
A Computational Approach to Finding SEIR Model Parameters that
Best Explain Infected and Recovered Time Series for SARS-CoV 2

Jairo Rojas-Delgado1, Mario Pupo-Meriño2, Jorge Gulı́n-González1
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Abstract. The novel SARS-CoV 2 coronavirus has
grown to become a global pandemic. Since then,
several approaches have been adopted and developed
to provide insights into epidemic origins, worldwide
dispersal and epidemiological history. The Susceptible,
Exposed, Infected and Recovered (SEIR) models are
among the widely used approaches to study the further
progression of the pandemic. However, finding such
model parameters remains a difficult task, especially
in small geographical areas where details of the initial
compartments and the model parameters deviates from
global distributions. The main result of our paper is a
meta-heuristic approach to find SEIR model parameters
that best explains the infected time series. Our
approach, allows studying different future scenarios
considering not only the most likely future, but a set of
possible SEIR parameters that explains current epidemic
trends. We show that there are several possible
parameters sets of such models able to explain current
epidemic trends and by studding them is possible to
obtain insights into the future possible outcomes.
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1 Introduction

Since the detection of the novel coronavirus
SARS-CoV 2 we have seen it grow to become
a pandemic [7]. Studding epidemic origins,
worldwide dispersal and epidemiological history is

critical for decision making and issuing accurate
information to the population.

SEIR models are among the widely used
approaches to study infectious diseases [1, 17, 20].
SEIR models and its several variations, have many
parameters that usually depends on geographical
distributions, initial population and the specific
diseases under study.

The combination of dynamical modelling with
substantial fluctuations calls for data assimilation
methods for parameter inference [4]. Hence, fitting
the SEIR model parameters is a difficult task and
at the same time of paramount importance.

Several recent studies aim to include restriction
policies in the modelling SARS-CoV 2 epidemic.
In [4], the authors estimate the per-capita
transmission rate of a stochastic SEIR model
based on available data. The per-capita
transmission rate is considered a function of time
that accounts for the application of restriction
policies. This work only considers the best
fitting parameters and neglects other possible
explanations of currently observed data.

Other works have successfully modelled the
application of restriction policies in a different
way, for example, by including a compartment for
patients in quarantine [21].

Other introduced models do not consider the
application of restriction policies at all.
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For example, the authors of [13] use a machine
learning approach as an alternative to SEIR
models producing accurate results as long as
no significant interruption occurs, such as, the
application restriction policies. It is worth noticing
that the accuracy of such models is evaluated in
a time interval of nine days, hence, no empirical
results suggest long time accuracy.

From a different perspective, some authors have
successfully used meta-heuristic algorithms to fit
SEIR model parameters. In a work by Mulder,
the Simulated Annealing algorithm is used to fit
SEIR model parameters using active infected and
recovered time series [12]. It only considers the
best fitting parameters and does not consider other
possible explanations of currently observed data
and does not study the effect of restriction policies
in the epidemic development. In [14], the Particle
Swarm Optimization algorithm is used to fit SEIR
model parameters. This work does not address
the possibility of multiple explanations of currently
observed data nor study the effect of restriction
policies in the epidemic development.

Recently, Rajiv Chowdhury et al. conducted
a scenario analysis of SARS-CoV 2 coronavirus
in more than 16 countries [2]. They used the
most up-to-date SEIR transmission parameters
to construct their adaptive models from previous
works, hence, analyses were based on several
transmission parameter assumptions. In such
work, authors assumed a constant transmission
rate during each modeled cycle, which is likely to
vary by a population’s adherence to the restriction
policies and a mix of specific measures put
in place.

In this paper, we introduce an approach to find
SEIR parameters that best explains the observed
infected and recovered time series. Here, we refer
to observed infected time series to the times series
of active infected patients, that is, patients that are
infected not yet recovered. In addition, we refer to
observed recovered time series to the time series
of patients that were infected at some point but are
currently recovered.

We define a search space containing SEIR
parameters and a fitness function that accounts for
the error between the SEIR model forecasting and
the observed times series: infected and recovered.

We provide intuition and previous experimental
results behind our hypothesis that such fitness
function is multi-modal with several local minima
that accounts for different outcomes of the
epidemic in the future. Here we use the terms
SEIR model parameters, local minima and future
possible outcomes indistinctly.

Our goal is not to find the global optimum of the
fitness function, but to locate the local minima in
the search space. In order to do so, we use a
meta-heuristic optimization method named Firefly
Algorithm (FA) [19]. Inspired in the social behavior
of fireflies, FA keeps a set of solutions during the
course of optimization. Previous, experimental
results suggest that the solutions optimized by FA
converges in clusters around local minima [16].

Here we focus on SARS-CoV 2 data from Cuba,
Spain and Italy. Results show the formation of
clusters of possible SEIR parameters around local
minima. We sample the four best possible local
minima according to its fitness value (how much
each local minima fits current observed data) and
its diversity (how much different is each local
minima from the others). We ended up with
four groups of SEIR model parameter sets that
describes possible outcomes in the future and
can be used by epidemiological specialists to take
decisions and study the statistical distributions of
the SEIR parameters.

Different to other works, our approach considers
the application of restriction policies to reduce the
per-capita transmission rate in different scenarios.
The rate at which the restriction policies affect
the model parameters are directly learned from
the data without relying in parameter distributions
from previous works. Secondly, as we use a
meta-heuristic approach, the way we fit SEIR
model parameters is expected to be robust to noise
in the active infected and recovered time series.
Finally, we are not considering a single best fitting
of the SEIR model parameters, but several of
them, which should provide wider insights on the
epidemic development.

The organization of this paper is as follow:
Section 2 formally introduces our approach for
finding SEIR model parameters and describes the
SEIR model used to fit current observed data and
the FA meta-heuristic algorithm .
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Section 3 shows the results of finding local
minima in the SEIR parameter’s space and the
parameter distributions for the possible outcomes
of the pandemic in the future. We discuss
limitations and advantages of the introduced
approach in Section 4.

2 Methods

In this section we introduce our approach for
searching SEIR model parameters based on
current active infected and recovered time series.
In addition, we describe the SEIR model used
to study the SARS-CoV 2 epidemic and for
completeness we also describe FA optimization
algorithm. Throughout this article we use x for
scalars, x for vectors and X for sets.

2.1 Searching SEIR Model Parameters

Let ∆I ,∆R ∈ ∆ ⊂ Rd be the current observed
infected and recovered times series for d days and
w = (w1,w2, ...,wn) be a vector where wi are
the parameters of a SEIR model such as w ∈ Ω,
usually Ω ⊂ Rn. Considering gI : Ω→ ∆ a function
that maps a given set of SEIR model parameters
and its corresponding infected time series and gR :
Ω → ∆ a function that maps a given set of SEIR
model parameters and its corresponding recovered
time series we define f : Ω × ∆ × ∆ → R as a
function that evaluates the quality of a SEIR model
parameter vector defined as:

f(w,∆I ,∆R) =
||
(
gI(w)−∆I ||22

dσ2
I

+
||gR(w)−∆R||22

dσ2
R

,

(1)
where ||.||2 is the L2-norm and σ2

I and σ2
R are

the variance of ∆I and ∆R respectively. Notice
that we use the NMSE between the current active
infected time series and SEIR predicted infected
times series and also the NMSE between the
current recovered time series and SEIR predicted
recovered times series. Here we are actually
combining two goals: to fit infected time series and
to fit recovered time series, hence, we use NMSE
to avoid one goal dominate over the other.

A valid option here would be to use multi-
objective optimization and should be studied in the

future. We are interesting in solving the following
optimization problem:

w = argmin
w∈Ω

f(w,∆I ,∆R). (2)

Here we will only consider the case of Ω ∈
Rn, hence, we are dealing with a continuous
optimization problem. In addition, we will consider
several restrictions that affects the SEIR model
parameters wi that are dependent on the specific
model variant and are described in section 2.2.
Regarding the fitness function, we can expect that
two different vectors of model parameters wi and
wj are able to simultaneously explain the current
observations, that is for t < d. However, for
t > d the two parameter vectors can indeed
produce different future outcomes. The intuition
behind this idea suggest that we can expect several
SEIR parameters to have the same fitness value,
producing a multi-modal landscape with several
local minima. Recent experimental results provide
evidence of this [6]. However, we did not perform
any theoretical level analysis of this fitness function
to provide a formal proof.

Finding the local minima in the SEIR parameter
space, as defined in equation 2, can be rephrased
as finding the most likely outcomes in the future
that explain current observations. Algorithm 1
clarifies the steeps proposed in the present work
to search and summarize such outcomes.

In step 1, we initialize the set of possible future
outcomes T as empty. In step 3, we search for local
minima in the SEIR parameter space and after this
we create groups of similar local minima obtaining
a representative sampling in step 4. We select the
b best local minima based on its fitness value and
diversity, storing them in the set of possible future
outcomes T , steps 5-6. As the search of local
minima is a non-deterministic stochastic process,
we repeat the previously described steps a number
k times. In step 8, we create b groups of local
minima from T . In the following subsections we
describe Algorithm 1 in detail.

2.1.1 Finding Local Minima of Fitness Function

In step 3, we must find the local minima of
the fitness function. Considering the scenario

Computación y Sistemas, Vol. 25, No. 2, 2021, pp. 287–305
doi: 10.13053/CyS-25-2-3462

A Computational Approach to Finding SEIR Model Parameters that Best Explain Infected and Recovered... 289

ISSN 2007-9737



Algorithm 1 Searching SEIR model parameters that best explain observed data
Require: Currently observed times series: ∆I ,∆R.
Require: Initial susceptible and infected population.
Ensure: SEIR parameter distributions of future outcomes.

1: Set T = {}
2: for i = 1 to k do
3: Find local minima of fitness function.
4: Create groups of similar local minima.
5: Select b local minima based on its fitness value and diversity.
6: Store the b best local minima in T
7: end for
8: Create b groups of local minima from T .
9: Provide SEIR parameter distributions for each of the b groups.

of a multi-modal fitness function, gradient based
optimization methods are discouraged as those
are usually intended for local optimization [3],
although, a local search method with restart may
be an option here. Therefore, we focus in
global optimization methods and specifically in
meta-heuristic methods.

Meta-heuristic are approximate,
stochastic search algorithms. Most
population-based-meta-heuristics1 have been
designed for global optimization. Meta-heuristic
algorithms do not provide any warranty of
convergence or optimality. However, we must
consider that the current observed times series
are actually a noisy measure of the real number
of infected or recovered cases (for example: there
are undetected cases). In such scenario, looking
for an exact solution may be misleading.

Currently, there are several global optimization
meta-heuristic algorithms based in populations in
the literature. The FA algorithm is a nature inspired
meta-heuristic that is based in populations and
share some features with the more widely known
Particle Swarm Optimization (PSO) meta-heuristic.
In PSO, each solution explores the search space
considering the position of the best solution found
so far and the best previous position of each
solution. However, in FA each solution explores the
search space considering all solutions that have a

1We use population-based-meta-heuristics to refer to
meta-heuristic algorithms that keep a set of solutions during the
course of optimization. Do not confuse the term population, as
in population-based meta-heuristic, with human population.

better fitness value. This particular feature allows
FA optimized solutions to converge in clusters near
the local minima and not only in a single, possibly
global optimum. For completeness, we provide a
detailed description of FA algorithm in section 2.3.

2.1.2 Creating Groups of Similar Local Minima

In step 4, we take all the solutions optimized by
FA algorithm, and remove redundant and very
similar solutions that may have converged nearby.
By doing this, we expect to reduce the number
of local minima while keeping a representative
sampling of the search space. In addition,
having repeated or very similar local minima may
artificially alter the statistical distributions of the
SEIR model parameters. We propose to conduct
an unsupervised clustering analysis and to take the
final cluster centroids as future outcomes.

Here we face two possible approaches: hi-
erarchical or agglomerative clustering analysis.
Hierarchical analysis has the advantage of
not requiring an initial pre-defined number of
clusters to perform the analysis as opposed to
agglomerative clustering. However, at the end
in both cases we must manually select the
number of clusters that better describe the data
based in some inter/intra cluster measure. Here,
we propose to consider K-Means algorithm to
perform the clustering analysis and the Silhouette
Coefficient (SC) to select the final number of
clusters [22].
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2.1.3 Selecting the Best Local Minima based
on its Fitness Value and Diversity

In step 5, we select future outcomes based on its
fitness function and diversity, that is, the cluster
centroids provided by the K-Means algorithm.
First, the selection is based in how well such
centroids, that represent sets of parameters of
the SEIR model, explains the current number of
infected and recovered cases. The fitness function,
as defined in equation 1, models how well a
given set of SEIR model parameters fit current
observed data.

Secondly, we want to select centroids that
are different from each other, for example, two
centroids may have a similar fitness value but are
distant in the search space. This will allow to
examine different future outcomes of the epidemic
outbreak that may explain current trends. Given
a sequence of centroids provided by the K-Means
algorithm w1,w2, ...,wr, Algorithm 2 describes
how the best local minima are selected based on
its fitness value and diversity.

Algorithm 2 Selecting best local minima based on
its fitness function and diversity
Require: Sequence of centroids: w1,w2, ...,wr.
Require: Number of centroids to select: b < r.
Ensure: Best centroids.

1: Sort the sequence of centroids in ascending
order according to its fitness value

2: Sort the sequence of centroids in ascending
order according to the following criterion:

oi =
i · f(wi,∆I ,∆R)∑i

j=1 di,j
, (3)

where di,j is the Euclidean distance between
wi and wj .

3: Return the first b centroids of the ordered
sequence.

The centroids that best fit the infected and
recovered time series are located at the beginning
of the sequence in step 1. After this, in step 2, the
sequence of centroids is re-ordered based not only
on the fitness value of the centroids, but also based
on how close they are in the search space.

The idea is to push back in the sequence
centroids that are similar to the previous ones. This
provides a chance to different future outcomes,
that still explains current observed data, to be
studied and analyzed. The equation 3 models this
idea by dividing the centroid fitness value by the
average Euclidean distance of each centroid with
the previous ones in the sequence.

Here is critical to notice the balance between the
fitness value and the diversity. The fitness value
is of paramount importance (centroids that do not
explain current observed data with accuracy are
not useful) but diversity is required to avoid losing
possible future outcomes of the epidemic.

2.1.4 Summarizing Future Outcomes

After running several times the FA optimization
algorithm and having a set of future outcomes from
the FA solutions in steps 3-6, we have a number of
k · b local minima that represent future outcomes
of the epidemic. The k · b local minima should
represent, at least, the top b local minima in the
search space that fit current observed data. In
step 8, we use K-Means with a number of clusters
equals to b to group the local minima stored in
T . This should compensate the non-deterministic
nature of FA algorithm and K-Means, providing
statistical stability and confidence intervals for the
SEIR model parameters. Finally, in step 9 we
provide SEIR model parameter distribution for each
future outcome based on the different centroids.

2.2 SEIR Model and Description of Scenarios

This section describes the SEIR model used in this
work to study SARS-CoV 2. This SEIR model have
four main compartments:

— Susceptible: population that can be infected.

— Exposed: population that has being exposed
to the infection but cannot infect others yet.

— Infected: population that can infect others.

— Recovered: population that had the infection
and do not infect others anymore.
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The parameters of the model are the per-capita
transmission rate, the exposed-to-infectious rate
and the infectious-to-recovered rate. Each of these
parameters describe how the population migrates
from one compartment to another:

— Per-capita transmission rate (β): number of
susceptible persons that are exposed per each
infected person.

— Exposed-to-infectious rate (γ0): number of
exposed persons that go to transmissible
compartment.

— Infectious-to-recovered rate (γ1): number
of infected persons that go to recovered
compartment.

Each parameter is usually treated as a constant.
However, in order to model restriction policies, we
treat the per-capita transmission rate as a function
of time β : R → R. Here, the main challenge is
figuring out the value of β(0), especially when the
situation of COVID-19 is characterized by extreme
spatial heterogeneity [4]. At the beginning of the
epidemic spread, the number of initial cases is not
known, hence, estimating the value of β(0) from
infected grow is very difficult: either we have a
large value of β(0) with a small number of initially
infected patients or a more discrete value of β(0)
with a large number of initially infected patients. In
addition, the migration rates from other countries,
that was an important factor before frontiers closed,
makes this even more difficult.

In order to narrow the possible values of β(t)
to an interval already observed for SARS-CoV 2,
we set the maximum value of this parameter to be
βmax = R̄0 · γ1 where R̄0 is the maximum basic
reproduction number observed for SARS-CoV 2.
Here we use a value of R̄0 = 6.49 reported in
[11]. The value of βmax should correspond to the
per-capita transmission rate for a naive population
completely unaware of the epidemic spread.

No-pharmacological preventing solutions are
available for the control of COVID-19 pandemic.
Thus, at present, the intervention politics are the
best way to control the national and international
expansion of this disease. Policies are mainly
based on isolation and quarantine measures.

Isolation separates sick people with a contagious
disease from people who are not sick. Quarantine2

separates and restricts the movement of people
who were exposed to a contagious disease to see
if they become sick. In most cases a combination
of isolation and quarantine measures have been
applied by governments.

In our study, we propose several scenarios in
order to model real situations. We assume that
the disease is present with a relative extension in
the entity (country, state, province, city) and that
isolation and/or quarantine measures have been
taken. To define the scenarios, three states related
to the applied politics were considered:

State A: Voluntary home quarantine for the
majority of people, closure of schools, universities,
majority of services, shopping and social distanc-
ing measures. At national level means partial or
total closure of national borders (immigration is not
an infection factor) and inside the country closure
of state borders, province and/or county borders.

State B: It consists in a relaxation of the
restriction politics mentioned in state A. For
example: opening of public spaces with a
limited number of people, opening of schools,
universities and factories while keeping social
distancing measures.

State C: Stricter polices with respect to state A
are considered. For example, mandatory home
quarantine for the majority of people, mandatory
use of mask.

Considering these states, we are interested
in modelling three scenarios: relaxing restriction
policies at the current time and hardening such
policies after some time, keeping restriction
policies as they are currently implemented or with
even more strict policies for as long as required and
relaxing and hardening restriction policies.

1. Relaxing restriction policies at the current
time and hardening such policies after
some time. For this, we will model
the per-capita transmission rate as a wave
function of time:

β1(t) =
βmax − βmin

2
·
(
cos(tβlag) + 1

)
+βmin,

(4)
2See: http://www.cdc.gov/quarantine/index.html
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where βmin is a parameter that represents the
minimum value of the per-capita transmission
rate and βlag controls the period of the wave
function. Considering such function we can
define a search space with four continuous
search parameters: w1 = βmin ∈ [0, 1],w2 =
βlag ∈ [0, 1],w3 = γ0 ∈ [1/14, 1/2],w4 = γ1 ∈
[1/42, 1/7].

Starting from state A, at t = 0 such state
is kept until the current day, then, restriction
policies are completely lifted. After that, an
increase in the number of infected is expected
and then a hardening policy will be applied
again as in state A.

2. Keeping restriction policies as they are
currently implemented or with even more
strict policies for as long as required. In this
scenario, we will model the per-capita trans-
mission rate as an exponentially decreasing
function of time similar to [5]:

β2(t) = (βmax − βmin) · e−tβlag + βmin, (5)

where βmin is a parameter that represents the
minimum value of the per-capita transmission
rate and βlag controls how fast the per-capita
transmission rate decreases at the beginning
of the spread. Considering such function
we can define a search space with four
continuous search parameters: w1 = βmin ∈
[0, 1],w2 = βlag ∈ [0, 1],w3 = γ0 ∈
[1/14, 1/2],w4 = γ1 ∈ [1/42, 1/7].

This scenario involves in the transition from
state A to state C (almost total quarantine
for all the people). For this scenario,
the per-capita transmission rate abruptly
decreases in time. This scenario is very
similar to that applied in Wuhan, Hubei,
China. Here, is important to consider that the
per-capita transmission rate will be adjusted
to the specific country infected and recovered
time series, hence, if no state C have been
implemented during that time, the per-capita
transmission rate will not reflect a decrease.

3. Relaxing and hardening restriction poli-
cies. Here, we will combine the previous
two scenarios with a damped cosine wave,

modelling restriction policies being relaxed
and hardened as required. The per-capita
transmission as a function of time can be
defined as:

β3(t) =
β1(t) · β2(t)

βmax
. (6)

Considering such function we can define a
search space with four continuous search
parameters: w1 = βmin ∈ [0, 1],w2 = βlag ∈
[0, 1],w3 = γ0 ∈ [1/14, 1/2],w4 = γ1 ∈
[1/42, 1/7].

In this scenario, starting from state A, we move
to state B and then back to state A again.
As we move from state A to state B, a few
relaxation of policies are applied but not all.

The dynamics of the SEIR model used in the
present work can be described by the following
equations. Let, N(t) = S(t) + E(t) + I(t) +
J(t)+R(t) where S(t) is the number of susceptible
patients, E(t) is the number of exposed patients,
I(t) is the number of infected patients and R(t) is
the number of recovered patients in time t:

1. Susceptible population: susceptible popula-
tion diminishes in proportion to the per-capita
transmission rate. As the susceptible
population diminishes, also the rate S(t)/N(t)
decreases as well:

d

dt
S(t) = −βi(t) · I(t) · S(t)

N(t)
. (7)

2. Exposed population: exposed population
increases in the same rate that the susceptible
population decreases. When the decrease
in susceptible population is significant, the
exposed-to-infectious rate begins to dominate,
making the exposed population start a
decrease dynamic:

d

dt
E(t) =

βi(t) · I(t) · S(t)

N(t)
− γ0 · E(t). (8)
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3. Infectious population: infectious population
grows in the same rate that exposed
population decreases. When the decrease
in exposed population is significant, the
infectious-to-recovered rate begins to domi-
nate, making the infectious population start a
decrease dynamic:

d

dt
I(t) = γ0E(t)− γ1 · I(T ). (9)

4. Recovered population: the recovered popula-
tion grows in the same rate that infectious-to-
recovered rate and the infectious population:

d

dt
R(t) = γ1 · I(T ). (10)

2.3 The Firefly Meta-Heuristic Algorithm

The FA is a meta-heuristic optimization algorithm
introduced in 2009 inspired in the flashing behavior
of fireflies [19]. When considering this algorithm,
each candidate solution is represented by a firefly.
The basic idea is that fireflies use their light to
attract others of its kind. This way, the fireflies
with stronger light, or fitness, will attract more than
others. The equation to move a firefly i to a brighter
one j is given by equation 11:

wi = wi + β† exp(−γ†d2
i,j)(wj −wi) + ηr, (11)

where di,j , as before, is the Euclidean distance
between wi and wj .

In equation 11, β† is the bright of a firefly when
the distance is zero, γ† is the light absorption coef-
ficient, η is a parameter that controls randomness
and r ∈ [−0.5, 0.5] is a random number generated
from a uniform distribution. The constants β†,
γ† and η are known as hyper-parameters that
control the exploration/exploitation capabilities of
the algorithm. In addition, the number of solutions
is another important hyper-parameter that we
denote as p. The pseudo code for FA algorithm
is given in Algorithm 3.

In step 1 of Algorithm 3, the SEIR model
parameters, represented here by the concept of
firefly solution, are initialized randomly using a
uniform distribution. At each iteration, each firefly

Algorithm 3 The Firefly meta-heuristic algorithm
(FA)

1: Initialize firefly solutions wi for 1 ≤ i ≤ p.
2: for i = 1 to Max. Number of Iterations do
3: for j = 1 to p do
4: for k = 1 to p do
5: fj = f(wj ,∆I ,∆R)
6: fk = f(wk,∆I ,∆R)
7: if fj > fk then
8: Move firefly j to firefly k.
9: end if

10: end for
11: end for
12: end for
13: Return the best w according to its fitness value.

fitness is compared with the rest in step 7. In
case that a firefly has more bright than another,
the one with less bright is moved to the brighter
in step 3. This makes that the solutions of this
algorithm, do not move to the same, possibly global
best solution, but to all solutions that have a better
fitness value. This is essential in order to find
several local minima in the search space and not
only the global optimum, as optimized solutions
usually form clusters around them [16].

3 Results

In this section we describe the data used in the
present paper to analyze SARS-CoV 2 in Cuba,
Spain and Italy. In addition, we present the results
of finding SEIR model parameter distributions of
possible future outcomes using the three scenarios
explained in Section 2.2.

3.1 SARS-CoV 2 Data

SARS-CoV2 data was retrieved from the World
Health Organization reports3. Using this data, we
create a daily time series of the number of active
infected and recovered patients. The start of the
epidemic for each country is selected based in the
apparition of the first cases, hence, the time series
length is different for each country.

3Available at: https://covid19.who.int.
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Fig. 1. Number of active infected patients and values of the per-capita transmission rate in the first 500 days
corresponding to scenario 1. Plots A, B, C and D show clusters of different possible future outcomes

To optimize our SEIR model parameters we will
use information of the first 50 days only. All data
and source code for the experiments is provided
publicly at Internet: https://github.com/ml-opt/
cys-covid.

3.2 Searching the Set of Possible Outcomes

We use FA algorithm to find local minima in the
SEIR parameter space, which corresponds to step
3 of Algorithm 1. FA algorithm hyper-parameters
are selected based in the literature standard

recommendations, that is: β† = 0.8, γ† = 0.6,
η = 0.3 and p = 400. We perform a number of 200
iterations of the FA algorithm. The large number of
fireflies p = 400 comes from the fact that we want
to achieve clusters around all local minima without
actually knowing how many are there.

Using the optimized FA solutions as points in
Ω = Rn, we perform unsupervised clustering
analysis using K-Means algorithm as defined in
step 4 of Algorithm 1. K-Means algorithm requires
to specify an initial number of clusters that we do
not know based on obtained data. We perform
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Fig. 2. Active infected and recovered time series forecast and the current observed times series in blue corresponding
to scenario 1. Plots A, B, C and D show clusters of different possible future outcomes

a grid search, considering different numbers of
clusters from 10 to 100 with a step of 10. For
each number of cluster, we calculate the Silhouette
Coefficient which is a intra/extra cluster measure
of how separated and consistent are the obtained
clusters. The Silhouette Coefficient is a number in
[0, 1]. A lower value of the Silhouette Coefficient
stands for poor quality of the cluster analysis and a
higher value stands for a better cluster analysis.

After this, we select the top b = 4 clusters based
on its fitness value and diversity according to step 5
of Algorithm 1. We repeat the previously described

steps 3-6 a number of k = 10 times. This is done
for each of the three scenarios in Section 2.2.

3.3 Summarizing Possible Outcomes

We present the epidemiological development for
each of the three scenarios described in section
2.2. We present an epidemic forecast of the
number of infected patients for the first 500 days
and information on how well such forecast fits
observed infected and recovered cases.

Computación y Sistemas, Vol. 25, No. 2, 2021, pp. 287–305
doi: 10.13053/CyS-25-2-3462

Jairo Rojas-Delgado, Mario Pupo-Meriño, Jorge Gulín-González296

ISSN 2007-9737



0 1

0.2

0.4

A

0 1

0.2

0.4

B

0 1

0.2

0.4

C

0 1

0.2

0.4

D

Cuba

0 1

0.2

0.4

A

0 1

0.2

0.4

B

0 1

0.2

0.4

C

0 1

0.2

0.4

D

Spain

0 1

0.2

0.4

A

0 1

0.2

0.4

B

0 1

0.2

0.4

C

0 1

0.2

0.4

D

Italy

Fig. 3. Box plots presenting the SEIR model parameters distribution for each outcome corresponding to scenario 1.
Plots A, B, C and D show SEIR model parameters distributions of different possible future outcomes

In addition, we present the SEIR model
parameter distributions for each scenario and
how the per-capita transmission rate controls the
epidemic outbreak.

3.3.1 Scenario 1: Relaxing Restriction Policies
at the Current Time and Hardening such
Policies After some Time

In Figure 1, we show the number of active infected
cases and the value of the per-capita transmission
rate in the first 500 days of SARS-CoV 2 in Cuba,
Spain and Italy. In the figure, we show the top b = 4
clusters found by Algorithm 1, denoted as A, B, C
and D. The red area around the mean represents
the standard error.

Figure 2 presents a zoom in the first 50 days
of the active infected patients and recovered
patients adding the current observed times series
in blue lines.

As before, the black line represents the mean of
the local minima of each of the top b = 4 clusters,
denoted as A, B, C and D.

In case of Cuba, the four possible outcomes
show that the value of the per-capita transmission
rate in the 50-th day was between 0.1 and 0.2.

Relaxing restriction policies in the 60-th to 80-th
days, makes the number of active infected patients
to raise to about four million. This even holds if the
restriction policies are hardened in approximately
the 120-th day. This exemplifies the extremely
important fact of not relaxing restriction policies too
much or too soon.

These findings are consistent with those in
Hubei, China where lifting quarantine would have
led to a second epidemic peak in March [20].
Moreover, notice that restriction policies are being
lifted since the 60-th to 80-th day, but, we see
an exponential increase in the active infected time
series nearly in the 120-th day. This give us an
important hint in how much caution we must have
when relaxing restriction policies.

In case of Spain and Italy the values of the
per-capita transmission rate are nearly constant
in this period. This shows how the epidemic
spread went without control during the first 50
days. Actually, in Spain the quarantine lockdown
was applied in about day 45, hence, the per-capita
transmission rate do not record any decrease in the
first 50 days. This scenario is similar to the findings
of [21] where under a regime without restriction
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Fig. 4. Number of active infected patients and values of the per-capita transmission rate in the first 500 days
corresponding to scenario 2. Plots A, B, C and D show clusters of different possible future outcomes

policies, the peak of active infected cases is
predicted to happen in the first 270-650 days
representing about 10-20% of the total population.
Figure 3 shows the SEIR model parameters
distribution for each of the top b = 4 possible
outcomes studied in the present work. The bottom
and top lines in the box plots represents the
first and third quartiles, the line in the middle
represents the median of the measurements and
the whiskers represents standard deviation. Notice
how the values of γ0 and γ1 are similar across the
different countries.

3.3.2 Scenario 2: Keeping Restriction Policies
as they are Currently Implemented

Figure 4 shows the number of active infected cases
in the first 500 days of SARS-CoV 2. The figure,
as in the previous scenario, shows four possible
outcomes of the epidemic. In the figure, we show
that the per-capita transmission rate diminishes in
the first days of the outbreak to a minimum and
then the restriction policies are kept in time. Here
is interesting to see how the predicted value of
β2(t) keeps diminishing in time after day 50 in the
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Fig. 5. Active infected and recovered time series forecast and the current observed times series in blue corresponding
to scenario 2. Plots A, B, C and D show clusters of different possible future outcomes

case of Cuba. In the case of Spain and Italy,
we again observe a nearly constant value for the
per-capita transmission rate, which is consistent
with the outcomes of the first scenario. Here is
interesting to notice how scenario 1 and scenario
2 mostly agree on the per-capita transmission rate
and number of infected cases before day 50 and
depicts different outcomes for the future.

Figure 5 presents a zoom in the first 50 days of
the active infected patients and recovered patients
adding the current observed times series in blue
lines. Furthermore, Figure 6 shows the SEIR

model parameters distribution for each of the top
b = 4 possible outcomes under consideration.

3.3.3 Scenario 3: Relaxing and Hardening
Restriction Policies as Required

Figure 7 shows the number of active infected cases
in the first 500 days of SARS-CoV 2. As before,
we present four possible outcomes of the epidemic
development.

In the case of Cuba, it can be observed
what would happen if the restriction policies are

Computación y Sistemas, Vol. 25, No. 2, 2021, pp. 287–305
doi: 10.13053/CyS-25-2-3462

A Computational Approach to Finding SEIR Model Parameters that Best Explain Infected and Recovered... 299

ISSN 2007-9737



0 1

0.2

0.4

A

0 1

0.2

0.4

B

0 1

0.2

0.4

C

0 1

0.2

0.4

D

Cuba

0 1

0.2

0.4

A

0 1

0.2

0.4

B

0 1

0.2

0.4

C

0 1

0.2

0.4

D

Spain

0 1

0.2

0.4

A

0 1

0.2

0.4

B

0 1

0.2

0.4

C

0 1

0.2

0.4

D

Italy

Fig. 6. Box plots presenting the SEIR model parameters distribution for each outcome corresponding to scenario 2.
Plots A, B, C and D show SEIR model parameters distributions of different possible future outcomes

hardened and relaxed, but only partially. Notice
that special care should be taken when relaxing
restriction policies: if the restriction policies are
relaxed too much, that would create a peak of
infected cases, as can be confirmed from the first
scenario. What we see now in scenario 3, is that
a considerable peak can also happen, tough in a
much smaller scale (take into account the error in
the plot ranging from less than half million cases to
four million cases).

Figure 8 presents a zoom in the first 50 days of
the active infected patients and recovered patients
adding the current observed times series in blue
lines. As before, the black line represents the mean
of the local minima of each of the top b = 4 clusters,
denoted as A, B, C and D. The red area around the
mean represents the standard error of the mean.

Notice that this scenario is fundamentally
different from scenario 2, where restriction policies
are kept for a long time, which is really difficult to
achieve from a practical point of view. In the cases
of Spain and Italy, the per-capita transmission rate
is kept mainly constant as the data do not capture
the effect of restriction policies at this point.

Figure 9 shows the SEIR model parameters
distribution for each of the top b = 4 possible
outcomes studied in the present work. As before,
the results obtained in this scenario are similar to
the already obtained values of γ0 and γ1 in the
first and second scenario. This somehow highlight
how our meta-heuristic approach is able to find
such parameters even under different per-capita
transmission regimes.

4 Discussion

Our proposal allows a fast analysis of several
scenarios with adequate accuracy. This approach
has the potential of fitting SEIR models not only
for an entire country, but also for provinces,
municipalities and small geographical regions
based only in the data. Considering the case
of Cuba, where social distance measures were
applied in the first 50 days, we observe a reduction
of about 65-80% of the per-capita transmission rate
in that period of time. Interestingly, similar results
were obtained by Jarvis et al. who reported a 73%
reduction in the average daily number of contacts
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Fig. 7. Number of active infected patients and values of the per-capita transmission rate in the first 500 days
corresponding to scenario 3. Plots A, B, C and D show clusters of different possible future outcomes

observed per participant after the implementation
of restriction policies [8].

For the case of Spain and Italy, we do
not observe any reduction in the per-capita
transmission rate during this period of time.
This is somehow consistent with the delay in
the application of social distance measures (for
example, in the case of Spain the lockdown was
imposed in approximately day 45 of the epidemic).
Moreover, this situation highlights an important
limitation of our scenario modelling, as neither
the wave function of scenario 1 and 3 nor the

exponentially decreasing function of scenario 2 will
be able to fit accurately the expected decay in
the per-capita transmission rate after day 50 in
such countries. Future work should account for a
function with more degrees of freedom to model
such situation.

Surprisingly, the exposed-to-infectious rate for
the three studied countries was similar in
approximately γ0 ≈ 0.5. This even holds when
we consider the three scenarios under study. This
value of the exposed-to-infectious rate is similar to
other results obtained for Spain and Italy [6] but
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Fig. 8. Active infected and recovered time series forecast and the current observed times series in blue corresponding
to scenario 3. Plots A, B, C and D show clusters of different possible future outcomes

different to the exposed-to-infectious rate γ0 ≈ 0.2
observed in China [10].

The analysis of the scenarios highlights the
importance of keeping restriction policies during a
reasonable time, providing further evidence of its
efficacy in preventing future waves of infection [18].
At this point, the main limitation of our approach is
the accuracy of the real infected time series that
may be biased. Despite this, even when the official
infected time series may not be accurate, we may
expect it to be correlated with the actual number of
infected patients.

In practice, the real number of infected patients is
larger than that officially reported by countries and
institutions4. The informed official number critically
depend on the applied tests. For this reason, in
our study, we have selected countries with a good
system of data retrieval, which allows us to conduct
analysis on this data with a reasonable confidence.
Moreover, reports show that the real number of
infected patients for the three studied countries in
the first wave of the disease is very low compared

4See: https://coronavirus.jhu.edu/data/mortality
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Fig. 9. Box plots presenting the SEIR model parameters distribution for each outcome corresponding to scenario 3.
Plots A, B, C and D show SEIR model parameters distributions of different possible future outcomes

to the total population. For example, surveys based
on PCR tests have found that around 4-5% of
the population in Spain has been infected5. This
means that, at present, the susceptible population
is more than 95% of the total population.

In addition, to reach herd immunity, a significant
fraction of the population has to get infected [15].
In that condition we guess that our predictions will
be semi-quantitatively correct and useful in order to
take decisions about relaxing or restricting policies.
Particularly, the modelled results of scenario 2
(keeping restriction policies as they are currently
implemented), is compatible with the excellent
results obtained by China in the management of
the crisis in Wuhan, Hubei.

We need to consider several core limitations
of our approach. First, the meta-heuristic FA
search algorithm is a stochastic search method,
hence, there is not warranties of finding all
possible fittings. Moreover, FA hyper-parameter
optimization is a difficult task as, in general,
this is a class of challenging optimization

5Available at: https://www.lamoncloa.gob.es/lang/en/

gobierno/news/Paginas/2020/20200513enecovid19-study.

aspx.

problems, whose objective functions tend to be
non-smooth, discontinuous, unpredictably varying
in computational expense and include continuous,
nominal and/or discrete variables [9].

Our approach might be used carefully and it is
critical to take into account the following elements:

— Care must be taken in selecting the number of
iterations of the FA algorithm. A low number
of iteration will cause poor fitting around local
minima while a large number of iterations will
cause a lack of diversity of the firefly solutions.

— Care must be taken in selecting the number
of top b clusters. Choosing a small value of
b may leave important outcomes out of the
analysis, while a large number will render too
many future outcomes, increasing the difficulty
of studding them.

— Finally, our approach cannot be used before
having data, hence, it will be only available
after the epidemic have already began.
However, as the epidemic advance, the
number of possible future outcomes will
reduce, increasing the forecasting accuracy.
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5 Conclusions

We have developed a meta-heuristic approach
to find parameters of the SEIR model that best
explains the observed infected and recovered time
series. Further, we have shown that there are
several possible parameter vectors of such models
able to explain current epidemic trends and by
studding them is possible to obtain insights into the
future possible outcomes. Our approach allowed
to study several scenarios in different countries at
medium and long term. The proposed method
could be more exact depending on the time series
accuracy. In this sense, as the time passes, the
number of possible future outcomes will reduce,
increasing the forecasting accuracy.
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