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Abstract. In present front-line of Big Data, prediction
tasks over the nodes and edges in complex deep
architecture needs a careful representation of features
by assigning hundreds of thousands, or even millions
of labels and samples for information access system,
especially for hierarchical extreme multi-label classifica-
tion. We introduce edge2vec, an edge representations
framework for learning discrete and continuous features
of edges in deep architecture. In edge2vec, we learn a
mapping of edges associated with nodes where random
samples are augmented by statistical and semantic
representations of words and documents. We argue
that infusing semantic representations of features for
edges by exploiting word2vec and para2vec is the key to
learning richer representations for exploring target nodes
or labels in the hierarchy. Moreover, we design and
implement a balanced stochastic dual coordinate ascent
(DCA)-based support vector machine for speeding up
training. We introduce a global decision-based top-down
walks instead of random walks to predict the most
likelihood labels in the deep architecture. We judge the
efficiency of edge2vec over the existing state-of-the-art
techniques on extreme multi-label hierarchical as well
as flat classification tasks. The empirical results show
that edge2vec is very promising and computationally
very efficient in fast learning and predicting tasks. In
deep learning workbench, edge2vec represents a new
direction for statistical and semantic representations of
features in task-independent networks.

Keywords. Hierarchical text classification, multi-label
learning, indexing, extreme classification, tree-structured

class hierarchy, DAG-structured class hierarchy, DG-
structured class hierarchy.

1 Introduction

In machine learning (ML) platforms the current
front-line of “Big Data” deals with millions
of training and test documents as well as
hundreds of thousands, or even millions of labels.
Therefore, scalable learning and optimization in
the deep architecture are the key to deal with
such large-scale date-sets. Although strong
ML methods such as Support Vector Machines
(SVMs) [2, 4, 20] have been successfully applied
to text classification (TC).

In general, ML-based TC can be categorized
into two classification tasks: a flat classification
(FC) [5, 13, 14, 17] by referring to standard
binary or multi-class classification problems where
parent-child relations are completely omitted.
Second is the hierarchical classification (HC) [15,
16] – typically a tree, a directed acyclic graph
(DAG), or a directed graph (DG) are incorporated,
where the classes to be predicted are organized
into a class hierarchy. A very large amount of
research in TC, data mining (DM), and related
researches have focused on FC problems. In
contrast, many important real-world classification
problems are naturally cast as HC problems. In
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Big Data platform, the size of data is too large
to implement suitable classifiers. Moreover, it is
difficult to label new data into predefined categories
since text and labels are growing exponentially.
Therefore, it is still an open and more challenging
problem to design and implement such a model
that classify large-scale documents into large-scale
hierarchically-structured categories accurately and
efficiently.

To generate text to vector, statistical vector
space model (VSM) is a common fashion for
learning and prediction tasks. But in complex hier-
archical domain where many categories require
extremely large training sets to achieve higher
accuracy. To build efficient scalable learning
model where a mini-batch is considered by random
sampling from large training sets of a certain
node. In the prediction stage, many or completely
missing features are appeared in vector space
model (VSM) because of sparsity, that can not
precisely predict the leaf categories for a candidate
sample.

Here, semantic learning based on unsupervised
technique to learn continuous feature representa-
tions may give a shed to predict the candidate
samples. In the above directions, this paper
presents edge representations learning (edge2vec)
where each edge in the hierarchy a statistical
feature vector and a semantic feature vector
based on word and paragraph representations
from unlabeled data are incorporated. In edge2vec,
we first learn word representations based on
word-word co-occurrence from unlabeled data to
generate word vectors.

We then infuse continuous weights into features
along with discrete weights in the VSM. In
addition, We then learn paragraph vectors and
infuse continuous weights of paragraph vectors
into features. The new input vector for deep
or hierarchical learning, we call hierarchical
semantically augmented statistical vector space
model (hSAS-VSM). This study makes the
following major contributions with introducing the
edge2vec based hSAS-VSM approach to address
large-scale classification task:

— The proposed edge representations learning
(edge2vec) consists of discrete and continuous

feature learning using word vectors (word2vec)
and paragraph vectors (para2vec).

— The hSAS-VSM enriches the existing
statistical-VSM using semantic knowledge for
words and documents.

— The proposed edge2vec follows the inductive
learning and deductive classification for very
large-scale dataset. The training and test
speed for learning and classification are fast
which makes the system scalable.

— Infusing embedding features are useful to
enrich the categorical performance for large-
scale dataset.

— We introduce a balanced stochastic dual
coordinate ascent for linear support vector
machines for efficient learning and to adjust
the positive-negative samples imbalance in a
certain node in the hierarchy.

— The proposed edge-based learning is not only
reduce the computational cost but also can
significantly improve the classification score.
Therefore, edge-based learning is a prominent
approach for hierarchical classification.

2 Related Work

TC is a typical multi-class single- and multi-label
classification problem. Platt [11] proposed a
faster training of SVM using sequential minimal
optimization (SMO) that breaking a very large
quadratic programming optimization problem into a
series of smallest possible problems as an inner
loop in each outer iteration. The approach is
generally 1200 and 15 times faster for linear and
non-linear SVMs respectively.

Studies to solve multi-class multi-label classi-
fication have been summarized in [18], in three
smaller data sets with maximum labels of 27
in compare to current front-line of multi-label
classification task. Sohrab [14, 16] proposed a
semantically augmented statistical vector space
model (SAS-VSM) by introducing word embedding
into feature for single- and multi-label text
classification (TC). In this work, the SAS-VSM is
introduced in FC and outperformed in compare to
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VSM. There have been many studies that use local
context in HTC [1, 7, 10]. Chakrabarti et al. [1]
proposed a Naive-Bayes document classification
system that follows hierarchy edges from the root
node. Koller et al. [7] applied Bayesian networks to
a hierarchical document classification. In LSHTC3,
the arthur system [21] successfully applied
meta-classifiers to the large-scale hierarchical text
classification (LSHTC) task.

Meta-classifiers can also be regarded as a
sort of pruning. The system employed Liblinear,
Max Entropy classifier, and SVMlight. The
meta-classifier with SVMlight achieved 43.81% on
the aspect of accuracy; however relatively slow
in compare to Liblinear and Max Entropy on the
aspect of efficiency. Lee [8] proposed a Multi-Stage
Rocchio classification (MSRC) based on similarity
between test documents and label’s centroids for
large-scale datasets.

The system used greedy search algorithm in the
predicted label set and then compare similarities
between test documents and two centroid to check
whether more labels are needed or not. The
MSRC achieved 39.74%, 43.26%, and 67.83% in
terms of accuracy, LBMiF, and HF respectively
for Wikipedia medium dataset. On the aspect of
efficiency the system is much faster than baseline
such as K-Nearest Neighbor when the expected
number of labels per document are less.

3 Our Approach: Edge
Representations Learning

Edge representations learning (edge2vec) is formu-
lated with different words or terms and document
representations in natural language processing
(NLP). It consists of discrete and continuous
feature learning from words and documents using
word and paragraph vectors respectively. Consider
a hierarchy H (N ,E), where N is the set of nodes
and E is the set of edges. A hierarchy H is a
collection of superiors or parents and subordinates
or children categories. In edge2vec, a certain edge
ei in the hierarchy H is augmented by hSAS-VSM.
Each edge ei is an edge2vec optimized-based
learning model by propagating a set of samples
associated with a certain node ni. The SAS-VSM
is the inspiration which leads to generate edge2vec

for a certain edge in the hierarchy by infusing
paragraph vectors along with word vectors into
features for hSAS-VSM.

The sample augmentation process of edge2vec
consist of three sub-tasks. First is the VSM-based
edge2vec learning i.e. edge2vecvsm, second is
the hSAS-VSM-based learning using word vectors
i.e. edge2vecvsm,w2v. Finally we generate
edge2vecvsm,w2v,p2v which incorporated with VSM,
word and paragraph vectors in the sample
augmentation process.

3.1 Hierarchical SAS-VSM: hSAS-VSM

Our approach for learning word vectors into
features along with existing supervised VSM is
inspired by SAS-VSM. The inspiration is that
how to infuse continuous word and paragraph
vectors along with discrete weights into features for
hSAS-VSM in very large-scale extreme multi-label
HTC. In the hSAS-VSM, an augmented document
space D = {d1, d2, ...dn} can be denoted as:
~x(d) =

(
~xvsm(d), ~xw2v(d), ~xp2v(d)

)
, where ~x(d)

is a hSAS-VSM augmented feature vector for a
document d, ~xvsm(d) = (xvsm1 (d), ... , xvsmM (d)) is
a statistical feature vector can be defined as:

~xvsm(d) =

{
f (ti), if ti ∈ d
0, otherwise

, (1)

where f (ti) is a term weighting function represen-
ting any weighting approach for term ti. To avoid
excessive effects of large feature values in the
~xvsm(d) = (xvsm1 (d), ... , xvsmM (d)), we normalize
the weight for document d as: ti = ti

ti+1 .
~xw2v(d) and ~xp2v(d) are semantically augmented
feature vectors using word and paragraph vectors
respectively.

3.1.1 Word Vector in h SAS-VSM

For fast and accurate learning in deep architecture,
first we introduce a simple solution for infusing
word vectors into features in large-scale hierarchi-
cal text classification (LSHTC). Suppose that there
are M words in matrix V and each word is mapped
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to p-dimensions, then to compute ~xw2v(d) based
on word vectors as:

~xw2v(d) = ~xvsm(d)V . (2)

Word embedding vector V is defined as:

V =

 ~v1...
~vM

 =

 v11 v12 · · · v1p
...

...
. . .

...
vM1 vM2 · · · vMp

 .

Each row ~vi represents the word embedding
vector for word or term ti. The new generated
augmented features for document d are incorpo-
rated with discrete and continuous weights that get
a larger weight than existing normalized statistical
vectors. We therefore scale the ~xw2v(d) as:

xw2v
i (d) =

xw2v
i (d)

Qvsm(d)
, (3)

where for a document d, Qvsm(d) = ~xT~x and can
be computed from ~xvsm(d).

3.1.2 Paragraph Vector in h SAS-VSM

In TC, document D consists of a sequence
of documents {d1, d2, ...dn} in the corpus. In
paragraph or document vectors, matrix ~P is an
N×q matrix withN documents and each document
is mapped to q-dimensions continuous-valued
vector. In (4), we can then generate the paragraph
vector-based ~xp2v(d) for a certain document d as,

~xp2v(d) = ~xw2v(d)P . (4)

Paragraph vector P is defined as,

P =

 ~p1...
~pN

 =

 p11 p12 · · · p1q
...

...
. . .

...
pN1 pN2 · · · pNq

 .

Each row ~pi denotes the embedding vector for
document di. In the edge2vec process, two
properties are of main concern: inductive learning
and deductive classification.

3.2 EDGE2VEC in Inductive Learning

The inductive learning induces a set of obser-
ved instances or samples from specific bottom
categories to general top categories in the
category hierarchy. During inductive learning,
the edge2vec follows the sample augmentation
using hSAS-VSM. We then perform the bottom-up
propagation a sampling strategy that assign all
the augmented samples from a specific or leaf
category to more general top category in the
hierarchy. Finally, we train each edge in the
hierarchy based on top-down walks.

3.2.1 Bottom-up Propagation

Since only leaf categories are assigned to data,
first we propagate training samples from the leaf
level to the root in the category hierarchy. Fig. 1a
illustrates toy example of document propagation
in a hierarchy consisting of ten categories R-I.
In this figure, sample x1 is assigned to category
F, x2 to F and G, x3 to H, x4 and x5 to I. Let
us look at the case of x2 assigned to G. x2 of
G is propagated to both categories C and D.
Then, x2 of C is propagated to A and then to R.
When x2 is propagated from D to A afterwards, to
avoid redundant propagation, the propagation of
x2 (originally from G via D) terminates at A, even
if A is a parent category. We employ a recursive
algorithm to perform the bottom-up propagation of
the samples.

3.2.2 Edge-based Learning: Top-down Walks

Based on the propagation of training samples,
we train the classifiers for each edge in the
hierarchy where each edge is coupled with a binary
class classifier using the one-against-the-rest
approach. In Fig. 1b at node C, during the
bottom-up propagation where x1 and x2 are
assigned. Since edge-based learning is in
concern, therefore model WCF is trained in
the hierarchy as to classify x1 and x2 to F;
whereas model WCG is trained as to classify x2
to G but not x2 to F. In large-scale hierarchical
learning, each node is propagated with hundreds
of thousands, or even millions of samples,
where positive-negative samples imbalance occur
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(a)
(b) (c)

(d)

Fig. 1. Hierarchy: (a) Bottom–up propagation (b)Edge–based Training (c) Top–down Classification (d) Global Pruning

repeatedly. For efficient learning and to adjust
the effect of positive-negative samples imbalance
in a certain node in the hierarchy, we present
a balanced stochastic dual coordinate ascent for
linear support vector machines (BS-DCASVM) with
L1-loss function. For randomly chosen (~xi, yi),
BS-DCASVM updates the weight vector as:

~wpc ← ~wpc + (αi − α′i)yi~xi, (5)

where ~wpc is a weight vector of certain edge ei in
the hierarchy. The optimization process starts from
an initial point α ∈ Rl and generates a sequence of
vectors {αk}∞k . We refer to the process from αk to
αk+1 as an outer iteration. In each outer iteration
we have l inner iterations, so that sequentially
α1,α2, ...,αl are updated. Each outer iteration thus
generates vectors αk,i ∈ Rl. For updating αk,i to
αk,i+1, must find the optimal solution as:

αk,i+1
i = min

(
max

(
αk,ii −

∇if
(
~αk,i

)
~xTi ~xi

, 0

)
,C

)
,

(6)
where C > 0 is a regularization parameter. ∇if is
the ith component of the gradient ∇if . To evaluate
∇if

(
αk,i

)
:

∇if (~α) = yi ~w
T
pc~xi − 1. (7)

In (6), we move to index i+ 1 with updating αk,ii ,
if and only if the projected gradient ∇Pi f

(
αk,i

)
6= 0

and satisfy the following conditions:

∇Pi f (~α) =


∇if (α) if 0 < αi < C,

min (0,∇if (α)) if αi = 0,

max (0,∇if (α)) if αi = C.

(8)

In (5), α′i is the current value and αi is the
value after the updating. In the inner iterations
of a certain node, in each iteration we maintain
the updates of a weight vector ~w in a balanced
stochastic way, by randomly chosen one from
positive samples (~xi, yi ∈ +1) and in next iteration
the other from negative samples (~xi, yi ∈ −1).

3.3 EDGE2VEC in Deductive Classification

The deductive classification deduces a set of
unlabeled samples from general top categories to
more specific bottom categories in the hierarchy.
In deductive classification, edge2vec follows the
unlabeled samples augmentation as stated in 2.1,
decision-based top-down walks for classification
with global adjustments, and global pruning.

3.3.1 Global Decision-based Top-down Walks

Fig. 1c illustrates top-down classification of test
data ~x. First, ~x is classified to A and B, based on
the decision by WRA(~x) and WRB(~x), respectively.
The decision is made by:

Wpc(~x) = ~wpc.~x+ bpc. (9)

To adjust the effect of positive-negative samples
imbalance, we set a bias β. When Wpc(~x) > β, ~x is
classified from parent category p to child category
c. When both WRA(~x) > β and WRB(~x) > β are
satisfied, ~x is classified into both A and B. Note
that the standard bias term bpc is automatically
tuned for each edge in the training stage. After the
classification, we prune unlikely classes for query
sample x. We define a confidence score and set
the global threshold θ for it. When x reaches a leaf
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node n, the confidence score cα(x,n) is calculated
as follows:

cα(x,n) =
∏

(n1,n2)∈E

σα(Gn1n2
(x))), (10)

where E is a set of edges that x has followed in the
path from the root to the leaf n. The output value of
a classifier is converted to [0, 1] range by σα(x) =

1
1+exp(−αx) . α is set to 2 from the cross validation
stage. When multiple nodes are assigned to x, if
c(x,n)<θ, the assignment of x to n is removed.
Fig. 1d illustrates the global pruning.

4 Evaluation

In this section, we provide empirical evidence for
the effectiveness of our proposed edge2vec in deep
architecture. We employ official LSHTC evaluation
metrics [19] and evaluate our systems on LSHTC
evaluation site1 because the gold standard labels
for the test data is not publicly available. Given
documents D, correct labels Yi, and predicted
labels Zi, the metrics are as follows:

— Accuracy(Acc):
1/|D|

∑
i∈D |Yi ∩ Zi|/ (|Yi ∪ Zi|).

— Example-based F1 measure (EBF):
1/|D|

∑
i∈D 2|Yi ∩ Zi|/ (|Yi|+ |Zi|).

— Label-based Macro-average F1 (LBMaF):
Standard multi-label Macro-F1.

— Label-based Micro-average F1 (LBMiF):
Standard multi-label Micro-F1.

— Hierarchical F1 measure (HF):
The example-based F1-measure counting
ancestors of true and predicted categories.

1http://lshtc.iit.demokritos.gr/

4.1 Base Algorithms

We employ sofia-ml2 for the experiments with
Pagasos, SGD-SVM, Passive Aggressive
(PA) [3], Relaxed Online Margin Algorithm
(ROMMA) [9], and Logistic regression (logreg).
The term frequency (TF), TF.IDF [13, 17], and
TF.IDF.ICSδF [13, 17] are defined as:

fTF (ti, d) = tf(ti,d), (11)

fTF .IDF (ti, d) = tf(ti,d) ×
(
1 + log

D

#ti

)
, (12)

fTF .IDF .ICSδF (ti, d, ck) = tf(ti,d)

×
(
1 + log

D

#ti

)
×
(
1 + log

C

CSδ(ti)

)
,

(13)

where in (11)-(13), tf(ti, d) is the number of
occurrences of term ti in document d, D denotes
the total number of documents in the training
corpus, #ti is the number of documents in the
training corpus in which term ti occurs at least
once, D/#ti is the inverse document frequency
(IDF) of term ti, C denotes the total number of
predefined categories in the training corpus, c(ti)
is the number of categories in the training corpus
in which term ti occurs at least once, and C

CSδ(ti)
is

the inverse class space density frequency (ICSδF)
of term ti. Please refer to [13, 14] for more details.

4.1.1 Word and Paragraph Vectors

In unsupervised learning, the statistics of word
co-occurrences in a corpus is the primary source
for learning word representations. The Word
Vector (word2vec) [6] gives a shed on how meaning
is generated and how the resulting word vectors
might represent that meaning from the global
corpus statistics. In this work, We consider the
word2vec3 for learning word representations from
unlabeled data to generate word vectors. We
construct a matrix of word-word co-occurrences
count from unlabeled corpora. We set a context
window, and use a context ten words to the left and
ten words to the right.

2http://code.google.com/p/sofia-ml/
3http://code.google.com/p/word2vec/
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Table 1. Flat (FC) vs Hierarchical Classification (HC) with BS-DCASVM

Name C α β θ Acc EBF LBMaF LBMiF HF CPD
0.5 2 –0.5 0.0 13.69 21.85 15.12 18.01 38.21 12.30

FC 0.5 2 –0.5 0.70 40.11 45.64 20.22 45.95 68.15 1.16
0.5 2 –0.5 0.0 26.91 35.98 24.18 30.43 56.59 5.96

HC 0.5 2 –0.5 0.39 44.47 49.63 26.58 49.75 70.83 1.54
Note: CPD refers to categories per document

Table 2. Comparison of efficient learning algorithms (LA)

LA C α β θ Acc EBF LBMaF LBMiF HF CPD
BS-DCASVM 0.5 2 –0.5 0.39 44.47 49.68 26.58 49.71 70.83 1.52
Pegasos 0.5 2 –0.5 0.32 44.23 49.48 26.69 49.66 70.76 1.50
SGD-SVM 0.5 2 –0.5 0.32 44.19 49.38 26.41 49.57 70.72 1.51
PA 0.5 2 –0.5 0.49 40.05 45.12 25.50 45.27 66.73 1.50
ROMMA 0.5 2 –0.5 0.15 38.27 43.24 22.96 43.62 56.10 1.50
logreg 0.5 2 –0.5 0.14 36.90 42.35 15.44 42.71 66.88 1.52

Note: CPD refers to categories per document

Table 3. Parameter sensitivity of edge2vec with BS-DCASVM

C α β θ Acc EBF LBMaF LBMiF HF CPD
1 2 0.0 0.39 44.41 49.54 27.69 49.80 70.68 1.56
1 2 0.0 0.40 44.40 49.47 27.49 49.75 70.67 1.53
0.5 2 –0.5 0.40 45.09 50.17 26.94 50.40 71.27 1.48
0.5 2 –0.5 0.41 45.11 50.28 27.34 50.50 71.27 1.46

Table 4. edge2vec with embedding vectors (EVs) over the BS-DCASVM

Learning Approach Term Weighting EVs θ Acc EBF LBMaF LBMiF HF
edge2vec(vsm) TF - 0.39 44.47 49.68 26.58 49.71 70.83
edge2vec(vsm) TF.IDF - 0.42 42.84 47.64 25.37 48.00 69.43
edge2vec(vsm) TF.IDF.ICSδF - 0.42 42.21 46.97 24.81 47.35 68.99

edge2vec(vsm,w2v) 50 0.38 44.65 49.85 26.85 49.98 70.97
edge2vec(vsm,w2v) TF 100 0.39 44.89 50.06 26.95 50.25 71.13
edge2vec(vsm,w2v) 200 0.38 44.72 49.92 26.81 49.99 70.99

edge2vec(vsm,w2v,p2v) 50 0.39 44.76 49.82 26.29 49.95 71.02
edge2vec(vsm,w2v,p2v) TF 100 0.39 44.86 50.00 26.75 50.15 71.08
edge2vec(vsm,w2v,p2v) 200 0.41 45.11 50.28 27.34 50.50 71.27

Note: In all cases, we use C = 0.5, α = 2, and β = −0.5
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The unsupervised paragraph vector [12] is
capable to learn continuous distributed vector
representations of input sentences at any length:
sentences, paragraphs, and documents. The
paragraph vectors (para2vec) are generated from
the available source code4. We run 25 iterations
for all dimensional word and paragraph vectors. All
parameters were left at default values in word2vec
and para2vec.

4.2 Experimental Environments

We evaluate the edge2vec on standard multi-label
HC for leaf nodes prediction through hidden or
intermediate nodes in the hierarchy. We assess
the training and classification time using a single
Xeon 3.0GHz core with 396GB memory.

4.2.1 Dataset

To evaluate the performance of our proposed
edge2vec, we compare our results with Wikipedia
medium dataset (WMD) which considering as
a benchmark for large-scale hierarchical classi-
fication.The WMD5 consists of 456,866 training
documents with 346,299 distinct features and
81,262 test documents with 132,296 distinct
features. It contains 36,504 leaf categories and
50,312 categories in the hierarchy with maximum
depth 12. The number of edges in the hierarchy
are 65,333. The category hierarchies of WMD is in
the form of DAG.

We learn the word and paragraph vectors using
456,866 and 2,365,436 training documents from
WMD and Wikipedia large dataset6 respectively.
The vector representations of word and paragraph
vectors are unsupervised learning that predicts the
surrounding words in the paragraph. It is worth to
mention that to learn paragraph vectors, a certain
document is considered as one paragraph.

4https://github.com/hassyGo/paragraph-vector
5http://lshtc.iit.demokritos.gr/LSHTC3_DATASETS
6http://lshtc.iit.demokritos.gr/LSHTC4_GUIDELINES

4.3 Experimental Results

Table 1 shows the result with BS-DCASVM on flat
vs hierarchical classification. For flat classification
we achieve the best results in terms of accuracy
while a set of parameters are set to C = 0.5, α = 2,
β = −0.5, and θ = 0.70. In contrast, we achieve the
best results while C = 0.5, α = 2, β = −0.5, and
θ = 0.39 are set and the results show that the HC
is outperformed in compare to FC.

In Table 2, we compare the efficient learning
algorithms of edge-based approach in the hierar-
chical architecture. From the results, we can see
that edge-based system with the BS-DCASVM,
Pegasos, and SGD-SVM are performing better
in compare to PA, ROMMA, and logreg. Since
BS-DCASVM is performing best among the
learners and for space limitation therefore rest of
the experiments are conducted with BS-DCASVM
for infusing word and paragraph vectors into
features. Table 3 shows the effect of different
parameters and how it improves the performance.

Table 4 shows how the added different dimen-
sional embedding vectors (EV) allow edge2vec to
achieve high performances. In this table, the
edge2vec (word2vec, EV=100) denotes a document
or sample is augmented by infusing 100 word
vectors into features with existing statistical-VSM.
The edge2vec (word2vec, para2vec, EV=100)
represents a sample is augmented by infusing
each 100 word and paragraph vectors into features
incorporated with existing statistical-VSM.

When β = −0.5 and θ = 0.41, we obtain
the best performances 45.11%, 50.28%, 27.34%,
50.50% and 71.27% for Acc, EBF, LBMaF, LBMiF,
and HF respectively. We summarize the results
with compare to the top four systems participated
in the LSHTC3 challenge in Table 5. Here
edge2vec consistently outperforms the top system
and achieves significant improvement over the
other systems. We achieve a gain of 1.29%,
0.91%, 0.60%, 1.11%, and 0.35% for Acc, EBF,
LBMaF, LBMiF, and HF respectively over the top
system.
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Table 5. Comparison with top four LSHTC3 systems on WMD

Name Acc EBF LBMaF LBMiF HF
edge2vec(vsm) 44.47 49.68 26.58 49.71 70.83
edge2vec(vsm,w2v) 44.89 50.06 26.95 50.25 71.13
edge2vec(vsm,w2v,p2v) 45.11 50.28 27.34 50.50 71.27
arthur (Ist) 43.82 49.37 26.74 49.39 70.92
coolvegpuff (2nd) 42.91 48.24 25.07 47.79 68.92
TTI (3rd) 42.00 47.71 28.35 47.25 69.22
chrishan (4th) 41.17 47.68 24.54 41.87 67.66

Table 6. Efficiency with edge2vec Approach

Learning Approach Learning Algorithm Learning CPU Time Test CPU Time
edge2vec(vsm) BS-DCASVM 2400.47s (40.01m) 491.26s (8.19m)
edge2vec(vsm,w2v) BS-DCASVM 6864.43s (114.41m) 638.26s (10.64m)
edge2vec(vsm,w2v,p2v) BS-DCASVM 7139.61s (118.99m) 686.57s (11.44m)
edge2vec(vsm) Pegasos 6355.79s (105.92m) 512.69s (8.54m)
edge2vec(vsm,w2v) Pegasos 14831.50s (247.18m) 758.19s (12.64m)
edge2vec(vsm,w2v) Pegasos 19344.09s (322.40m) 963.39s (16.05m)

4.3.1 Parameter Sensitivity

The edge representations learning (edge2vec)
involves a set of parameters in Table 3. We
examine how different choices of parameters affect
the performance of edge2vec over the WMD. We
measure the Acc, EBF, LBMaF, LBMiF, and HF
score as a function of parameters C, α, β, and θ.

The performance of edge2vec improves by
changing the hyper-parameter C, β, and θ. We
show the results with β ∈ (0.0,−0.5) and varied
θ ∈ (0.38, 0.39, 0.40, 0.41). β = −0.5 allows the
data classifies into negative side that means some
incorrect assignments are kept for candidate sets.
However, most of the incorrect classifications are
removed after-ward in the global pruning stage.

4.3.2 Scalability and Complexity

We learn egde2vec for 65,333 edges in the hierar-
chy. Table 6 shows the training and test efficiency
with different learning algorithms of edge2vec
approach. The total training time takes less
than one hour including sample augmentation of
456,866 training samples, sampling, optimization,
and writing 65,333 models. The optimization phase

for a certain edge is made the learning more
efficient using negative sampling.

For each outer iteration, we randomly select
positive and negative samples in a balanced
stochastic way from a mini-batch. Therefore
learning in deep is compatible to handle any
size of large-scale data efficiently and accurately.
The normalize feature vectors are very effective
in large-scale dataset by avoiding excessive
effects of large feature value during learning and
classification stage in the deep architecture.

In the test phase, global decision-based walks
allow us to reach leaf categories efficiently.
The total test time takes less than ten minutes
for assigning 81,262 test data into 36,506 leaf
categories through 50,312 intermediate or hidden
categories using BS-DCASVM.

The complexity is to decide a category as the
assignment for a query sample will be O(logn)
with n leaf categories. Besides learning the best
settings of parameter also reduce the additional
training and test cost.
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5 Discussion and Conclusion

We described edge representations that learns
word and paragraph vectors for a certain edge
to build a classification model. In edge2vec
with additional optimized features help to improve
the prediction task. The good performance
demonstrates the merits of edge2vec in capturing
the semantics of word and paragraph vectors.
To achieve the best result in Table 1 for flat
classification, where the threshold θ is set to
0.70. In multi-label classification, the higher
threshold value of θ indicates many leaf categories
are assigned for a candidate sample during
the one-vs-rest approach which increase the
computational cost.

It is noticeable that edge2vec-based HC is very
efficient for learning and prediction tasks. It
decreases the computational cost as well as
increase the system performances. It is also
noticeable that edge2vec outperformed top-group
systems in LSHTC3, w.r.t the most of evaluation
metrics. We believe that, to handle extreme
multi-label LSHTC problems, the results will make
an useful contribution as an useful performance
reference.

Although this work focus on large-scale hier-
archical classification task, but the edge re-
presentations approach can be applied to link
prediction, opinion mining, sentiment analysis, or
related works in deep architecture. Continuous
feature representations are the key of many deep
learning algorithms, it would be interesting how
edge2vec can further contributes in deep learning
workbenches. Our future work includes the
development of much more efficient algorithms for
large-scale datasets.
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