
Experimental Platform for Intelligent Computing (EPIC)

Javier A. Hernández-Castaño1, Yenny Villuendas-Rey1, Oscar Camacho-Nieto1,
Cornelio Yáñez-Márquez2

1 Instituto Politécnico Nacional,
Centro de Innovación y Desarrollo Tecnológico en Cómputo, Ciudad de México,

Mexico

2 Instituto Politécnico Nacional,
Centro de Investigación en Computación, Ciudad de México,

Mexico

{javierhc92, coryanez}@gmail.com, {yvilluendasr, ocamacho}@ipn.mx

Abstract. This paper presents the architecture and user

interface of a novel Experimental Platform for Intelligent
Computing (EPIC). Unlike the two most popular
platforms (WEKA and KEEL), the proposed EPIC tool
has a very friendly user interface, and offers some
advantages with respect to existing tools for Intelligent
Computing experiments. In particular, EPIC handles
mixed and incomplete data directly, without
preprocessing, and its architecture supports multi-target
supervised classification and regression. It also contains
a module for two dimensional dataset visualization,
which includes the visualization of the decision frontier
for several supervised learning algorithms.

Keywords. Experimental tools, EPIC, WEKA, KEEL,

intelligent computing, supervised classification.

1 Introduction

The expression “Computational Intelligence” was
first introduced by James Bezdek in a seminal
paper [1], where he enunciate the foundations of
Computational Intelligence, as well as the
differences between this new discipline and
Artificial Intelligence. However, it should be noted
that the expression coined by Bezdek only
changes the qualifying adjective to the word
Intelligence, which from "Artificial", it becomes
"Computational". Within this context, some
specialized authors have defined “Computational
Intelligence” as the set of computational models
and intelligent tools capable of accepting data
coming from sensors, in order to process them

efficiently, to generate reliable, fast, and highly
failure tolerant responses [2].

Within the Alfa-Beta group (to which the authors
of this work belong), we have reflected deeply on
these facts. We have discussed at length the
contents of scientific works within Computational
Intelligence, which span a variety of subjects; for
example, topics as supervised classification [3, 4],
data preprocessing [5-7], data associations [11-
13], time series mining [14-16] and data streaming
[17-19], among others.

We have concluded that, in all cases of the
sample examined, the authors agree with [2], in the
sense that they develop or apply "intelligent tools"
and "computational models". In this context, an
interesting result that we have arrived at, is that the
authors do not mention that intelligence is
computational, but rather that the models are
computational; and in addition, they do not mention
intelligence as a noun, but that it is affirmed that
tools are intelligent (here, the word intelligent is
used as a qualifying adjective).

All these facts and serious discussions have led
the members of the Alfa-Beta Group to conclude,
in a responsible manner, that the phrase
"Computational Intelligence" does not faithfully
reflect the essence of the works included in this
discipline. We affirm categorically that the phrase
"Intelligent Computing" is much more adequate to
express the essence of the mentioned contents.
Thus, from here on we will use the expression
Intelligent Computing (IC).

Computación y Sistemas, Vol. 22, No. 1, 2018, pp. 245–253
doi: 10.13053/CyS-22-1-2907

ISSN 2007-9737

For the development of new IC models and
algorithms, it is necessary to compare them with
respect to existing similar models; and for this task,
several researching supporting tools have been
developed. Among the most popular tools are
WEKA [20] and KEEL [21], which fasten the
researching process, due to they include existing
algorithms and procedures. However, the
researchers in the IC community suffer from
numerous functionality insufficiencies.

The proposal of this research consists on the
creation of a software prototype to execute
experiments in IC. The proposed prototype (EPIC),
keeps the main functionalities and characteristics
of WEKA and KEEL, and overcomes some of their
insufficiencies. Besides, EPIC includes additional
IC algorithms.

EPIC has a simple yet effective architecture,
capable of fulfilling the needs of users; in particular,
the need of directly handling mixed and incomplete
data, without any data transforming or
preprocessing, and the need of handling data
belonging simultaneously to several decision
attributes (multi-target classification).

In addition, the developed prototype has an
Input/Output interface compatible with the data
files managed by WEKA and KEEL. It also has a
module for data transforming, a module for data
partitioning by several validation techniques, and a
user friendly interface to visualize the results of
classification algorithms over two dimensional (2D)
data. Additionally, EPIC has a user interface to
develop supervised classification experiments,
which is friendlier and has more functionalities than
the ones by WEKA and KEEL.

2 Related Works

Table 1 summarizes some of the characteristics of
existing tools to support research in IC. The
characteristics considered are the presence of a
user interface (UI), if the tool has not cost (Free)
and if the tool requires internet access in order to
be executed (Internet).

In this research, we focuses on tools having
user interfaces. This is due to we consider that the
researchers must have access to a friendly
environment, which allows the effortless design
and execution of experiments, and also to be easy

to explain to undergraduate and postgraduate
students in fields related to IC, in a way such that
the fast and reliable knowledge acquisition
is guaranteed.

On the other hand, we want the tools to be free
of charges, and to do not require an internet
connection, in order to execute experiments off-
line, and without depending on external networks.
In addition, we want the data to be protected.

According to the previous analysis (Table 1),
the tools fulfilling the three main requirements (UI,
Free and no Internet) are WEKA and KEEL.
However, both tools had some lack of
functionalities, and an architecture design which
difficult their daily use for handling mixed data
directly, and to include algorithms such as
associative memories. With this research, we aim
at successfully solve such problems.

Table 1. Most used tools for IC

Tool UI Free Internet

Accord [22] - X -

Amazon - Machine
Learning [23]

X - X

Apache Singa [24] - X X

Azure ML Studio [25] X - X

Caffe [26] - X X

KEEL [21] X X -

Mahout [27] - X -

ML Pack [28] - X -

Oryx [29] - X -

Pattern [30] - X -

Scikit-learn [31] - X X

Shogun [32] X X X

Spark MLib [33] - X -

Tensor Flow [34] - X -

Theano [35] - X -

WEKA [20] X X -

Computación y Sistemas, Vol. 22, No. 1, 2018, pp. 245–253
doi: 10.13053/CyS-22-1-2907

Javier A. Hernández-Castaño, Yenny Villuendas-Rey, Oscar Camacho-Nieto, Cornelio Yáñez-Márquez246

ISSN 2007-9737

Considering the above, and carrying out a deep
analysis of both tools, we found out that some of
the drawbacks of WEKA are:

1. It does not allow the visualization of
classification results of the instances in two
dimensions (2D).

a)
b)

Fig. 1. User Interface of the Synthetic Datasets module of EPIC. In a) is shown the overall view, while in b) is shown a

zoom of the highlighted area

a) b)

Fig. 2. Example of datasets obtained with the Synthetic Datasets module of EPIC. In a) is shown a clover dataset, while

in b) is shown an overlapped version of the dataset in a)

a) b)

Fig. 3. User Interface of the Synthetic Datasets from Statistical Distributions module of EPIC. In a) is shown the overall

view, while in b) is shown a zoom of the highlighted area

Computación y Sistemas, Vol. 22, No. 1, 2018, pp. 245–253
doi: 10.13053/CyS-22-1-2907

Experimental Platform for Intelligent Computing (EPIC) 247

ISSN 2007-9737

2. It does not allow the use of dissimilarity
functions for mixed data descriptions (it only
have distances, to be computed over real data).

3. It arbitrarily handles mixed and incomplete data
(the architecture assume that the feature values
of instances are an array of doubles, and it
converts the data to fulfill the architecture
requirement).

4. It does not include any associative supervised
classifier.

5. Its architecture does not allow associating an
instance with something apart from a single
class label.

6. It does not have the functionality to create
synthetic data.

7. It does not allow serializing data partitions.

On the other hand, KEEL tool also have some
drawbacks, as follows:

1. It does not allow the visualization of instance
classification results in two dimensions (2D).

2. It does not include any associative
supervised classifier.

3. It does not have the functionality to create
synthetic data.

Fig. 4. Example of dataset obtained with the Synthetic Datasets from Statistical Distribution module of EPIC. In a) is

shown the dataset, while in b) is zoomed the highlighted legend

a)

b)

c)

Fig. 5. User Interface of the Decision Boundaries for Classifiers module of EPIC. In a) is shown the overall view, while

in b) is shown a zoom of the highlighted area. Note that the menu displays all available learning algorithms. In c) is
shown another Windows form displayed to enter the parameters of the selected classifier, in this case, for kNN classifier

Computación y Sistemas, Vol. 22, No. 1, 2018, pp. 245–253
doi: 10.13053/CyS-22-1-2907

Javier A. Hernández-Castaño, Yenny Villuendas-Rey, Oscar Camacho-Nieto, Cornelio Yáñez-Márquez248

ISSN 2007-9737

4. It converts mixed and incomplete data (the
architecture assume that the feature values of
instances are an array of doubles).

5. It does not allow changing the dissimilarity
function in the Distribution optimally balanced
stratified cross validation (Dob-SCV), data
partitioning procedure.

The new EPIC platform overcomes these
drawbacks of WEKA and KEEL.

3 Methods and Materials

In this research, we have decided to start the
creation of EPIC from scratch, in order to develop
an effective solution to the architectural problems
shown by WEKA and KEEL.

We decide to use C# programming language,
and the Integrated Development Environment
(IDE) Visual Studio Community 2017, due to the
facilities they offer to create a tool with a very user-
friendly interface. Despite C# is not a multiplatform
language, we consider that its use will no represent
a difficult, due to the widely extension of Windows
operating system in Mexico and the rest of
the world.

On the other hand, the IDE used is free, and its
license allows the development of academic and
researching software.

3.1 Core Architecture of the Tool

In order to make experiments with IC algorithms,
one of the main users’ requirements is the
capability of directly handling mixed as well as
incomplete data; besides, users also want to
handle multiple target attributes (many decisions
attributes) and also to associate an instance with
some else than a decision class label (for instance,
to create an auto-associative memory).

To offer a satisfactory response to such user
requirements, we have designed a software core
architecture, which includes the classes to handle
mixed as well as incomplete attribute values, and
to handle several decision attributes.

In addition, we consider the existence of
several kinds of classes. Thus, we can directly
model supervised classification problems (where
the decision attribute has nominal labels),

regression problems (where the decision attribute
has numeric labels), among others.

Additionally, we consider the possibility that a
dataset has more than one decision attribute (as in
multi-target classification problems).

It allows us to directly implement multi-target
classification algorithms (such as ALVOT [36-40]),
which does not require to convert the multiclass
problem into several single class problems. This is
a clear architectural advantage over some existing
tools, such as MEKA [41].

4 Results and Discussion

In this section, we offer a general description of the
user interface of the proposed Experimental
Platform for Intelligent Computing (EPIC), as well
as its functioning. It is worth noting that EPIC is fully
Input/Output compatible with both WEKA and
KEEL; i.e., EPIC handles. ARFF (native file format
of WEKA) and DAT (native file format of KEEL)
files; thus, EPIC is able to write and read files
generated by both WEKA and KEEL.

4.1 User Interface of EPIC

EPIC has three modules at this time. In the first
module, it is possible to manually create a dataset
in two dimensions (x-axis and y-axis), in a way fully
controlled by the user (Figure 1). It is worth
mentioning that neither WEKA not KEEL have
such functionality.

Having a two dimensional dataset, designed in
a way such that it fully fulfils the current
researchers needs, turn to be really useful, due to,
in several times, it is necessary to study the
behavior of algorithms under certain data
configurations.

For such tasks, it is convenient to have a
friendly user interface allowing to design the
datasets with the desired spatial configuration, and
to export such dataset to well-known and popular
file formats.

The synthetic dataset created with EPIC can be
exported in .ARFF format (used by WEKA) and in
a .DAT format (used by KEEL). By this, EPIC
guaranteed a full file compatibility.

Computación y Sistemas, Vol. 22, No. 1, 2018, pp. 245–253
doi: 10.13053/CyS-22-1-2907

Experimental Platform for Intelligent Computing (EPIC) 249

ISSN 2007-9737

In addition, it is possible to export in a .PNG
format, the image of the synthetic dataset created.
This option of exporting a graphical representation
of the 2D dataset is extremely useful, due to it
allows the direct incorporation of such images in
researching papers, thesis, technical reports, and
other important documents.

As shown in Figure 2, EPIC shows the created
datasets with class labels of different shapes and
colors (in the example, there are two classes:
Class 1, blue-circles, and Class 2, mustard-
squares). The class legend is shown in the upper
right corner of the user interface.

Using this, the user can visually appreciate the
data distribution, and to carry out the desired
corrections and comparisons.

The second module of EPIC allows to create a
synthetic dataset from known statistical data
distributions. For such task, we used some of the
statistical distributions offered by Accord [22]. In
this module, the user defines the desired amount
of samples, and the desired distribution for
each class.

It allows obtaining in a fast and extremely
simple way, huge amounts of data points, following
the desired data distribution. Figure 3 shows the
user interface of the Synthetic Datasets from
Statistical Distributions module of EPIC.

As previous module, the obtained dataset can
be exported in .ARFF and .DAT file formats (Figure
3b), and the corresponding graphical
representation can be exported in .PNG, making

a)

b)

c)

Fig. 6. Decision Boundaries for Classifiers in EPIC, showing training instances. In a) for a kNN classifier, in b) for a

SNDAM classifier and in c) for the Naïve Bayes Classifier

a)

b)

c)

Fig. 7. Decision Boundaries for Classifiers in EPIC, without showing training instances. In a) for a kNN classifier, in b)

for a SNDAM classifier and in c) for the Naïve Bayes Classifier

Computación y Sistemas, Vol. 22, No. 1, 2018, pp. 245–253
doi: 10.13053/CyS-22-1-2907

Javier A. Hernández-Castaño, Yenny Villuendas-Rey, Oscar Camacho-Nieto, Cornelio Yáñez-Márquez250

ISSN 2007-9737

easier its further use. Figure 4 shows an example
of a dataset created with EPIC, with three classes
(Class 1 blue-circles, Class 2 mustard-squares,
and Class 3 red-triangles), having 100 instances
each, and following a Normal distribution, but with
different means and standard deviations.

The legend shows the name of the classes, as
well as the name of the used statistical distribution,
and the corresponding parameters and values.

In the example, the parameters for a Normal
distribution are mean and standard deviation.

It is important to highlight that neither WEKA nor
KEEL had functionalities for creating synthetic
data, designed to fit the user needs.

The third module of EPIC reads a two
dimensional dataset in both. ARFF or .DAT file
formats, and allows to visualize the decision
boundaries of several supervised classifiers. For
this, EPIC trains the corresponding classifier with
the dataset read, and classifies the points in the
graphic area.

In Figure 5, we show the user interface of the
decision boundaries visualization module of EPIC.
This functionality is extremely useful for
researchers, due to it allows to visualize rapidly the
uncertainty zones of the supervised classifiers, and
to study interesting behaviors of the algorithms, as
well as to deeply understanding their functioning.

This is very important for complex datasets,
having imbalanced data, and with small disjoints in
the data.

As show in figures 6 and 7, the Decision
Boundaries for Classifiers module of EPIC helps
the user in the analysis of the behavior of several
supervised classification algorithms, and allows
stablishing comparisons with the desired data. In
addition, this module can be of interest for
researchers and practitioners within IC, by
graphically showing the functioning of the
algorithms, in the scenarios desired by the user.

5 Conclusions and Future Works

In this paper, we introduce a novel tool for
Intelligent Computing research experiments. The
tool, named EPIC, offers several desirable
functionalities. It includes three modules for data
processing, data generation and for the
visualization of results of supervised classification

algorithms. The architecture of EPIC allows to
directly handling mixed and incomplete data, also
having multiple decision labels. It allows the
inclusion of supervised learning algorithms for
multiple target classification and regression tasks.

As future works, we want to extend the EPIC
tool, by adding more functionalities, including a
module for the execution of experiments to
evaluate the performance of supervised and
unsupervised learning algorithms over multiple
datasets.

The EPIC tool is under development, and the
current release can be found at the Alpha Beta
Group web site, available at
http://www.alfabeta.org.

Acknowledgements

The authors like to thank the Instituto Politécnico
Nacional (Secretaría Académica, Comisión de
Operación y Fomento de Actividades Académicas,
Secretaría de Investigación y Posgrado, Centro de
Investigación en Computación, and Centro de
Innovación y Desarrollo Tecnológico en Cómputo),
the Consejo Nacional de Ciencia y Tecnología,
and Sistema Nacional de Investigadores for their
financial support.

References

1. Bezdek, J.C. (1994). What is Computational
Intelligence? IEEE Press Computational
Intelligence Imitating Life, pp. 1–12.

2. Konar, A. (2005). Computational intelligence

principles, Techniques and Applications. Springer
Berlin Heidelberg.

3. Wang, X., et al. (2017). Chestx-ray8: Hospital-scale

chest x-ray database and benchmarks on weakly-
supervised classification and localization of
common thorax diseases. IEEE Conference on
Computer Vision and Pattern Recognition.

4. Mondal, A., Khare, D., & Kundu, S. (2017).

Identification of Crop Types with the Fuzzy
Supervised Classification Using AWiFS and LISS-III
Images. Environment and Earth Observation,
Springer, pp. 73–86. DOI: 10.1007/978-3-319-
46010-9_5.

5. Xue, B., Zhang, M., Browne, N.W., & Yao, X.
(2016). A survey on evolutionary computation
approaches to feature selection. IEEE Transactions

Computación y Sistemas, Vol. 22, No. 1, 2018, pp. 245–253
doi: 10.13053/CyS-22-1-2907

Experimental Platform for Intelligent Computing (EPIC) 251

ISSN 2007-9737

on Evolutionary Computation, Vol. 20, No. 4, pp.
606–626. DOI:10.1109/TEVC. 2015.2504420.

6. Fernández, A., et al. (2017). A Pareto Based

Ensemble with Feature and Instance Selection for
Learning from Multi-Class Imbalanced Datasets.
International Journal of neural systems, Vol. 27, No.
6, pp. 1–21. DOI: 10.1142/S0129065717500289.

7. Rosales-Pérez, A., García, S., Gonzalez, J.A.,
Coello-Coello, C.A., & Herrera, F. (2017). An

Evolutionary Multi-Objective Model and Instance
Selection for Support Vector Machines with Pareto-
based Ensembles. IEEE Transactions on
Evolutionary Computation, Vol. 21, No. 6, pp. 863–
877. DOI: 10.1109/TEVC. 2017.2688863.

8. Villarreal, S.E.G. & Schaeffer, S.E. (2016). Local

bilateral clustering for identifying research topics
and groups from bibliographical data. Knowledge
and Information Systems, Vol. 48, No. 1, pp. 179–
199. DOI: 10.1007/s10115-015-0867-y.

9. Hasenstab, K., Sugar, C., Telesca, D., Jeste, S.,
& Şentürk, D. (2016). Robust functional clustering

of ERP data with application to a study of implicit
learning in autism. Biostatistics, Vol. 17, No. 3, pp.
484–498. DOI: 10.1093/ biostatistics/kxw002.

10. Golman, R. & Klepper, S. (2016). Spinoffs and
clustering. The RAND Journal of Economics, Vol.

47, No. 2, pp. 341–365. DOI: 10.1111/ 1756-
2171.12130.

11. Ramírez-Rubio, R., Aldape-Péreza, M., Yáñez-
Márquez, C., López-Yáñez, I., & Camacho, O.
(2017). Pattern classification using smallest

normalized difference associative memory. Pattern
Recognition Letters, Vol. 93, pp. 104–112. DOI:
10.1016/j. patrec.2017.02.013.

12. Cleofas-Sánchez, L., Sánchez, S., García, V., &
Valdovinos, R.M. (2016). Associative learning on

imbalanced environments: An empirical study.
Expert Systems with Applications, Vol. 54, pp. 387–
397. DOI: 10.10 16/j.eswa.2015.10.001.

13. Uriarte-Arcia, A.V., López-Yáñez, I., & Yáñez-
Márquez, C. (2014). One-hot vector hybrid
associative classifier for medical data classification.
PloS one, Vol. 9, No. 4. DOI:
10.1371/journal.pone.0095715.

14. Salmeron, J.L. & Froelich, W. (2016). Dynamic

optimization of fuzzy cognitive maps for time series
forecasting. Knowledge-Based Systems, Vol. 105,
pp. 29–37. DOI:10.1016/j. knosys.2016.04.023.

15. Sheremetov, L.B., González-Sánchez, A., López-
Yáñez, I., & Ponomarev, A.V. (2013). Time series

forecasting: applications to the upstream oil and gas
supply chain. IFAC Proceedings, Vol. 46, No. 9, pp.
957–962. DOI: 10.3182/20130619-3-RU-
3018.00526.

16. Cao, L.J. & Tay, F.E.H. (2003). Support vector

machine with adaptive parameters in financial time
series forecasting. IEEE Transactions on neural
networks, Vol. 14, No. 6, pp. 1506–1518. DOI:
10.1109/TNN.2003.820556.

17. Uriarte-Arcia, A.V., López-Yáñez, I., Yáñez-
Márquez, C., Gama, J., & Camacho-Nieto, O.
(2015). Data stream classification based on the

gamma classifier. Mathematical Problems in
Engineering, Vol. 2015. DOI: 10.1155/2015/
939175.

18. Guha, S. & Mishra, N. (2016). Clustering data
streams. Data Stream Management, Springer, pp.
169–187.

19. Baccarelli, E., Cordeschi, N., Mei, A., Panella, M.,
Shojafar, M., & Stefa, J. (2016). Energy-efficient

dynamic traffic offloading and reconfiguration of
networked data centers for big data stream mobile
computing: review, challenges, and a case study.
IEEE Network, Vol. 30, No. 2, pp. 54–61. DOI:
10.1109/MNET.2016.7437025.

20. Hall, M., Frank, E., Holmes, G., Pfahringer, B.,
Reutemann, P., & Witten, I.H. (2009). The WEKA
data mining software: an update. ACM SIGKDD
explorations newsletter, Vol. 11, No. 1, pp. 10–18.
DOI: 10.1145/1656274.1656278.

21. Alcalá-Fdez, J., Fernández, A., Luengo, J.,
Derrac, J., García, S., Sánchez, L., & Herrera, F.
(2011). KEEL data-mining software tool: data set

repository, integration of algorithms and
experimental analysis framework. Journal of
Multiple-Valued Logic & Soft Computing, Vol. 17,
pp. 255–287.

22. Souza, C.R. (2012). A Tutorial on Principal

Component Analysis with the Accord. NET
Framework, Department of Computing, Federal
University of Sao Carlos, Technical Report.

23. Amazon. (2017). Amazon Machine Learning
Service. https://aws.amazon.com/es/machine-
learning/.

24. Ooi, B.C., Tan, K.L., Wang, S., Wang, W., Cai, Q.,
Chen, G., Gao, J., Luo, Z., Tung, A.K.H., Wang,
Y., Xie, Z., Zhang, M., & Zheng, K. (2015). SINGA:
A distributed deep learning platform. Proceedings of
the 23rd ACM international conference on
Multimedia, pp. 685–688. DOI:
10.1145/2733373.2807410.

25. Barnes, J. (2015). Microsoft Azure Essentials
Azure Machine Learning. Microsoft Press.

26. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S.,
Long, J., Girshick, R., Guadarrama, S., & Darrell,
T. (2014). Caffe: Convolutional Architecture for Fast
Feature Embedding. Proceedings of the 22nd ACM

Computación y Sistemas, Vol. 22, No. 1, 2018, pp. 245–253
doi: 10.13053/CyS-22-1-2907

Javier A. Hernández-Castaño, Yenny Villuendas-Rey, Oscar Camacho-Nieto, Cornelio Yáñez-Márquez252

ISSN 2007-9737

https://doi.org/10.1109/TNN.2003.820556

international conference on Multimedia, pp. 675–
678. DOI: 10.1145/2647868.2654889.

27. Apache Software Foundation (2014). Mahout.
https://mahout.apache.org/.

28. Curtin, R.R., Cline, J.R., Slagle, N.P., March,
W.B., Ram, P., Mehta, N.A., & Gray, A.G. (2013).

MLPACK: A scalable C++ machine learning library.
Journal of Machine Learning Research, Vol. 14, pp.
801–805.

29. Oryx Project (2014). Oryx 2: Lambda architecture

on Apache Spark. Apache Kafka for real-time large
scale machine learning. http://oryx.io.

30. Smedt, T.D. & Daelemans, W. (2012). Pattern for
Python. Journal of Machine Learning Research,
Vol. 13, pp. 2063–2067.

31. Pedregosa, F., Varoquaux, G., Gramfort, A.,
Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V.,
Vanderplas, J., Passos, A., Cournapeau, D.,
Brucher, M., Perrot, M., & Duchesnay, É. (2011).
Scikit-learn: Machine learning in Python. Journal of
machine learning research, Vol. 12, pp. 2825–2830.

32. Sonnenburg, S. et al. (2017). shogun-

toolbox/shogun: Shogun 6.1.0 (Version
shogun_6.1.0), http://doi.org/10.5281/zenodo.1067
840.

33. Meng, X., Bradley, J., Yavuz, B., Sparks, E.,
Venkataraman, S., Liu, D., et al. (2016). Mllib:

Machine learning in apache spark. Journal of
Machine Learning Research, Vol. 17, No. 34, pp. 1–
7.

34. Abadi, M. et al. (2016). TensorFlow: A System for
Large-Scale Machine Learning. 12th USENIX
Symposium on Operating Systems Design and
Implementation (OSDI), Vol. 16, pp. 265–283.

35. Breuleux, O., Bastien, F., Lamblin, P., Pascanu,
R., Desjardins, G., Turian, J., Warde-Farley, D., &
Bengio, Y. (2010). Theano: A CPU and GPU math
compiler in Python. Proceeding 9th Python in
Science Conference, pp. 1–7.

36. Carrasco-Ochoa, J.A. & Martínez-Trinidad, J.F.
(2003). Editing and training for ALVOT, an

evolutionary approach. International Conference on
Intelligent Data Engineering and Automated
Learning, Springer, Vol. 2690, pp. 452–456. DOI:
10.1007/978-3-540-45080-1_61.

37. López-Espinoza, E., Carrasco-Ochoa, J.A., &
Martínez-Trinidad, J.F. (2004). Two floating search

strategies to compute the support sets system for
ALVOT. Iberoamerican Congress on Pattern
Recognition, Springer, Vol. 3287, pp. 677–684.
DOI: 10.1007/978-3-540-30463-0_85.

38. Ruiz-Shulcloper, J. & Lazo-Cortés, M. (1999).

Mathematical algorithms for the supervised
classification based on fuzzy partial precedence.
Mathematical and Computer Modelling, Vol. 29, No.

4, pp. 111–119. DOI: 10.1016/S0895-

7177(99)00044-8.

39. Medina-Pérez, M.A., García-Borroto, M.,
Villuendas-Rey, Y., & Ruiz-Shulcloper, J. (2006).
Selecting objects for ALVOT. Iberoamerican
Congress on Pattern Recognition, Springer, Vol.
4225, pp. 606–613. DOI: 10.1007/11892755_63.

40. Medina-Pérez, M.A., García-Borroto, M., & Ruiz-
Shulcloper, J. (2007). Object selection based on
subclass error correcting for ALVOT. Iberoamerican
Congress on Pattern Recognition, Springer, Vol.
4756, pp. 496–505. DOI: 10.1007/978-3-540-
76725-1_52.

41. Read, J., Pfahringer, B., & Holmes, G. (2016).

Meka: a multi-label/multi-target extension to weka.
The Journal of Machine Learning Research, Vol. 17,
No. 1, pp. 667–671.

42. Cover, T. & Hart, P. (1967). Nearest neighbor
pattern classification. IEEE transactions on
information theory, Vol. 13, No. 1, pp. 21–27. DOI:
10.1109/TIT.1967.1053964.

43. John, G.H. & Langley, P. (1995). Estimating

continuous distributions in Bayesian classifiers.
Proceedings of the Eleventh conference on
Uncertainty in artificial intelligence, Morgan
Kaufmann Publishers Inc., pp. 338–345.

Article received on 20/12/2017; accepted on 23/01/2018.
Corresponding author is Javier A. Hernández-Castaño.

Computación y Sistemas, Vol. 22, No. 1, 2018, pp. 245–253
doi: 10.13053/CyS-22-1-2907

Experimental Platform for Intelligent Computing (EPIC) 253

ISSN 2007-9737

https://doi.org/10.1109/TIT.1967.1053964

