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Abstract. Supervised classification of hyperspectral
remote sensing images is still challenging due to the
scarcity of enough labelled samples. Semi-supervised
methods have been adopted to handle this issue.
Self-training is a popular semi-supervised technique
which is widely used for training a classifier with
limited labelled data and a large quantity of unlabeled
data. However, traditional self-training approaches
often give poor classification results in high dimensional
data. In the current work, a novel efficient self-training
approach for handling the deficiency of labelled samples
for semi-supervised classification of hyperspectral
remote sensing images is proposed. The proposed
method first trains an ensemble of locally specialized
supervised binary classifiers independently by using the
dimensionally reduced spectral feature vectors of few
available labelled samples. The trained local binary
classifiers are then used to extend the labelled set
by iterative addition of highly informative unlabeled
samples to it by exploiting both the spectral and spatial
information of the hyperspectral image. The classifiers
are then retrained with the extended dataset in a
batchwise manner and the procedure is repeated until
adequate quantity of labelled samples are generated.
Finally, a supervised multiclass classifier is trained on the
extended dataset to produce the final classification map.
Experimental results on two benchmark hyperspectral
image datasets prove the effectiveness of the proposed
method over supervised and traditional self-training
based semi-supervised pixelwise classification approach
in terms of different classification measures.

Keywords. Remote sensing, hyperspectral image
analysis, machine learning, semi-supervised learning,
self-training, ensembles.

1 Introduction

Remote sensing data has become the primary
source of Geographical Information System (GIS)
data. Data provided by the remote sensors
to the GIS database are often multispectral or
hyperspectral data which are in the form of
images. Hyperspectral images (HSI) contain a
large amount of spectral information which enables
us to analyze an object or a scene very accurately.
HSI classification, also termed as land cover
classification in remote sensing community, has
been widely applied in diverse areas such as
target detection [7, 49], change detection [19,
21, 44], military defense, agriculture, water and
forest resource management [1, 17, 25], disaster
monitoring, etc.

With the advancement in both HSI data
acquisition and machine learning technology, au-
tomated systems can be designed to perform HSI
classification tasks. Supervised and unsupervised
approaches are widely used in building such
classification systems [36]. Supervised methods
use the prior information of the classes to train
a classification model. Traditional statistical
models [33], support vector machines [4, 15],
artificial neural networks [37], k -Nearest Neighbor
algorithm [29], etc. are some of the popular
algorithms for supervised HSI classification.

Performance of a supervised approach rely
on the availability of a large number of labelled
samples [3], which is not the case in remote
sensing HSI data.
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Though HSI can provide very rich spectral,
spatial as well as temporal information, labeling
each and every pixel requires proper ground
survey of all the classes present over the area,
which is a difficult and time-consuming process,
while unlabeled samples are easily and abundantly
available, which makes supervised approaches
for land cover classification more challenging
[39]. Semi-supervised methods which exploit
both labelled as well as unlabeled data can be
a solution to this problem [9] and the fact that
obtaining a large amount of labelled samples
is quite expensive as compared with unlabeled
samples, has motivated many researchers to focus
on semi-supervised methods [6, 43].

Generally, semi-supervised methods use auto-
matic or semiautomatic labeling to provide the
labels of the unlabeled samples. The unlabeled
samples along with the assigned labels are added
to the limited labelled set for retraining classifiers.
This may sometimes lead to the presence of class
label noise in the training set which may affect the
efficiency of the classifiers directly. Moreover, HSI
data usually consists of multiple classes which are
often very much imbalanced in nature. Addressing
both the problem of labelled sample deficiency
and imbalanced data at the same time is of very
crucial importance while building an automated
HSI classification system.

In the current work, a novel efficient self-training
approach for handling the deficiency of labelled
training samples for semi-supervised HSI classifi-
cation is proposed. First, an ensemble of locally
specialized binary classifiers are trained on the
limited labelled data by using spectral features
through binary decomposition approach [2]. After
that, the labelled set is iteratively extended by
adding highly informative unlabeled samples to
it. The quality as well as the label of an
unlabeled sample is determined by exploiting both
spatial and spectral information of the given HSI.
The locally specialized binary classifiers are then
retrained with the extended dataset in a batchwise
manner. The whole procedure is repeated
until adequate number of training samples are
available. Finally, a supervised multiclass classifier
is trained on the extended dataset for final HSI
classification purpose.

The rest of the paper is organized as follows.
Section 2 introduces related works about semi-
supervised HSI classification. Section 3 introduces
a brief review of self-training, binary decomposition
of multiclass problems and clustering methods.
The proposed method is explained in section 4.
Section 5 gives the experimental setup. Results
and discussions are presented in section 6. And
finally, section 7 concludes the paper.

2 Related Work

There has been a number of works addressing on
semi-supervised HSI classification methods.

In [6], the authors used a full family of composite
kernels for a robust graph-based semi-supervised
HSI classification. In [10], the authors considered
the critical problem of non-convexity of the cost
function optimization in semi-supervised SVMs for
HSI classification by optimizing the cost function
during the primal formulation rather than the dual
formulation. In [32], a fuzzy c-means based
iterative gathering of effective unlabeled samples
was utilized for an ensemble based pixel-wise
HSI classification. In [27], the authors used
particle swarm optimization and fuzzy clustering to
reduce the impact of incorrect labels and corrupted
parameter values.

In [43], the authors proposed an efficient
semi-supervised ensemble SVM that uses spectral
similarity and mean shift based segmentation algo-
rithm for dataset extension. In [39], compressive
sensing technique was used for classification of
multipectral satellite images with severe scarcity of
labelled samples. In [42], the authors proposed an
enhanced semi-supervised HSI classifier which is
based on both neighbourhood information of the
labelled and unlabeled samples and combination
of two different classifiers. In [51], the authors
used box-based smooth ordering and multiple
1D-embedding-based interpolation to address the
problem of high dimensionality and the lack of
labelled samples in HSI data.

In [31], the authors used weighted neighbour-
hood information and deep feature learning for
labelling the unlabeled samples. In [30], the
authors used two complementary regularizers that
can preserve the local properties of both spectral
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and spatial neighbourhood to improve graph based
semi-supervised methods.

In [40], the authors designed an active
learning protocol that aims at reducing the
unlabeled sample search complexity to improve
classification performance. In [38], the authors
proposed a stable co-training approach, inspired by
the Tracking-Learning-Detection, for classification
of hyperspectral data by using both spatial
and spectral features. In [18], the authors
used generative adversial networks to train on
spectral-spatial features extracted from a HSI data
cube by a three-dimensional bilateral filter (3DBF)
for semi-supervised learning. In [46], the authors
combined semi-supervised and active learning to
mine both the representative and discriminative
information by pseudo-labeling the unlabeled data
with a supervised clustering technique.

In [28], the authors used weighted semi-
supervised local discriminant analysis as the
feature rotation tool to solve the problem of existing
PCA based techniques that fail to take discrimina-
tive features during feature extraction. In [26], the
authors proposed a semi-supervised convolutional
neural network (CNN) with a ladder network that
can automatically learn spectral-spatial features
from complex HSI data cube. In [48], the
authors used constrained Dirichlet process mixture
model based clustering algorithm for labeling the
unlabeled samples for dataset extension.

In [45], the authors used minimum trust evalua-
tion and maximum uncertainty to estimate fusion
evidence entropy of unlabeled samples during an
iterative self-training based semi-supervised HSI
classification framework. In [34], the authors
used multi-grained scanning strategy to represent
the full spectral and spatial relationships while
building a deep learning based method called
MugNet. In [13], the authors used extended label
propagation and rolling guidance filtering methods
for pseudo-labelling the unlabeled samples for
semi-supervised training of a SVM model.

In [5], the authors used residual CNN (ResNet)
and dual-strategy co-training for effective fea-
ture extraction and sample selection for a
semi-supervised deep learning framework which
is capable of reducing the dependence of
deep learning methods on large-scale labeled

HSI data. In [22], the authors used PCA
based edge-preserving features and extended
morphological profiles to define a decision function
on the basis of which the limited labeled set is
extended on a large scale for HSI classification.
In [3], a granular computing based self-training
method was proposed for the semi-supervised
classification of remote-sensing images.

In [50], the authors used multiple SVMs with
different initial kernels to predict pseudo-labels
independently. Consistency voting is applied to the
resulting pseudo-labels for dataset augmentation.
In [35], the authors proposed a novel semi-
supervised spectral–spatial graph convolutional
network that utilizes the adjacency nodes in the
graph to add full spatial information embedded
in the original HSI data. In [14], the authors
combined ResNet with ensemble learning to
extract preliminary image features and to establish
discriminative image representations by exploring
the intrinsic information of all available data for
a semi-supervised scene classification for remote
sensing images. In [52], the authors proposed a
deep learning frame-work which combines textural
features of gray level co-occurrence matrix into
CNNs for HSI classification with limited labeled
samples. A softmax neural network is employed
for classification by using unsupervised textural
features extracted by a PCA transformation and
deep spectral features extracted by a CNN.

Most of the aforementioned methods paid
attention to the extension of deficient labeled set
by exploiting the spectral information without much
consideration of the spatial information. The classi-
fication map of a given HSI, theoretically, depends
on the spectral information only. However, due to
the inherent limitations of HSI sensors, considering
only the spectral information and ignoring the
spatial information may result into the presence
of class label noises that directly degrades the
performance of classifiers. Exploitation in both
spectral and spatial domain could enhance the
quality of the unlabeled samples that have to be
added to the labeled set as well as the performance
of semi-supervised HSI classifiers.

To achieve this, a local binary ensemble based
self-training method which exploits both the spec-
tral and spatial information of the HSI to select high

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 497–509
doi: 10.13053/CyS-24-2-3374

Local Binary Ensemble based Self-training for Semi-supervised Classification of Hyperspectral Remote... 499

ISSN 2007-9737



quality, correct, informative and diverse unlabeled
samples for semi-supervised classification of HSI
is proposed in this current work.

3 Preliminaries

3.1 Self-Training

Self-training [8] is a popular semi-supervised
approach which trains a classifier by using limited
labeled samples and a huge pool of unlabeled
samples. Let L and U be the sets of labeled
and unlabeled samples respectively, with |L| <<
|U |. Let l be the number of classes and h be
a supervised classifier. First, h is trained with
the samples from L. The trained classifier h is
then used to classify the samples from U . Then,
a few most confident unlabeled samples from U
along with the labels predicted by h are selected to
include in L. Then, h is retrained with the updated
labeled set L and the procedure is repeated.
Finally, the supervised classifier h with updated
labeled sample L is returned.

3.2 Multiclass to Binary-Class Decomposition

Classification is the process of mapping elements
to a finite set of classes. In a multiclass
classification problem, the number of classes is
more than two. The increase in the number
of classes often results into the increase in
complexity and cost of a classifier. In such a
case, decomposition of the multiclass classification
problem into multiple binary classification problems
that can be solved separately for only a
subset of classes can be a solution [2, 24].
Decomposed binary classifiers return simpler
decision boundaries that reduce the competence
areas of each classifier, thus producing multiple
local binary learners each dedicated to a binary
sub-problem. A fusion of the results of these
binary classifiers can be used to construct the
classification result of the original problem [47].

3.3 Clustering

Clustering is the organization of a collection of
objects into a finite number of homogeneous
groups on the basis of some similarity measures
in such a way that objects within a same group are
more similar to each other than they are to objects
in other groups [20].

3.3.1 k -means clustering

k -means Clustering [20] is a popular clustering
technique in which a given collection of data is
partitioned into k disjoint clusters. For an n number
of data points X = {x1,x2, . . . ,xn}, k -means
clustering algorithm works as follows:

1. Randomly initialize k cluster centers X∗ =
{x∗1,x∗2, . . . ,x∗k}.

2. For every data point xi ∈ X and for every
cluster center x∗j ∈ X∗ , calculate the distance
dij between xi and x∗j .

3. Assign xi to cluster Cj if dij is minimum for
every 1 ≤ j ≤ k.

4. Update the positions of cluster centers by
using Eq. (1) and go to step 2 until
convergence:

x∗j =
1

|Cj |
∑

xi∈Cj

xi, j = 1, 2, . . . , k. (1)

3.3.2 Subtractive Clustering

Subtractive clustering [11] finds out the number
of clusters and the locations of the initial cluster
centers. For an n number of data points X =
{x1,x2, . . . ,xn}, subtractive clustering algorithm
works as follows:

1. For every data point xi ∈ X, calculate initial
potential Pi, which is given by:

Pi =

n∑
k=1

e
−4||xk−xi||2

r2a , (2)

where ra > 0 is the hypersphere cluster radius
which defines the radius of the neighborhoods.
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2. Declare the data point (x∗) having the maxi-
mum potential (P ∗) as the first cluster center.

3. Update the potential values of the data points
by using the potential revision formula:

Pi = Pi − P ∗e
−4||x∗−xi||2

r2
b (3)

where rb > 0 is known as hypersphere
penalty radius.

4. Declare the data point having the highest
updated potential (P ∗) as the next cluster
center and go to step (3) until sufficient
number of cluster centers are generated.

3.3.3 Hybrid Combination of Subtractive
Clustering and k -means Clustering

Performance of a k -means clustering algorithm
depends on the locations of initial cluster centers,
which are randomly initialized in a traditional
k -means clustering algorithm [23]. Also, a priori
knowledge of the value of k is also must. A hybrid
combination of subtractive clustering with k -means
clustering algorithm can improve the performance
of k -means clustering algorithm. In the hybrid
combination, subtractive clustering can be used to
find out the number of clusters (k) and the initial
locations of the cluster centers x∗1,x∗2, . . . ,x∗k for a
better k -means clustering algorithm.

4 Proposed Methodology

Let L and U be the set of labeled and unlabeled
HSI samples. Let d be the number of spectral
bands present in the HSI and Y = {l1, l2, . . . , ll}
be the set of class labels with |Y | = l.

Theoretically, the class labels depend on the
spectral information only, however it is not
enough to decide the label based on the spectral
information only due to various reasons [30]. More
exploitation of both spectral and spatial information
could give better classification results. Following
are the main steps of the proposed methodology:

1. Dimensionality reduction along spectral do-
main by data fusion.

2. Supervised learning on limited labeled set
by using locally specialized binary classifiers
through binary decomposition.

3. Self-training until adequate samples are gen-
erated:

(a) Iteratively select high quality, informative
unlabeled samples to extend the limited
labeled dataset through the exploitation
of local spatial and global spectral
features.

(b) Retrain the locally specialized binary
classifiers on the extended dataset in a
batchwise manner.

4. Train an efficient multiclass supervised clas-
sifier with the extended labeled dataset to
produce final HSI classification map.

Fig.1 shows the block diagram of the steps
involved in the proposed self-training based
semi-supervised HSI classification. In the following
sections, each step is discussed in detail.

4.1 Dimensional Reduction Along Spectral
Domain by Data Fusion

Band averaging method is used for dimensional
reduction of the HSI along the spectral domain.
In this method, a given HSI having d-spectral
bands is spectrally partitioned into m sub-groups
of hyperspectral data, each having d/m adjacent
spectral bands. After that, the average band is
calculated for each subgroup so as to obtain a
dimensionally reduced hyperspectral data having
m(< d) bands. The advantage of this method over
other transform-based methods like PCA, ICA, etc.
is that pixel values of the reduced data are still
somehow related to the reflectance value of the
original HSI.

4.2 Supervised Learning on Limited Labeled
Set by using Locally Specialized Binary
Classifiers Through Binary Decomposition

Binary decomposition of the multiclass HSI
classification problem (explained in section 3.2)
is achieved by creating l binary classification
problems, one for each class [2]. That is, for each
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Fig. 1. Block diagram of the proposed self-training based semi-supervised method for HSI classification

class li ∈ Y , a binary classifier hi is trained in such
a way that samples labeled y = li are considered
as positive class and all other samples considered
as negative class, thus creating l number of
independent local binary learners {hi}, i = 1, . . . , l,
each dedicated to a specific binary sub-problem.
Proper rebalancing is done so that these binary
datasets are more or less balanced.

4.3 Self-Training: Selection of High-Quality
Unlabeled Training Samples for
Self-Training

The success of a self-training based semi-
supervised technique depends on the selection of
informative and diverse unlabeled samples along
with correct class labels. In our approach the
quality as well as the class label of an unlabeled
sample is determined on the basis of global
spectral as well as local spatial information of the
given HSI.

4.3.1 Global Spectral Decision of an Unlabeled
Sample

Samples belonging to each class are clustered
independently into some finite number of clusters
by using hybrid clustering combination (explained
in section 3.3.3). Global spectral decision of an
unlabeled sample ui is taken on the basis of
spectral Euclidean distance between ui and cluster
centers of each class. The detail steps are listed in
the following:

1. For each class Cj , find spectral cluster
centers {xj∗1 ,xj∗2 , . . . ,xj∗nj

} by using the hybrid
clustering algorithm.

2. Find the spectral distance dij between ui and
each class Cj .

dij =
nj

min
k=1

{∣∣∣∣∣∣ui − xj∗k ∣∣∣∣∣∣} , (4)

3. Find the class j having the minimum spectral
distance, i.e. the value of j that satisfies the
inequality (5).

dij ≤ dik∀k = 1, 2, . . . , l, (5)
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4. Assign j as the final conclusion of the global
decision if the local binary classifier hj also
classifies ui as a sample belonging Cj .

hj (ui) = 1⇒ χi
glo = j. (6)

4.3.2 Local Spatial Decision of an Unlabeled
Sample

This method is based on the fact that the
neighboring pixels of a HSI in a homogeneous
region usually belong to a same class. This method
can reduce the labeling error of an unlabeled
pixel by exploiting the local spatial neighborhood
information. The detail steps are as follows:

1. By taking ui as center, find its s-square
neighborhoods {N1,N2, . . . ,Ns}.

2. For each class Cj , find the weighted score of
ui that relates the probability of ui belonging
to Cj by using the formula:

Sij =
∑

Nk∈Cj

1

||ui −Nk||
. (7)

Inverse of Euclidean distance is used because
nearby labeled samples should have more
decision power than the ones that are far away
from ui.

3. The class having the maximum score value is
assigned as the final conclusion of the local
decision of ui.

χi
loc = j : Sij ≥ Sik∀k = 1, 2, . . . , l. (8)

4.3.3 Final Decision and Retraining

Final decision is made on the basis of both local
and global decisions. For an unlabeled sample
ui ∈ U , if the local decision agrees with the global
decision, then ui is considered as a high-quality
sample, so ui along with its predicted label has to
be added to the labeled set L for dataset extension:

χi
glo = χi

loc ⇔ L = L ∪ {ui}. (9)

After the iterative updation of the labeled set, the
locally specialized binary classifiers are retrained

on the extended dataset and the spectral cluster
centers are also updated accordingly in a batch-
wise fashion. The whole procedure of extending
the labeled sample set and retraining the classifiers
on the extended dataset is repeated until adequate
quantity of labeled samples are generated.

After generation of an adequate number of
labeled samples, a supervised multiclass classifier
is trained on the extended dataset to produce final
image classification map.

5 Experimental Setup

5.1 Datasets

Two benchmark HSI datasets with different spectral
and spatial resolutions are used to evaluate
the performance of the proposed approach in
real scenario.

The first image is the University of Pavia dataset
which was acquired with the Reflective Optics
System Imaging Spectrometer (ROSIS) optical
sensor, with spatial resolution of 1.3 m per pixel
and spectral coverage ranging from 0.43 to 0.86
µm, over an urban area surrounding the University
of Pavia, Italy. The image has 115 bands of
size 610×340 pixels out of which 12 noisy bands
were removed.

The ground truth data contains nine classes of
interest viz. trees, asphalt, bitumen, gravel, metal
sheets, shadow, bricks, meadows, and bare soil.

The other image is the Indian Pines dataset
which was acquired by the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) sensor, with
spatial resolution of 20 m per pixel and spectral
coverage ranging from 0.4 to 2.5 µm, over the
agricultural Indian Pine test site of North-western
Indiana. The image has 224 spectral bands of
size 145×145 pixels out of which twenty water
adsorption bands were removed. The ground
truth data contains sixteen classes of interest
consisting of agricultural area, forest and other
natural perennial vegetation.

The datasets are available in the website1.
The sample band of both the datasets and their

1http://lesun.weebly.com/hyperspectral-data-set.

html
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Fig. 2. Sample band and corresponding ground truth of (a) the University of Pavia and (b) the Indian Pines hyperspectral
image data

corresponding ground truths are presented in
Fig. 2.

5.2 Experimental Strategy

The effectiveness of the proposed semi-supervised
algorithm for HSI classification is accessed by
using 10-fold cross validation method. In each fold,
90% of the dataset is used as training set and the
remaining 10% as the testing set.

Meanwhile, the training set is further subdivided
into labeled and unlabeled set. The proposed
method is evaluated twice in each dataset with
different labeled unlabeled sample ratios. In the
first round, in each fold, 40% of the training
set is treated as labeled data and the remaining
60% as unlabeled data, and in the second round,
30% as labeled data and remaining 70% as
unlabeled data. The performance of the proposed
self-training method is compared with supervised
and traditional self-training based semi-supervised
HSI classification methods. Binary support vector
machines [12] are used for building local binary
classifiers due to its superior result in terms of
HSI classification accuracy and robustness to high
dimensional data [16, 37, 41]. k-nearest neighbor
classification algorithm is used for supervised

training using the extended training set for final
pixelwise image classification purpose.

5.3 Quality Indexes

Four quality indexes namely average classification
accuracy (AA), precision (P), recall (R) and
F1-score (F1) are adopted to evaluate the
performance of the proposed approach. For
an l-class multiclass classification problem, these
measures are given by:

AA =

l∑
i=1

tpi+tni

tpi+fni+fpi+tni

l
, (10)

P =

l∑
i=1

tpi

tpi+fpi

l
, (11)

P =

l∑
i=1

tpi

tpi+fni

l
, (12)

F1 = 2× P ×R
P +R

, (13)

where tpi, fpi, fni and tni are true positive, false
positive, false negative and true negative counts
respectively for an arbitrary class Ci. Note that
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Table 1. University of Pavia HSI dataset classification accuracy comparison under two different labeled unlabeled
sample ratios

Class L:U = 40:60 L:U = 30:70
S SS LBESS S SS LBESS

Asphalt 75.358 76.377 93.122 75.4573 76.647 92.856
Meadows 77.749 77.504 88.079 76.897 76.423 87.586
Gravel 11.231 17.642 69.884 12.742 21.951 69.211
Trees 84.806 94.652 90.983 87.118 97.584 90.617
Metal sheets 99.252 99.329 99.632 99.026 99.179 99.486
Bare Soil 88.245 94.072 96.671 93.572 94.901 95.101
Bitumen 44.412 65.412 75.724 39.121 64.741 72.988
Bricks 60.739 60.786 79.935 59.207 59.725 79.977
Shadows 91.645 93.451 98.891 90.214 93.457 98.635

Quality indexes
Avg. Accuracy 70.381 75.469 88.102 70.372 76.067 87.384
Precision 0.626 0.626 0.848 0.614 0.614 0.844
Recall 0.761 0.779 0.853 0.766 0.781 0.843
F1-Measure 0.603 0.607 0.848 0.591 0.594 0.842

Table 2. Indian Pines HSI dataset classification accuracy comparison under two different labeled unlabeled
sample ratios

Class L:U = 40:60 L:U = 30:70
S SS LBESS S SS LBESS

Alfalfa 11.196 17.635 84.452 9.194 11.648 88.333
Corn N 65.366 60.245 74.414 36.756 5.675 75.432
Corn M 13.423 12.174 72.266 12.142 13.637 75.115
Corn 12.123 15.637 59.174 3.219 11.362 64.943
Grass P 25.679 20.768 82.595 20.622 31.472 81.493
Grass T 62.399 52.166 85.538 60.537 51.381 83.772
Grass PM 11.073 21.894 90.166 9.582 17.674 90.833
Hay W 80.376 81.078 95.999 81.188 80.824 93.176
Oats 5.547 11.914 61.666 7.754 21.741 70.833
Soybean N 11.634 10.161 73.966 11.719 34.623 71.998
Soybean M 40.776 41.721 80.485 37.531 37.724 79.589
Soybean C 9.754 17.612 66.714 10.214 44.213 65.079
Wheat 16.765 15.411 89.838 14.267 27.124 87.639
Woods 72.812 72.732 90.902 72.193 72.708 90.487
Buildings 22.219 27.214 64.081 23.465 40.127 59.721
Stone 92.196 93.141 98.092 92.147 94.157 98.092

Quality indexes
Avg. Accuracy 34.583 35.718 79.396 31.408 37.255 79.783
Precision 0.372 0.368 0.766 0.353 0.352 0.751
Recall 0.531 0.552 0.763 0.527 0.551 0.757
F1- Measure 0.355 0.346 0.761 0.329 0.318 0.749
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a measure is calculated by averaging the same
measures calculated for C1, . . . ,Cl in each fold.

6 Results and Discussions

The experimental results with University of
Pavia and Indian Pines HSI datasets in terms
of different classification measures under two
different scenarios are listed in Table 1 and Table
2 respectively.

Supervised training, traditional self-training
based semi-supervised training and the proposed
local binary ensemble based self-training
semi-supervised method are abbreviated as
S, SS and LBESS respectively.

The comparative analysis shows that the
proposed method outperforms supervised learning
and traditional self-training based semi-supervised
learning for HSI classification under the scarcity of
labeled samples.

Significant improvement can be seen in all
the quality measures in the proposed method.
Better values in precision, recall and F1-Measure
imply the low misclassification errors. From
these results, it can also be concluded that
the proposed approach selects highly informative,
diverse unlabeled samples for self-training purpose
and assigns correct class labels efficiently.

The use of simple binary classifiers while
building the local ensembles makes the proposed
method computationally less expensive. Combina-
tion of local decision based on spatial information
and global decision based on spectral information
along with the classification results of local
binary classifiers while selecting the unlabeled
samples ensures the selection of high-quality
informative samples along with correct class label
for dataset extension. This proposed approach
can also be used to solve the problem of data
imbalance effectively.

7 Conclusion and Future Work

A local binary ensemble based self-training method
for semi-supervised HSI classification has been
proposed in the current work. The proposed
wrapper method iteratively extends the limited
labeled set by selecting high-quality, informative
and diverse unlabeled samples through the
exploitation of both spectral and spatial information
of the HSI.

Binary SVMs were used while building local
binary ensembles for self-training and k-nearest
neighbor classifier was used for supervised training
on the extended dataset to produce final image
classification map.

Global spectral based and local spatial based
decisions were utilized to decide the class label of
an unlabeled sample. A hybrid clustering method
along with classification results given by the
local binary classifiers was used for taking global
decisions and a measure which relates to weighted
Euclidean distance between the unlabeled sample
and nearby labeled samples was used for taking
local decisions.

Experimental results on two benchmark HSI
datasets show that the proposed method efficiently
outperforms purely supervised learning and tradi-
tional self-training based semi-supervised learning
for HSI classification when the labeled samples
are deficient. The proposed method can also be
used to solve the problem of data imbalance very
effectively. Identification of better feature extraction
techniques for dimensional reduction, optimization
of the classifiers and decision parameters will be
our future research.
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