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Abstract. This work proposes an open loop control for 

sensor systems with hysteresis. This control is 
achieved by the use of an equalization strategy 
consisting in connecting in tandem the system with its 
inverse Volterra. For real cases hysteresis is 
associated with the interchange of mechanic-electric 
energy in the sensing process. Though these systems 
are amplitude dependent, they still can be treated as 
Wiener kind systems and therefore a Postinverse 
Volterra can be built. A simulated accelerometer shows 
how to implement this control. 

Keywords.  Nonlinear systems, hysteresis, associated 

linear equations, Volterra transform. 

1 Introduction 

Sensors possess their very own dynamics that 
limits its accuracy and precision. A sensor close 
loop control is not applicable. Therefore, only 
open loop control can be intend to eliminate the 
signal modification associated to sensor 
dynamics. The sensor system is quite often 
nonlinear, involving indirect measuring such as 
the mean square root that for example gives the 
driving input for ultrasonic motors [1].  

Much of the sensor systems involves 
interchange between electric-mechanic energy, 
e.g., by the use of piezoelectrostrictive elements 
that involves hysteresis. This piezoelectric 
hysteresis has been intended to be controlled by 
PID strategies as in [2] or fuzzy logic like in [3] or 
[4] that may be used for actuator systems but not 
for sensors. Other application involves the control 
of induction motors [7]. Most of the work on 
hysteresis has as objective the identification 
rather than the control e.g., [6, 7, 8].  

The work reported here, implements a open 
loop control using an equalization strategy 
reported in [9]. The equalization process consists 
in connect in tandem the system with its inverse 
Volterra. The operators of the inverse Volterra are 
obtained from discrete model series so-called 
Associated Linear Equations (ALEs) [10]. A 
system with hysteresis is amplitude dependent, 
therefore it cannot be strictly considered a 
Volterra kind.  

However, if the system contains underling 
linear system, it might be treated as a Volterra 
system which its nonlinear terms have amplitude 
dependent coefficients. Consider as a base of the 
model the general behavior of an accelerometer, 
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the source of nonlinearity (hysteresis) may be the 
piezoelectric element that provides information 
about deformation as Voltage.  

The accelerometer then can be modeled as a 
linear system (structure) connected in tandem 
with a hysteretic element. The most suitable 
Volterra model is the Wiener kind [10]. In order to 
obtain a more realistic model, of an 
accelerometer, the model used in here, includes 
a resilient damping, treated by Associated Linear 
Equation [11, 15] just as it has been done in [12].  

2 Identification of the Hysteretic 
Cycle 

There are several methods to reveal the linear 
part of a hysteretic system, e.g., [7]. Though any 
of them may be used to identify the linear part of 
the system, because in this work, the system is 
available at any level, the structural damped 
system (linear in frequency) is simply extracted 
from low levels of excitation.  

The identification is going to be discrete 
versions of the Associated Linear Equations 
(ALEs) known as the AutoRegresive with 
eXogenous inputs models (ARX) as reported in 
[13]. The general structure of a one degrees-of.-
freedom ARX model of a system with structural 
damping is: 

𝑦(𝑖) = 𝐶1𝑦(𝑖 − 1) + 𝐶2𝑦(𝑖 − 2) + 𝐶3𝑥(𝑖 − 1)
+ 𝐶4𝑠(𝑖 − 1) , 

(1) 

where s(i) is the auxiliary variable that accounts 
for the complex rigidity that is defined as: 

 , (2) 

which is obtained in the frequency domain as it is 
done in [10]. For the Wiener system presented in 
here, the structural damped system does not 
change at any level of hysteresis. The saturation 
point is supposed to be well into the elastic range 
of the structure.  

At a given level, in which the hysteresis 
produces nonlinear behavior, the nonlinear 
system is modeled as two polynomials of third 
degree. Each one modeling the system when the 
output signal has a positive or negative slope. 
Then: 

𝑢(𝑖) = 𝑃𝑢1𝑦3(𝑖) + 𝑃𝑢2𝑦2(𝑖) + 𝑃𝑢3𝑦(𝑖) + 𝑃𝑢4 , (3a) 

𝑣(𝑖) = 𝑃𝑣1𝑦3(𝑖) + 𝑃𝑣2𝑦2(𝑖) + 𝑃𝑣3𝑦(𝑖) + 𝑃𝑣4. (3b) 

Both Pv and Pu are vectors of coefficients that 
change as the input level changes. 

3 The Ales for Wiener Kind 
Structural Damped Systems 

The ALEs of this kind of systems, suffers a 
bifurcation that depends on both the sign of the 
slope of the hysteresis cycle and the amplitude. 
Unfortunately, in a real system there is no 
information about the signal that goes into the 
hysteretic process. In the identification process, 
the unique information available is the system 
input x(t) and the hysteresis output q(t).  

This implies that the information about the 
slope of the hysteretic cycle is not available. This 
problem is overcome by use of the linear 
approximation y(t).(equation 1). The slope is then 
obtained from the relationship y(i) vs q(t). 

Given the Polynomials Pu and Pv obtained 
from equations (3). The zero order signal is: 

𝑢0(𝑖) = 𝑃𝑢4 , (4) 

𝑣0(𝑖) = 𝑃𝑣4 . (5) 

The first order signal is obtained from the 
same equations as: 

𝑢1(𝑖) = 𝑃𝑢3𝑦(𝑖), (6) 

𝑣1(𝑖) = 𝑃𝑣3𝑦(𝑖). (7) 

On substitution in equation (1): 

𝑢1(𝑖) = 𝐶1𝑢1(𝑖 − 1) + 𝐶2𝑢1(𝑖 − 2)
+ 𝐶3𝑃𝑢3𝑥(𝑖 − 1)
+ 𝐶4𝑃𝑢3𝑠(𝑖 − 1), 

(8) 

𝑣1(𝑖) = 𝐶1𝑣1(𝑖 − 1) + 𝐶2𝑣1(𝑖 − 2)
+ 𝐶3𝑃𝑣3𝑥(𝑖 − 1)
+ 𝐶4𝑃𝑣3𝑠(𝑖 − 1) . 

(9) 

The number of operators is restrained by the 
maximum power of the polynomials (equations 
(3)). Therefore, only up to third order ALEs exists: 

     tysignits 
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𝑢2(𝑖) =
𝑃𝑢2𝑢1

2(𝑖)

𝑃𝑢3
2 , (10) 

𝑣2(𝑖) =
𝑃𝑣2𝑣1

2(𝑖)

𝑃𝑣3
2 , (11) 

and third order are: 

𝑢3(𝑖) =
𝑃𝑢1𝑢1

3(𝑖)

𝑃𝑢3
3 , (12) 

𝑣3(𝑖) =
𝑃𝑣1𝑣1

3(𝑖)

𝑃𝑣3
3 . (13) 

The use of one equation or the other depends 
on the sign of the slope of y(i), i.e., the linear 
frequency system (Equation 1). 

4 Structural Damping Model 
Simulation 

4.1 Model Description 

The simulated model is constructed as follows: 
The differential equation for a structural damping 
system from [14], is: 

�̈�(𝑡) + 𝑖𝑛𝜔𝑛�̇�(𝑡) + 𝜔𝑛
2𝑦(𝑡) = 𝐷𝑥(𝑡) , (14) 

The solution for a forced fully integrable 
function is: 

𝑦(𝑡) = ∑
D

𝜔𝑛
2 − 𝜔𝑖

2 + 𝑖𝜂𝜔𝑛𝜔𝑖

e−iωit

∞

−∞

, (15) 

𝑦(𝑡) = ∑
D

𝜔𝑛
2 − 𝜔𝑖

2 + 𝑖𝜂𝜔𝑛𝜔𝑖

e−iωit

∞

−∞

 . (16) 

It is selected =10, n=500rd/sec, D=0.01. 

This signal goes into the hysteretic cycle which its 
saturation point is arbitrary selected at 
9.4867x10- 8. The hysteretic cycle can be shown 
in figure (1). 

4.2 Model Identification 

The first step is to set a point in which the 
proportionality allows to have an mean square 
error (mse) [15] smaller than one, for the present 
case a level of an of mse =0.5044 is found. 

A three input frequency signal is used =350, 
550 and 725 rad/sec with amplitudes of 0.02, 0.03 
and 0.04m/s. By the use of the ARX algorithm 
described in [13] and the treatment for structural 
damping using an auxiliary variable as described 
in [12], the following model is obtained: 

𝑦(𝑖) =  1.4149𝑦(𝑖 − 1) − 0.9961𝑦(𝑖 − 2)
+ 2.2325 × 108𝑥(𝑖 − 1)
+  −0.0083𝑠(𝑖 − 1), 

(17) 

where s(i) is obtained from the direct and then the 
inverse of the Fourier transformation of 
equation (2). 

The mse obtained is of 0.2038%. Which 
means an excellent agreement for this low level 
intensity. Figure 2 shows a graphical comparison.  

The second step is now, to increment the 
intensity of the input signal using a sinusoidal 
function (frequency: 225rad/sec) with an 
amplitude of 1.25 m/s. the proportionality exhibits 
an mse of 1.3%.  

Let´s calculate y(i) from equation (17). Then, 
when plotted with the actual system output q(i) the 
hysteretic cycle is observed Figure 3. 

The signal is divided in two parts, each one 
related with the sign of the Figure 3 graphics 
slope. Each part is approximated by a three 
degree polynomial as in equations (2, 3).  
Unfortunately, y(t) or its equivalent discrete y(i) is 
not available.  

It is the necessary to take advantage of the 
proportionality property of the linear systems. It 
makes necessary to be able to control the input 
and set at low level as for example: 

 

Fig. 1. Hysteretic cycle of the simulated system 
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𝑥𝑟(𝑖) =
𝑥(𝑖)

𝑟
 , 

where r>1 so that xr is well into the linear 
response of the linear in frequency sub-system. 
Let`s the response to be yr(i), then: 

𝑦(𝑖) = 𝑟 𝑦𝑟(𝑖). 

The coefficients of the polynomials are then: 

Pu =-[  -7.0862 x1013, -1.2595 x106, 1.2789, 5.4979 
x10-9] 

Pv = [ -7.1621 x1013, 1.2036 x106, 1.2800,-
5.4211x109] 

With this information, there is a zero order 
operators from equations (4) and (5): 

𝑢0(𝑖) = 5.4979 x10−9, 

𝑣0(𝑖) =  − − 5.4211x10−9, 

the first order Associated Linear Equations 
(ALEs) are from equations (3): 

𝑢1(𝑖) = 1.4149𝑢1(𝑖 − 1) − 0.9961𝑢1(𝑖 − 2) +
 2.85951 × 10−8𝑥(𝑖 − 1) − 0.0083𝑠(𝑖 − 1) ,  

(18) 

𝑣1(𝑖) =   1.4149𝑣1(𝑖 − 1) − 0.9961𝑣1(𝑖 − 2)
+  2.8551 × 10−8𝑥(𝑖 − 1)
− 0.0083𝑠(𝑖 − 1). 

(19) 

The higher order inverse operators are: 

𝑢2(𝑖) = −1.2595 × 106 𝑢1
2

1.27892 , (20) 

𝑣2(𝑖) = 1.2036 x106 𝑣1
2

 1.28002, (21) 

𝑢3(𝑖) = −7.0862 × 1013[
𝑢1

3

1.27893], (22) 

𝑣3(𝑖) = −7.1621 × 1013
𝑣1

3

 1.28003. (23) 

The use of uj(i) or vj(i) depends on the sign of 
the slope of h(i). For up to the first order Volterra 
operator, the mse is of 9.8494% the full three 
order sum of Volterra operators gives an 
mse=1.2988%. 

5 The Inverse Volterra Operators for 
Structural Damped and Wiener  

From now on, when talking about an operator it 
can be referred by a low case letter, e.g. either u(i) 
or v(t) or by a bold capital letter, e.g. H.  

The capital letter is referred to the operator 
process and it is always the same, independently 
of its input.  

Lower case is referred to a particular signal 
that is the output of the operator process and it 
varies according with the input. 

 

Fig. 2. Linear approximation for low level excitation of 

the modeled system 

 

Fig. 3. Graphics of y(i) vs q(i). The graphics shows the 
hysteresis. Initial points are removed 

2 2.05 2.1 2.15 2.2 2.25 2.3

-8

-6

-4

-2

0

2

4

6

8

10

x 10
-9

time (sec)

d
is

p
la

c
e
m

e
n
t 

 (
m

)

 

 

system output

ARX

-6 -4 -2 0 2 4 6

x 10
-8

-6

-4

-2

0

2

4

6

x 10
-8

y(i)

q
(i
)

Computación y Sistemas, Vol. 25, No. 2, 2021, pp. 393–401
doi: 10.13053/CyS-25-2-3457

Vladimir Cortés Lerìn, Juan Alejandro Vazquez Feijoo, Rodrigo Arturo Marquet Rivera, et al.396

ISSN 2007-9737



 
 

The equalization strategy is proposed for 
sensors in [11] as an open loop control. 
Application on Wiener system can be found in 
[10]. Figure (5) shows how the equalization 
is implemented. 

In [11], because it is not always possible to 
eliminate the DC term, it is recommended to let 
the DC to cross all the way out through the inverse 
system.  

In the hysteresis cycle, the DC is switching and 
therefore is not properly a constant term in the 
system, it is rather a square signal that is adding 
to the linear response, and therefore the term of 
order zero is rather a part of the first order 
response. The system output from (2, 3) is either: 

𝑢(𝑖) = 𝑢0(𝑖) + 𝑢1(𝑖) + 𝑢2(𝑖) + 𝑢3(𝑖) , 

or, 

𝑣(𝑖) = 𝑣0(𝑖) + 𝑣1(𝑖) + 𝑣2(𝑖) + 𝑣3(𝑖) . 

The DC can be directly subtracted before enter 
the preinverse. 

For low excitation level, the inverse Volterra 
consists in just one operator z1(t) as explain in [8] 
The discrete ALE, is the inverse operator of the 
direct first order operator expressed by equation 
(1), as explained in the same reference, the first 
order inverse ALE is then: 

𝑧1(𝑖 − 1) =
1

𝐶3
𝑦(𝑖) −

𝐶1

𝐶3
𝑦(𝑖 − 1) −

𝐶2

𝐶3
𝑦

−
𝐶4

𝐶3
𝑠(𝑖 − 1). 

(24) 

Equivalently, for higher input level, the first 
order inverse is: 

𝑧𝑢1(𝑖 − 1) =
1

𝐶3𝑃𝑢3

𝑞(𝑖) −
𝐶1

𝐶3𝑃𝑢3

𝑞(𝑖 − 1)

−
𝐶2

𝐶3𝑃𝑢3

𝑞(𝑖 − 2)

−
𝐶4

𝐶3𝑃𝑢3

𝑠𝑞(𝑖 − 1) , 

(25) 

𝑧𝑣1(𝑖 − 1) =
1

𝐶3𝑃𝑣3

𝑞(𝑖) −
𝐶1

𝐶3𝑃𝑣3

𝑞(𝑖 − 1)

−
𝐶2

𝐶3𝑃𝑣3

𝑞(𝑖 − 2)

−
𝐶4

𝐶3𝑃𝑣3

𝑠𝑞(𝑖 − 1) , 

(26) 

where the auxiliary variable is obtained from q(i) 
defined as: 

, 

q(i) slope sign determines if equation (25 or 26) 
is used. 

The second order is obtained as in [17]. From 
Figure 5 the inverse Volterra operator is: 

𝑧2(𝑡) = −𝐊1[𝐇2{𝐊1[𝑞(𝑡)], 𝐊1[𝑞(𝑡)]}] , (27) 

where Hi (equations (89)) and Ki (equations (25, 
26)) are the direct and inverse operators. Then 
the output are the operators zu1 an zv1, H2 is 
governed by equations (11, 12). According with 
equation (27), the input into H2 is: 

     tqsignitsq 

 

Fig. 4. Comparison between the hysteretic output 

against the Volterra prediction 

 

Fig. 5. Open loop control by the inverse Volterra: 
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𝑢1(𝑖) = 𝐇1𝑢[𝐊𝑢1[𝑞(𝑖)]], (28) 

𝑣1(𝑖) = 𝐇𝑣1[𝐊𝑣1[𝑞(𝑖)]], (29) 

as H1 and K1 are inverse systems: 

𝑢1(𝑖) = 𝑞(𝑖), (30) 

𝑣1(𝑖) = 𝑞(𝑖), (31) 

on substitution into equations (11, 12): 

𝑢2(𝑖) =
𝑃𝑢2

𝑃𝑢3
2 𝑞(𝑖)2 , (32) 

𝑣2(𝑖) =
𝑃𝑣2

𝑃𝑣3
2 𝑞(𝑖)2 . (31) 

At its time equations (30, 31) are the input into 
the first order system K1 as equation (27) 
indicates, then from equations (25, 26): 

𝑧𝑢1(𝑖 − 1) =
1

𝐶3𝑃𝑢3
𝑢2(𝑖) −

𝐶1

𝐶3𝑃𝑢3
𝑢2(𝑖 − 1)

−
𝐶2

𝐶3𝑃𝑢3
𝑢2(𝑖 − 2)

−
𝐶4

𝐶3
𝑠𝑢(𝑖 − 1) , 

(32) 

𝑧𝑣1(𝑖 − 1) =
1

𝐶3𝑃𝑣3
𝑣2(𝑖) −

𝐶1

𝐶3𝑃𝑣3
𝑣2(𝑖 − 1)

−
𝐶2

𝐶3𝑃𝑣3
𝑣2(𝑖 − 2)

−
𝐶4

𝐶3
𝑠𝑣(𝑖 − 1), 

(33) 

where: 

, 

and: 

. 

Following equation (27) the second order 
inverse operator is simply: 

𝑧𝑢2(𝑖 − 1) = −𝑧𝑢1(𝑖 − 1), (34) 

𝑧𝑣2(𝑖 − 1) = −𝑧𝑣1(𝑖 − 1). (35) 

For the third order operator, as it is treated 
in  [17]: 

𝑧3(𝑡)
= −𝐊1[𝐇3{𝐊1[𝑞(𝑡)], 𝐊1[𝑞(𝑡)], 𝐊1[𝑞(𝑡)]}]
− 𝟐𝐊1[𝐇2{𝐊1[𝑞(𝑡)], 𝐊2[𝑞(𝑡), 𝑞(𝑡)]}]. 

(36) 

The first term of equation (36) undertakes a 
similar treatment as for the second order 
operator, and third order are: 

𝑢3(𝑖) =
𝑃𝑢1

𝑃𝑢3
3 𝑞(𝑖)3, (37) 

𝑣3(𝑖) =
𝑃𝑣1

𝑃𝑣3
3 𝑞(𝑖)3, (38) 

then signal goes into the first order operator: 

𝑧𝑢1(𝑖 − 1) =
1

𝐶3𝑃𝑢3
𝑢3(𝑖) −

𝐶1

𝐶3𝑃𝑢3
𝑢3(𝑖 − 1) −

𝐶2

𝐶3𝑃𝑢3
𝑢3(𝑖 − 2) −

𝐶4

𝐶3
𝑠𝑢(𝑖 − 1) , 

(39) 

𝑧𝑣1(𝑖 − 1) =
1

𝐶3𝑃𝑣3
𝑣3(𝑖) −

𝐶1

𝐶3𝑃𝑣3
𝑣3(𝑖 − 1)

−
𝐶2

𝐶3𝑃𝑣3
𝑣3(𝑖 − 2)

−
𝐶4

𝐶3
𝑠𝑣(𝑖 − 1), 

(40) 

where, 

, 

and 

, 

𝑧𝑢3(𝑖 − 1) = −𝑧𝑢1(𝑖 − 1) +  𝑠𝑒𝑐𝑜𝑛𝑑 𝑡𝑒𝑟𝑚, (41) 

𝑧𝑣3(𝑖 − 1) = −𝑧𝑣1(𝑖 − 1) + 𝑠𝑒𝑐𝑜𝑛𝑑 𝑡𝑒𝑟𝑚. (42) 

Now, for the second term of equation (36) 
one has: 

𝟐𝐊1[𝐇2{𝐊1[𝑞(𝑡)], 𝐊2[𝑞(𝑡), 𝑞(0𝑡)]}]. (43) 

The second argument of H2 is: 

𝐊2[𝑞(𝑡), 𝑞(𝑡)] = −𝐊1[𝐇2{𝐊1[𝑞(𝑡)], 𝐊1[𝑞(𝑡)]}]
= 𝑧2(𝑡) . 

(44) 

Then, (40) is now: 

𝟐𝐊1[𝐇2{𝑧1(𝑡), 𝑧2(𝑡)}]. (45) 

Equation (28, 29) should be rewritten 
as follows: 

     iusigniisu 2

     tvsignitsv 2

     iusigniisu 3

     isigniisv 3v
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𝑢2(𝑖) =
𝑃𝑢2𝑢1(𝑖)𝑢1(𝑖)

𝑃𝑢3
2  , (46) 

𝑣2(𝑖) =
𝑃𝑣2𝑣1(𝑖)𝑣1(𝑖)

𝑃𝑣3
2  . (47) 

Thought the abuse of the nomenclature, in 
equations (11, 12) u(i) and v(i) are two different 
signals as the input in each equation as the input 
into the operator H1 is different for each 
factor, i.e.: 

𝑢2(𝑖) =
𝑃𝑢2𝐇1𝑢[𝑧1(𝑡)]𝐇1𝑢[𝑧2(𝑡)]

𝑃𝑢3
2  , (48) 

𝑣2(𝑖) =
𝑃𝑣2𝐇1𝑢[𝑧1(𝑡)]𝐇1𝑢[𝑧2(𝑡)]

𝑃𝑣3
2  . (49) 

The first factor is simply the sensor 
system output: 

𝑢2(𝑖) =
𝑃𝑢2𝑞(𝑖)𝐇1𝑢[𝑧2(𝑖)]

𝑃𝑢3
2  , (50) 

𝑣2(𝑖) =
𝑃𝑣2𝑞(𝑖)𝐇1𝑣[𝑧2(𝑖)]

𝑃𝑣3
2 . (51) 

The second factor can be obtained by the 
handling equation (43) as follows, eliminating 
inverse operators: 

𝐇1𝑣[𝑧2(𝑖)]

= −𝐇1𝑣[𝐊𝑣1[𝐇𝑣2{𝐊𝑣1[𝑞(𝑡)], 𝐊𝑣1[𝑞(𝑡)]}]] 

𝐇1𝑣[𝑧2(𝑖)] = −[𝐇𝑣2{𝐊𝑣1[𝑞(𝑡)], 𝐊𝑣1[𝑞(𝑡)]}].  

(52) 

The second order Volterra ALE is from 
equations (11, 12): 

𝐇1𝑢[𝑧2(𝑖)] = −
𝑃𝑢2

𝑃𝑢3
2 𝑞(𝑖)2, (53) 

𝐇1𝑣[𝑧2(𝑖)] = −
𝑃𝑣2

𝑃𝑣3
2 𝑞(𝑖)2. (54) 

Equations (50, 51) are then: 

𝑢2(𝑖) = −
𝑃𝑢2

2𝑞(𝑖)3

𝑃𝑢3
4  , (55) 

𝑣2(𝑖) = −
𝑃𝑣2

2𝑞(𝑖)3

𝑃𝑣3
4  . (56) 

The second term 𝟐𝐊1[𝐇2{𝑧1(𝑡), 𝑧2(𝑡)}] of 
equation (43) is then: 

𝑧0𝑢1(𝑖 − 1) =
1

𝐶3𝑃𝑢3
𝑢2(𝑖) −

𝐶1

𝐶3𝑃𝑢3
𝑢2(𝑖 − 1)

−
𝐶2

𝐶3𝑃𝑢3
𝑢2(𝑖 − 2)

−
𝐶4

𝐶3
𝑠𝑢(𝑖 − 1) , 

(57) 

𝑧0𝑣1(𝑖 − 1) =
1

𝐶3𝑃𝑣3
𝑣2(𝑖) −

𝐶1

𝐶3𝑃𝑣3
𝑣2(𝑖 − 1)

−
𝐶2

𝐶3𝑃𝑣3
𝑣2(𝑖 − 2)

−
𝐶4

𝐶3
𝑠𝑣(𝑖 − 1). 

(58) 

On substitution in equation (43), the third order 
operator results to be: 

𝑧𝑢3(𝑖 − 1) = −𝑧𝑢1(𝑖 − 1) − 2𝑧0𝑢1(𝑖 − 1), (57) 

𝑧𝑣3(𝑖 − 1) = −𝑧𝑣1(𝑖 − 1) − 2𝑧0𝑣1(𝑖 − 1). (58) 

As a difference from the direct Volterra 
operators, the lower order inverse Volterra 
operators generates signals of higher harmonic 
order and therefore it is necessary the addition of 
higher order inverse operators.  

Then, the inverse Volterra is an infinite series. 
The present work is delimited to the third order. 

6 Inverse Volterra on the Simulated 
Sensor System  

6.1 Low Level Excitation 

For low level excitation, the inverse Volterra can 
be composed of only the first order operator and 
it converges to the inverse obtained directly from 
equation (24). 

Figure 6 shows the first order inverse operator 
against the low level input signal, the mse is only 
of 0.8%. 

6.2 Higher Level Excitation 

Equation (37) from the data in the section in which 
the identification is carried out: 

𝑧𝑢1(𝑖 − 1)

=
𝑣1(𝑖) − 1.3643𝑣1(𝑖 − 1) + .9268𝑣1(𝑖 − 2) − .054𝑢(𝑖 − 1)

 2.85951 × 108
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𝑧𝑣1(𝑖 − 1)

=
𝑣1(𝑖) − 1.4149𝑣1(𝑖 − 1) + 0.9961𝑣1(𝑖 − 2) − 0.0083𝑢(𝑖 − 1)

2.8551 × 108
. 

The second is obtained from equation (27), 
Equation (30) is then: 

𝑢2(𝑖) =
−1.2595× 106

 1.27892 𝑞(𝑖)2, 

𝑣2(𝑖) =
1.2036× 106

1.28002 𝑞(𝑖)2. 

On substitution in equation (32, 33), the 
second order inverse is given by (34, 35). 
Equation (56, 57) gives the third order inverse. 
The same input signal that is used for identifying 
the hysteresis cycle, section 4.2, is used here, 
Figure 7 shows the inverse Volterra performance 

for this input level. The first order inverse gives an 
mse of 2.8377 and the full inverse Volterra gives 
an mse of 1.736. 

7 Conclusions 

It has been applied an equalization open loop 
control using the inverse Volterra operator on a 
simulated sensor system. The simulation 
response is obtained out from a structural 
damping model (linear in frequency) using its 
exact solution and adding a hysteretic element 
that is the response of the sensing element that 
measures the structure deformation. This is a very 
close behavior of an accelerometer with a 
piezoelectric element.  

To implement the inverse Volterra, a model of 
the simulated system has to be constructed. This 
is done by assign a Wiener model to the system. 
Because of the hysteresis, the system becomes 
amplitude dependence, therefore the system is 
not a real Volterra system kind, However because 
of the nonlinearity is out of the structure system, 
the Wiener model can be modified to have 
variable nonlinear coefficients.  

The hysteresis is identified as two cubic 
functions, each one modeling the positive and 
negative slope of the hysteresis.  

The model to assign presents another problem 
because the system is not properly linear but 
linear in frequency, so the model of the simulated 
system has to be modified by an auxiliary variable 
that accounts for the complex rigidity.  

For low level, the system is identified as a 
linear in frequency just as it has been identified in 
[10], the identification is satisfactory, and the 
Volterra inverse of first order is enough accurate 
to recover the sensor input. 

For high input level, the Wiener model 
produces three Associated Linear Equations, 
each one for each harmonic component in the 
measured signal (output signal), and a ALE of 
zero order. The model result to suffice to produce 
a very good agreement with the output system. As 
a difference from [12] in which the system model 
is not to be used for prediction purposes (as it is 
function of the auxiliary variable that comes from 
the output) and therefore only used constructing 
the Volterra inverse, in the present work can be 

 

Fig. 6. Equalization strategy, the input acceleration, the 

acceleration measured 

 

Fig. 7. Equatization strategy, for nonlinear response. 
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used for response prediction as the auxiliary 
variable is obtained from proportionality of the 
response at low level. 

The inverse Volterra is trunked to third order 
and for the hysteresis level used in here, the 
sensor input is recovered with high accuracy. The 
open loop control presented here demonstrates to 
be adequate for system with hysteresis. 
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