative to 
each other; the lack of approaches to coordinated 
setting of each of the MTS components; MTS small 
forecasting samples; identification of the trends of 
the MTS components. 

The study deals with the use of Neuro-Fuzzy 
Cognitive Temporal Models (NFCTM) for MTS 
predicting, taking into account the fuzzy trends of 
each of the MTS components. NFCTM allow 
predicting the MTS in conditions of non-stochastic 
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uncertainty, non-linearity of interaction, partial 
inconsistency and significant interdependence of 
the MTS components in conditions of small 
samples. This takes into account the direct and 
indirect mutual influence of all the MTS 
components with different time lags relative to 
each other. 

Proposed NFCTM include a lot of concepts 
(relevant to the MTS components), which are 
connected by subsets of arcs, weighted by fuzzy 
degrees of influence, arranged in chronological 
sequence taking into account time lags (delays) of 
the respective MTS components relative to 
each  other. 

To carry out the temporal changes in the 
individual NFCTM components MTS original 
neuro-fuzzy models of type RecANFIS (Recurrent 
Adaptive Neuro-Fuzzy Inference System/Model) 
are used, that: firstly, allow to save the predicted 
values of the MTS components in the range of 
“sliding-window” time series; secondly, identify 
fuzzy trends of the MTS components in the range 
of “sliding-window” time series; thirdly, take into 
account adaptive fuzzy trends of the MTS 
components based on the fuzzy mappings. 

An original way of a coherent learning NFCTM 
is described, which lies: firstly, in training 
RecANFIS for each concept NFCTM (MTS 
component) taking into account fuzzy trends; 
secondly, in coherence of all RecANFISs between 
each other to maximize the prediction accuracy of 
each of the MTS components without 
compromising the prediction accuracy of at least 
one of the other MTS components. 

Experimental studies have been carried out and 
the results of using the proposed method were 
obtained on the example of the problem of 
multidimensional analysis and forecasting of the 
urban environment state in Moscow. 

2 The Problem of Forecasting 
Multidimensional Time Series 

Previously in the work [10] a formalized 
representation of the MTS, focused on accounting 
for the mutual influence of the MTS components 
was proposed: 
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where S – MTS;  ( ) ( ) ( )

1 2, , ...,t t t

t NS s s s  – time “slice” 

of the MTS at the t-th instant of time; 
( )t

js  – value of 

the j-th MTS component at the t-th instant of time; 
i

jL  – maximum value of the time lag (retrospective) 

of the j-th component relative to the i-th; 
,i j  – 

operator for accounting for mutual influence of the 

j-th and i-th MTS components; iF  – conversion to 

get ( )t

is  taking into account the fuzzy trends of the 

i-th MTS component, 1, ..., ,i N  N – the number of 

MTS components. 

The proposed formalized representation of the 
MTS illustrates the possibility of taking into account 
the direct and indirect interaction of the MTS 
components relative to their different time lags. 

The formalized statement of the problem of 
multidimensional analysis and forecasting of the 
state of complex systems and processes for well-
coordinated MTS components assumes the 
possibility of minimizing forecasting errors 
concurrently for all MTS components and is 
presented as follows: 
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where S  – error of the forecast of the MTS in 

general; iS  – error in predicting of the i-th MTS 

component; 
 t
is – reference value of the i-th MTS 

component;  
( )

t

i curs  – the forecast value of 
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the i-th MTS component; N – the number of 

MTS counts. Different metrics can be used to 

estimate errors in predicting 
iS  of each of the ( )t

is  

MTS components, for example, the mean-
square deviation: 

    
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The multi-criteria nature of the MTS prediction 
makes it necessary to minimize errors concurrently 
for all the MTS components. However, as a rule, it 
is impossible to achieve in real conditions of non-
stochastic uncertainty, non-linearity of interaction, 
partial inconsistency and significant 
interdependence of the MTS components. 

Therefore, we apply a compromise approach to 
the multi-criteria estimation of the forecast error (

S ) of the MTS in general based on the 

generalized Edgeworth-Pareto principle [11], 
which, in relation to the problem being solved, is 
expressed in the fact that it is impossible to 
maximize the prediction accuracy of any MTS 
component without deterioration of prediction 
accuracy of at least one of the other 
MTS components. 

3 Description of Neuro-Fuzzy 
Cognitive Temporal Models 

The NFCTM can be presented in the following way: 
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where С – multiplicity of NFCTM concepts that 

define the values of the corresponding MTS 

components; iF  – fuzzy temporal transformation 

implemented by the corresponding concept iC  

taking into account the fuzzy trends of the 
corresponding MTS component; N – the number of 

NFCTM concepts; 
 t
is  – the predicted fuzzy value 

of the concept iC  at the t-th instant of time; 

   1
,...,

j
it Lt

j js s
   

 
 – a subset of the input temporal fuzzy 

variables of the concept iC , related to the 

corresponding output temporal fuzzy variables of 

the concept jC ; iN  – the number of NFCTM 

concepts directly related to the concept iC ; 
j

il  – 

time lag (delay) for the corresponding input 

temporal fuzzy variable 
 j

it l

js


  of the concept iC , 

0, ...,j j

i il L ; W  – a set of direct influence relations 

between all pairs of NFCTM concepts; ijW  – a 

subset of fuzzy values that defines a 
chronologically ordered set of fuzzy influence 

degrees  j
it l

ijw
  of the concept jC  on the concept iC  

taking into account the time lag 
j

il ; ij  – fuzzy 

operator for accounting for the degree of mutual 

influence of the output variable of the concept jC  

on the input variable of the concept iC , in the case 

of fuzzy variables, it is advisable to use the T-norm 

as the operator ij . 

Justification of time lags 
j

il  and determination 

of the degree of mutual influence 
 j

it l

ijw


 for the 

NFCTM concepts is a separate task, which can be 
solved using various (statistical or expert) methods 
of analyzing retrospective data, based on the 
establishment of direct interdependence between 
the MTS components. 

For example, multiple linear regression method 
can be used to determine the interaction between 
the time lags of the MTS components [12, 13]. 

To implement fuzzy temporal transformations

iF , the original neuro-fuzzy models of the 

RecANFIS (Recurrent Adaptive Neuro-Fuzzy 
Inference System/Model) are further proposed. 
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4 Method for Designing, Training, 
and Using Neuro-Fuzzy Cognitive 
Temporal Models for Predicting 
Multidimensional Time Series 

An example of building and using NFCTM for 
multidimensional forecasting of the urban 
environment state in Moscow in conditions of a 
complex epidemiological situation is 
under consideration. 

The state of the urban environment is 
characterized by the state of its heterogeneous 
objects, systems and infrastructure (hereinafter 
referred to as urban environment objects): of real 
estate, engineering and transport infrastructure, 
ecosystem [14, 15]. Therefore, its assessment 
cannot be reduced to a single comprehensive 
indicator. The method includes the 
following stages. 

Stage 1. Determination of significant 
MTS components. 

Thus, based on the results of previous studies [16], 
[17] the following most significant factors (MTS 
components) that characterize the state of the 
urban environment have been identified: C1 – 
ecology of the urban environment; C2 – capacity of 
urban environment infrastructure; C3 – income 
level of the population; C4 – industrial consumption 
of fuel and energy resources; C5 – population life 
quality; C6 – sanitary and epidemiological situation. 

Stage 2. Determination of the mutual influence of 
the MTS components for different time lags. 

To correctly analyze the mutual influence of the 
MTS components, the retrospective MTS data 
is normalized: 
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of the MTS components, we will use a notation 
 j

it l

is


. 

To analyze the mutual influence of the MTS 
components a fuzzy extension of the method of 
multiple linear regression is reasonably chosen 
[18] due to the peculiarities of the analyzed 
urban factors: 
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where 
 j

it l

ja


 – fuzzy regression coefficients;  j
it l

jb


 – 

fuzzy free terms (usually equal to 0). 

Obtained values of fuzzy coefficients 
 j

it l

ja


 of 

regression are then normalized and reduced to a 
range [0, 1]. After that, time lags whose modal 
values of fuzzy coefficients are less than a certain 
threshold are excluded from consideration (for the 
example under consideration, less than 0.4). 

And, thus, a subset of time lags is defined 
corresponding to these fuzzy values 

  | 0, ...,
j

it l j j
ijij i iW w l L


   of the influence indicators of 

the source-concept jC  on the concept-receiver iC

. The formed matrix W  of fuzzy relations for the 
NFCTM concepts of urban environment state is 
presented in Table 1. The formed matrix W of fuzzy 
relations of influence between the 
NFCTM concepts. 

Stage 3. The formation of the NFCTM structure. 

The formation of the NFCTM structure consists in 
setting subsets of arcs (corresponding to the time 
lag) between the concepts of NFCTM, weighted 

with fuzzy values  j
it l

ijw
  of their influence on each 

other. The structure of the NFCTM for 
multidimensional forecasting of the urban 
environment state in Moscow is shown in Figure 1. 

Stage 4. The designing of RecANFISs iFS  for 

implementing fuzzy temporal transformations iF . 
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As RecANFISs iFS , that implement fuzzy 

temporal transformations iF , original neuro-fuzzy 

RecANFISs are offered. These models provide the 
formation, storage and output of the predicted 
fuzzy values of the MTS components with the time 
delays required for NFCTM, taking into account 
fuzzy trends. 

Input temporal fuzzy variables of the RecANFIS 

iFS  of the concept iC  are related to the output 

temporal fuzzy variables of those concepts that 

directly affect the concept iC . In the process, the 

input temporal fuzzy variables iC  are pre-

“weighted” by the corresponding fuzzy degrees of 

influence 
 j

it l

ijw


: 

     
Т , 0, ..., .

j j j
i i it l t l t l j j

j ij j i is w s l L
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The output temporal fuzzy variables of the 

RecANFIS iFS  of the iC  are intended for 

generating, storing, and displaying predicted 
values of the i-th MTS component corresponding 
to reasonable time lags (see Table 1). 

To designing RecANFISs iFS  a priori 

information about the MTS components received 
from experts can be used, as well as data obtained 
because of evaluation or measurements. 

In the first case, it is assumed that the problem 
of ensuring the completeness and inconsistency of 

the database of fuzzy rules of the RecANFIS iFS  

has been solved in advance. If only experimental 
data is known, then the task is to identify this 
model. Then to solve this problem, well-known 
methods can be applied to extract fuzzy rules from 
training samples, for example, fuzzy clustering 
[19]; fuzzy self-organizing maps T. Kohonen [20]; 
adaptive fuzzy associative memory B. Kosko [20]; 
method of gradually increasing splitting of the 
feature space [22] and others. 

Table 1. The formed matrix W of fuzzy relations of influence between the NFCTM concepts 

W 
j

il  1C  2C  3C  4C  5C  6C  

1C  
1 0 0.75 0 0.52 0 0 

2 0 0.84 0 0 0 0 

3 0 0.40 0 0.40 0 0 

2C  
1 0 0 0.79 1.0 0 0 

2 0 0 0 0 0 0 

3 0 0 0 0 0.52 0.57 

3C  
1 0.55 0 0.68 0.50 0.40 0.43 

2 0 1.0 0 0.46 0 0 

3 0.61 0 0 0.88 0.99 0 

4C  
1 0 0.48 0.67 0.79 0 0 

2 0 0.41 0 0.43 0 0 

3 0.41 0.40 0 0.54 0.49 0 

5C  
1 0 0.68 0.62 0.42 0.45 1.00 

2 0 0.40 0 0 0.48 0 

3 1.00 1.00 1.00 0.47 1.00 0.54 

6C  
1 0 0 0 0 0.53 0.59 

2 0 0 0 0 0.51 0 

3 0 0 0 0 0 0 

Notes 

1. For clarity, Table 1 shows only modal values of fuzzy degrees of influence (without their blurring degrees) between 
the time lags of the MTS components. 

2. Modal values and the degree of blurring of fuzzy influence indicators are further changed in the process of 
parametric setting of the NFCTM. 
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There is often a mixed case when the initial 
database of model rules is constructed based on 
heuristic assumptions, and its parametric setting 
(training) is carried out based on a training sample. 

Let’s consider this particular case using the 
example of constructing the structure and then 

parametric configuration of the RecANFIS 1FS . 

The input fuzzy variables of the RecANFIS 1FS  

are 
         1 3 3 3 3

3 3 4 5 11 , , , ,
t t t t t

S s s s s s
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output fuzzy variables are 
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1 1 11 , ,
t t t

S s s s
 
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As an example, a separate fuzzy rule is given 

for the RecANFIS 1FS  for the concept 1C  of 

the NFCTM: 
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Fig. 1. The structure of the NFCTM for multidimensional forecasting of the urban environment state in Moscow 
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with , ,L M H  – fuzzy sets for the rules of the 

RecANFIS 1FS . The Figure 2 shows an example 

of the structure of the proposed RecANFIS 1FS . 

The structure of RecANFIS 1FS  consists of the 

following layers of elements. 

Layer 1. At the output of elements of this layer, the 
degrees of truth are determined for the current 
values of input variables relative to the 
corresponding fuzzy statements assumptions and 
all model rules: 

             

                    
  
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1 1 1 1 1 1( 1) ( 1) ( 1) ( 1) ( 1) ( 1)
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 

    

          



       
 

    

 

j j
i it L t Lt t t t

N NL M H

t t t t t tt t t t t t

i i i i i i i i i i i iL L M M H H

t

i iL

s s L s s M s s H

s s T s s T s s T

s
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( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1
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...
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where 
 1t

is


 – fuzzy temporal variables;   – the 

union operator of fuzzy variables; 
  1t

iL
s


 – 

linguistic term of a fuzzy input variable; 

, 1, ..,t

iT      – a fuzzy tendency detected using 

the element iFT 
, 1, ..,  ;   – range of “sliding 

window” of the i-th MTS component; 
  1t

iL
s

  – 

modified term based on fuzzy tendency; i

  – 

fuzzy mapping operator of a fuzzy variable taking 

into account the detected fuzzy tendency, 1..  ; 

, ,L M H  – examples of linguistic terms of 

input variables. 

The fuzzy mapping operator i

  modifies the 

fuzzy variable 
 
1

t
s


 in accordance with the 

identified fuzzy tendency in the range   of the 
“sliding window”. For example, the following types 
of fuzzy trends can be represented: growth, weak 
growth, stability, slight fall, fall. Fuzzy displays with 
fuzzy trends are illustrated in Figure 3. 

Layer 2. Layer elements are intended for 
aggregation based on the T-norm operation (here, 
min-conjunction) of the truth degrees of rule 

assumptions. For the p-th rule in question 
(p = 1, ..., P). 

Layer 3. Layer elements activate conclusions of 
the corresponding rules according to the truth 
degrees of their assumptions based on 
the operation.  

For the rule in question: 

     

   

1 3 3

1 3 4

3 3

5 1

, , ,

min ,

,

  



 

  

 

        
      
      

     
    

    

t t t

L L M

p
t t

M H

s s s

s s

 

    1 min , .
t

pM
s M   

Layer 4. The layer element carries out the max-
disjunction operation, accumulating the activated 
conclusions of all the model rules: 

           1 1 1 1max , ..., , ..., .  
t t t t

L M H
s s s s  

Layer 5. Elements are designed to detect a 

fuzzy trend based on values      , ...,
t tt t

i iZ s Z s  

with time delay 1, ...,  , implemented using 

elements Z: 

         , ..., , ..., ,

1, ..., .

   

 

   



t t tt t t t t

i i i i iT FT Z s Z s Z s  

Note: Hereinafter (as before) for normalized 

values 
 
,

t

i norms  will use the notation  t
is . 

In addition to the above, the value of the output 

fuzzy variable 
( )t

is  of the componential temporal 

model iFS  of each component iC  is defuzzified 

(reduced to a crisp value 
( )t

is ) using the “center of 

gravity” method [23]. 

Thus, a set of values  ( ) | 1, ...,t

is i N  at the 

output of the corresponding models 

 | 1, ...,iFS i N  comprehensively characterizes 

the predicted state of stability of the urban 
environment at instant of time t. 
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Fig. 2. The structure of the RecANFIS 
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Fig. 3. Illustration of fuzzy mappings depending on the fuzzy tendency 

Computación y Sistemas, Vol. 24, No. 3, 2020, pp. 1165–1177
doi: 10.13053/CyS-24-3-3477

Vadim Borisov, Victor Luferov1172

ISSN 2007-9737



Notice also that in contrast to the Fuzzy 
Cognitive Maps of B. Kosko [23, 24], the use of the 
approach suggested above eliminates the need to 
separately account for positive and negative 
effects by applying the RecANFIS for each 
MTS component. 

Stage 5. Parametric setting (training) 
of RecANFISs. 

The training procedure for each RecANFIS is 
preceded by a procedure for forming a training 
sample to configure the corresponding models for 

detecting fuzzy trends 
( ) , 1, ...,t

iFT     : 

          1
, ..., , ,

1.. , 1, ..., .

 

 

   

 

t t t

i i is k s k T k

k K
 

After generating sets of training examples, the 

construction of models 
( )t

iFS 
 for example, fuzzy 

rule-based models, is carried out: 

   
 

   
 

   
 

IF AND...AND THEN " " ,

...

IF AND...AND THEN " " ,

...

IF AND...AND THEN " " .













    
   
   

    
   
   

    
   
   

t t

i i

t t

i i

t t

i i

s is L s is L T is fall

s is M s is M T is stability

s is H s is H T is growth

 

The identification and use of fuzzy trends 
eliminates the problem of non-stationarity of the 
predicted time series, in addition, it is a feedback 
that gives system stability.  

Table 2. Fragment of the training sample for the RecANFIS 1FS  

Example 
number, 

k 

Values of input variables Values of output 

variable, 
 

1 ( )
t

s k   1

3 ( )
t

s k
  

 3

3 ( )
t

s k
  

 3

4 ( )
t

s k
   3

5 ( )
t

s k
  

 3

1 ( )
t

s k
  

1

1T  

1 0.50 0.50 0.49 0.70 0.54 growth 0.49 

2 0.50 0.50 0.50 0.69 0.54 growth 0.50 

3 0.50 0.50 0.51 0.69 0.54 fall 0.51 

4 0.46 0.50 0.49 0.68 0.55 stability 0.49 

5 0.46 0.50 0.49 0.69 0.54 growth 0.49 

6 0.46 0.46 0.58 0.69 0.56 growth 0.58 

7 0.46 0.46 0.63 0.67 0.56 stability 0.63 

8 0.44 0.46 0.62 0.68 0.56 stability 0.62 

9 0.45 0.46 0.63 0.68 0.54 fall 0.63 

10 0.42 0.44 0.56 0.67 0.52 stability 0.56 

K 0.58 0.58 0.55 0.89 0.49 growth 0.55 

Table 3. Fragment of the training sample for the RecANFIS 1FS  

№ MTS components 
Forecasting error, MAPE, % 

ANN NFCTM 

1. Ecology of the urban environment 7.40 6.91 

2. The infrastructure power of the urban environment 1.51 0.13 

3. Income level of the population 8.72 9.85 

4. Industrial consumption of fuel and energy resources 2.35 1.62 

5. Population life quality 2.12 0.55 

6. Sanitary and epidemiological situation 5.35 5.31 
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After that, a training sample for RecANFISs is 
built based on the prepared training sample 
together with the identified fuzzy trends. 

Using retrospective data, training samples are 

built for each model 
( )t

iFS 
 of the detection of 

fuzzy trends. 

After detecting fuzzy trends, a training sample 
is built for neuro-fuzzy models of the RecANFIS. 
Table 2 shows a fragment of the formed training 
sample for the fuzzy componential temporal model 

1FS . Note that, for clarity, Table 2 shows only 

modal values (without degrees of their blurring) of 
the input and output temporal variables of the 

model 1FS . 

Note that for RecANFIS iFS , the configurable 

parameters are the parameters of the membership 
functions of antecedents and consequents. 

Stage 6. Reconciliation of all fuzzy RecANFISs. 

Reconciliation of all RecANFISs , 1, ...,iFS i N  of 

the NFCTM is carried out after their “personalized” 
parametric setting and consists in such a change 
in parameters of fuzzy degrees of influence 

  | 0, ...,
j

it l j j
ij i iw l L


  between NFCTM concepts 

to ensure the maximization of the prediction 
accuracy of each of the MTS components without 
deterioration of prediction accuracy of at least one 
of the other MTS components. The genetic 
algorithm can be used for this purpose [25]. 

Stage 7. Prediction of MTS. 

Prediction of MTS can be carried out in the 
following modes: 

– multidimensional forecasting for the t-th instant 
of time, i.e. calculating the values of the output 

variables of models , 1, ...,iFS i N  by the 

corresponding sets of values of the input 
variables of these; 

– self-development and predictive assessment, in 
which dynamics modeling is carried out from 
certain situation set by the initial values of all the 
NFCTM concepts, in the absence of external 
influences on it. 

Predictive assessment in its dynamics are 
modeled from certain situation set by the initial 
values of all NFCTM concepts, with external 
influence on the values of concepts and/or 
influence relations between NFCTM concepts. 

5 The Multidimensional Forecasting of 
the Urban Environment State 
in Moscow 

Experiments have been carried out and the results 
of using the NFCTM for multi-dimensional 
forecasting of the urban environment state in 
Moscow in a complex epidemiological situation 
have been obtained (Figure 4). 

Table 3 presents a comparative assessment of 
the results of multidimensional forecasting of the 
urban environment state in Moscow (based on 
historical data from 2000 to 2020) using an artificial 
neural network (ANN) and developed by the 
NFCTM. As a comparison, a multilayer perceptron 
with a single hidden layer of 16 neurons was used, 
which showed the best among the various variants 
of ANN. 

The obtained results of the comparative 
evaluation showed that the use of NFCTM in small 
samples allows increasing the accuracy of the 
MTS forecast by compared to the multilayer 
perceptron with one hidden layer of 16 neurons, 
which showed the best among various variants 
of ANN. 

The new type of Neuro-Fuzzy Cognitive 
Temporal Models is proposed. These models are 
focused on multidimensional prediction of MTS in 
conditions of non-stochastic uncertainty, non-
linearity of interaction, partial inconsistency and 
significant interdependence of MTS components, 
as well as in conditions of small samples with 
fuzzy trends. 

To implement fuzzy temporal transformations of 
concepts, the proposed original RecANFISs are 
used, which provide the formation, storage and 
output of the predicted fuzzy values of the 
corresponding MTS components with the time 
delays required for NFCTM, taking into account 
fuzzy trends. 

The method of constructing, training and using 
NFCTM for MTS predicting taking into account 
fuzzy trends is considered, which includes: 
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– the formation of the structure of the NFCTM, 
which consists in setting the structural 
relations (in the form of displayed time lags) 
between the concepts of the NFCTM, 
weighted by fuzzy values of their influence on 
each other; 

– construction and parametric adjustment of 
RecANFIS for the implementation of fuzzy 
temporal transformations of MTS components; 

– the coordination of all fuzzy componential 
temporal models of NFCTM, which consists in 
such a change of parameters of fuzzy degree 
of influence between concepts NFCTM to 
ensure the maximization of the prediction 
accuracy of each of the MTS components 
without deterioration of prediction accuracy of 
at least one of other MTS components. 

6 Conclusion 

Prediction of MTS is based on a structurally and 
parametrically configured NFCTM and can be 
carried out in the following modes: 

– firstly, direct multidimensional forecasting for 
the t-th instant of time, i.e. calculating the 
values of the output variables of NFCTM 

models 
, 1, ...,iFS i N

 by the corresponding 
sets of values of the input variables of these 
models set each time; 

– secondly, self-development and predictive 
assessment, in which dynamics modeling is 
carried out from certain situation set by the 
initial values of all the NFCTM concepts, in the 
absence of external influences on it; 

– thirdly, a predictive assessment in which 
dynamics are modeled from certain situation 
set by the initial values of all NFCTM concepts, 
with external influence on the values of 
concepts and/or influence relations between 
NFCTM concepts. 

Experimental studies have been carried out and 
the results of using the proposed NFCTM for 
multidimensional forecasting of the urban 
environment state in Moscow in conditions of a 
complex epidemiological situation have been 
obtained.  

Comparative assessment showed that in 
conditions of small samples the use of NFCTM 
allows improving the forecast accuracy of MTS 
compared with the neural network approach, which 
demonstrated one of the best results in solving 
this task. 

 

Fig. 4. Illustration of the results of multidimensional forecasting of the urban environment state in Moscow 

Computación y Sistemas, Vol. 24, No. 3, 2020, pp. 1165–1177
doi: 10.13053/CyS-24-3-3477

Neuro-Fuzzy Cognitive Temporal Models for Predicting Multidimensional Time Series with Fuzzy Trends 1175

ISSN 2007-9737



Acknowledgements  

This work was supported financially by RFBR 
(project no. 19-31-90054) and by the Ministry of 
Science and Higher Education of the Russian 
Federation (project no. FSWF-2020-0019). 

References 

1. Bickel, P.J. & Doksum, K.A. (2015). Chapman and 

Hall/CRC, Vol. 1, pp. 1–556. 

2. Box, E., Jenkins, G.M., Reinsel, G.C., & Ljung, 
G.M. (2015). Time Series Analysis: Forecasting and 
Control. John Wiley & Sons, pp. 1–712. 

3. Hajek, P. & Prochazka, O. (2018). Interval-valued 

intuitionistic fuzzy cognitive maps for supplier 
selection. Czarnowski I., Howlett R., Jain L. (eds) 
Intelligent Decision Technologies 2017. IDT 2017. 
Smart Innovation, Systems and Technologies, Vol. 
72. DOI:10.1007/978-3-319-59421-7_19. 

4. Pedrycz, W., Lu, W., Liu, X., Wang, W., & Wang, L. 
(2014). Human-centric analysis and interpretation of 

time series: a perspective of granular computing. 
Soft Computing, Vol. 18, No. 12, pp. 2397–2411. 
DOI:10.1007/s00500-013-1213-5. 

5. Batyrshin, I., Solovyev, V., & Ivanov, V. (2016). 

Time series shape association measures and local 
trend association patterns. Neurocomputing, Vol. 

175-B, pp. 924–934. DOI:10.1016/j.neucom.2015. 
05.127. 

6. Batyrshin, I., Sheremetov, L., & Herrera-Avelar, R. 
(2007). Perception based patterns in time series data 
mining. Proceeding Studies in Computational 
Intelligence (SCI, Perception-based Data Mining and 
Decision Making in Economics and Finance, 
Springer, Vol. 36, pp. 85–118. DOI:10.1007/978-3-
540-36247-0_3. 

7. Murat, M. & Asan, U. (2021). A compromis a 

compromise-based new approach to learning fuzzy 
cognitive maps. Advances in Intelligent Systems and 
Computing, International Conference on Intelligent 
and Fuzzy Systems, Vol. 1197, pp. 1172–1180. DOI: 
10.1007/978-3-030-51156-2_137. 

8. Papageorgiou, E.I. (2014). Fuzzy Cognitive Maps 
for Applied Sciences and Engineering. Intelligent 
Systems Reference Library, Vol. 54, pp. 395. 

9. Averkin, A.N. & Yarushev, S.A. (2017). Hybrid 

approach for time series forecasting based on ANFIS 
and Fuzzy Cognitive Maps. Proceeding 20th IEEE 
International Conference on Soft Computing and 
Measurements (SCM), pp. 379–381. DOI:10.1109/ 
SCM.2017.7970591. 

10. Borisov, V.V. & Luferov, V.S. (2020). The method 

of multidimensional analysis and forecasting states 
of complex systems and processes based on fuzzy 
cognitive temporal models. Systems of Control, 
Communication and Security, Vol. 2, pp. 1–23. 

11. Abdalla, A. & Buckley, J.J. (2007). Monte carlo 
methods in fuzzy linear Regression. Proceeding 
Soft Computing, Vol. 12, No. 5, pp. 991–996. DOI: 

10.1007/s00500-006-0148-5. 

12. Kasa, S.R., Bhattacharya, S., & Rajan, V. (2019). 

Gaussian mixture copulas for high-dimensional 
clustering and dependency-based subtyping. 
Bioinformatics, Vol. 36, No. 2, pp. 621–628. DOI: 

10.1093/bioinformatics/btz599. 

13. Zolekar, R.B. & Bhagat, V.S. (2015). Multi-criteria 

land suitability analysis for agriculture proceeding 
hilly zone. Remote sensing and gis approach. 
Computers and Electronics in Agriculture, Vol. 118, 
pp. 300–321. DOI:10.1016/j.compag.2015.09.016. 

14. Renn, O., Lucas, K., Haas, A., & Jaeger, C. 
(2019). Things are different today. The challenge of 
global systemic risks. Journal of Risk Research, Vol. 
22, No. 4, pp.  401–415. DOI:10.1080/13669877. 
2017.1409252.  

15. Pesce, M., Critto, A., Torresan, S., Giubilato, E., 
Santini, M., Zirino, A., Ouyang, W., & Marcomini, 
A. (2018). Modelling climate change impacts on 

nutrients and primary production in coastal waters. 
Science of the Total Environment, Vol. 628–629, pp.  
919–937. DOI:10.1016/j.scitotenv.2018.02.131  

16. Klimenko, V.V., Klimenko, A.V., Tereshin, A.G., 
& Mitrova, T.A. (2019). Impact of climate changes 

on the regional energy balances and energy exports 
from russia. Thermal Engineering, Vol. 66, No. 1, 
pp.  3–15. DOI: 10.1134/S00406015 1901004X. 

17. Borisov, V.V., Stefantsov, A.G., Bobryakov, A.V., 
& Luferov, V.S. (2019). A system of fuzzy cognitive 

analysis and modeling of system dynamics. 
Proceeding of the 21th Int. Conf. Problems of 
Control and Modeling in Complex Systems, Vol. 
2475, pp. 312–316. 

18. Fahrmeir, L., Kneib, T., & Lang, S. (2009). 

Regression modelle. Methoden und Anwendungen. 
DOI:10.1007/978-3-540-33933-5_2. 

19. Bezdek, J.C., Keller, J., Krisnapuram, R., & Pal, 
N.R. (2005). Fuzzy Models and Algorithms for 
Pattern Recognition and Image Processing. 
Springer Science and Business Media. 

20. Bezdek, J.C., Tsao, E.C.K., & Pal, N.R. (1992). 

Fuzzy Kohonen clustering networks. Proceeding 
IEEE International Conference on Fuzzy Systems, 
pp. 1035–1043. DOI:10.1109/FUZZY.1992.258797.  

Computación y Sistemas, Vol. 24, No. 3, 2020, pp. 1165–1177
doi: 10.13053/CyS-24-3-3477

Vadim Borisov, Victor Luferov1176

ISSN 2007-9737



21. Kosko, B. (1992). Neural networks and fuzzy 
systems. The Journal of the Acoustical Society of 
America 1, Vol. 103, No. 6, pp. 3131. 
DOI:10.1121/1.423096. 

22. Nelles, O., Fink, A., Babuška, R., & Setnes, M. 
(2000) Comparison of two construction algorithms 
for Takagi-Sugeno fuzzy models. International 
Journal of Applied Mathematics and Computer 
Science, Vol. 10, No. 4, pp. 835–855. 

23. Borisov, V.V., Kruglov, V.V., & Fedulov, A.S. 
(2018). Fuzzy models and networks. Stereotype, 

Moscow, HotLine-Telecom. 

24. Kosko, B. (1986). Fuzzy cognitive maps. 
International Journal of Man-Machine Studies, Vol. 

24, pp. 65–75. 

25. Stach, W., Kurgan, L., Pedrycz, W., & Reformat, 
M. (2005). Genetic learning of fuzzy cognitive maps. 
Fuzzy Sets and Systems, Vol. 153, No. 3, pp. 371–
401. DOI:10.1016/j.fss.2005.01.009. 

Article received on 11/06/2020; accepted on 22/07/2020. 
Corresponding author is Vadim Borisov.

  

Computación y Sistemas, Vol. 24, No. 3, 2020, pp. 1165–1177
doi: 10.13053/CyS-24-3-3477

Neuro-Fuzzy Cognitive Temporal Models for Predicting Multidimensional Time Series with Fuzzy Trends 1177

ISSN 2007-9737


