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Abstract. The Artificial Bee Colony (ABC) algorithm 
is a popular swarm based algorithm inspired by the 
intelligent foraging behavior of honey bees. In the 
past, many swarm intelligence based techniques 
were introduced and proved their effective 
performance in solving various optimization 
problems. The exploitation of food sources is 
performed by onlooker bees in accordance with a 
proportional selection scheme that can be further 
modified to avoid such shortcomings as population 
diversity and premature convergence. In this paper, 
different selection schemes, namely, tournament 
selection, truncation selection, disruptive selection, 
linear dynamic scaling, linear ranking, sigma 
truncation, and exponential ranking have been used 
to analyze the performance of the ABC algorithm by 
testing on standard benchmark functions. From the 
simulation results, the schemes other than the 
standard ABC prove their efficient performance.  

Keywords. Swarm based algorithm, artificial bee 
colony, optimization, selection scheme. 

1 Introduction 

A number of complex tasks are systematically 
performed by honey bees; a good example of such 
tasks is collection and processing of nectar [1]. The 
effectiveness and simplicity of the whole process is 
due to the decentralized decision making approach 
of honey bee colonies [2]. Such swarm intelligence 
features as autonomy, self-organizing, distributed 
functioning employed by a bee swarm provided 
inspiration to solve complex traffic, transportation 
problems [3, 4] and deterministic combinatorial 
problems in dynamic and uncertain environments 
[5, 6, 7]. Swarm intelligence algorithms based on 

the behavior of bees can be classified into two 
categories: the foraging behavior and the marriage 
behavior. Algorithms in the first category are 
inspired by searching for food sources and nest 
sites, while those of the second category are based 
on the marriage behavior [8]. One of the most 
important algorithms inspired by the foraging 
behavior of honey bee swarms is the Artificial Bee 
Colony (ABC). It was proposed by Karaboga and 
is used for solving various optimization problems 
[9, 10]. 

The remainder of the paper is organized as 
follows. Section 2 presents the original ABC 
algorithm and its selection scheme. Various 
selection schemes applied to the ABC are 
described in Section 3. The experimental results 
are presented and analyzed in Section 4. The 
paper is concluded in Section 5. 

2 Artificial Bee Colony Algorithm  

The ABC is a population based optimization 
algorithm which is iterative in nature. Basically, the 
ABC consists of cycles of four phases: the 
initialization phase, the employed bees phase, the 
onlooker bees phase, and the scout bees phase. 
The bees going to a food source already visited by 
them are the employed bees, while the bees 
looking for a food source are unemployed. The 
scout bees carry out search for new food sources, 
and the onlooker bees wait for the information from 
the employed bees for food sources. The 
information exchange among bees takes place 
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through the waggle dance. There is one employed 
bee for every food source. An employed bee 
becomes scout when the position of a food source 
does not get improved through the predetermined 
number of attempts called “limit”. In this way, the 
exploitation process is performed by the employed 
and onlooker bees, whereas the scouts perform 
exploration of the search space [10].  

There are three control parameters used in the 
ABC algorithm: the number of employed or 
onlooker bees to represent the number of food 
sources (N), the value of limit, the maximum cycle 
number (MCN). The main steps of the ABC are as 
follows. 

 Step 1. Generate the initial population of 

solutions 𝑥𝑖
𝑗
, i=1…N, j=1…D using (1) and 

evaluate the fitness using (2). 

 Step 2. Generate new solutions for the 
employed bees using (3) and evaluate the 
fitness.  

 Step 3. Apply the greedy selection process for 
the employed bees.  

 Step 4. Calculate the probability values for the 
current solution using (4) so that the onlooker 
bee can choose one according to its value. 

 Step 5. Assign the onlooker bees to the 
solutions according to the probability, generate 
new solutions using (3) and evaluate the fitness. 

 Step 6. Apply the greedy selection process for 
the onlooker bees. 

 Step 7. If there is a solution abandoned by the 
bees, stop its exploitation and replace it with a 
new solution produced by (1).  

 Step 8. Memorize the best solution found so far. 

 Step 9. Check the termination criteria. If not 
satisfied, go to Step 2, otherwise end. 

𝑥𝑖
𝑗

= 𝑥𝑚𝑖𝑛
𝑗

+ 𝑟𝑎𝑛𝑑(0,1)(𝑥𝑚𝑎𝑥
𝑗

− 𝑥𝑚𝑖𝑛
𝑗

), (1) 

where 𝑥𝑖
𝑗
 is a parameter for the ith employed bee 

on the jth dimension, 𝑥𝑚𝑎𝑥
𝑗

 and 𝑥𝑚𝑖𝑛
𝑗

 are the upper 

and lower bounds for 𝑥𝑖
𝑗
. 

𝑓𝑖𝑡𝑖 = {
 

1

1 + 𝑓𝑖
  𝑓𝑖 ≥ 0

1 + 𝑎𝑏𝑠(𝑓𝑖) 𝑓𝑖 < 0

, (2) 

where 𝑓𝑖  is a specific objection function and 𝑓𝑖𝑡𝑖 is 
a fitness value. 

 𝑣𝑖𝑗 =  𝑥𝑖𝑗 +  (𝑥𝑖𝑗 − 𝑥𝑘𝑗), (3) 

where i, k{1…N}, i  k and j{1…D}, 𝑥𝑖𝑗 is the ith 

employed bee in the jth dimension, 𝑣𝑖𝑗 is a new 

solution for 𝑥𝑖𝑗, 𝑥𝑘𝑗 is the neighbor of 𝑥𝑖𝑗,  is a 

random number in the range [-1,1] to control the 
production of neighbor solutions around 𝑥𝑖𝑗. 

𝑝𝑖 =
𝑓𝑖𝑡𝑖

∑ 𝑓𝑖𝑡𝑗
𝑁
𝑗=1

, (4) 

where 𝑓𝑖𝑡𝑖 is the fitness value of the ith solution and 

𝑝𝑖 is the selection probability of the ith solution. 

2.1 Selection Scheme in the Basic ABC 

As explained above, food sources are chosen by 
the onlooker bees using a stochastic selection 
scheme in accordance with the probability value 𝒑𝒊. 
The process employs three stages [11]: 

(i) Calculate the fitness value using (2). 

(ii) Calculate the probability value using (4). 

(iii) Choose a food source according to the 
probability value based on the roulette wheel 
method. 

However, the proportional selection scheme 
employed in the ABC has two shortcomings viz. 
reduction in population diversity and premature 
convergence. Thus, the ABC is not able to maintain 
the balance between exploration (diversification) 
and exploitation (intensification) of the search 
space and is considered as an inefficient algorithm. 

3 Description of Selection Schemes 

The selection scheme plays an important role in 
the ABC algorithm as it drives the search space in 
a proper direction. These schemes may be 
classified in two categories: proportionate selection 
and ordinal based selection. In the proportionate 
selection scheme, individuals are selected on the 
basis of their fitness values relative to the fitness of 
others, whereas in the ordinal based scheme, 
individuals are selected based on their rank in the 
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population. The rank is determined in accordance 
with their fitness values. The schemes presented 
in this paper except the proportional selection in 
the basic ABC are covered in the ordinal based 
selection category. In this work, we performed 
experiments on the ABC using different selection 
schemes. The details of the schemes are given in 
what follows. 

3.1 Tournament Selection 

This selection scheme works by holding a 
tournament of N individuals chosen from the 
population, where N is taken as the tournament 
size [11, 12, 13, 14]. The fitness values of 
individuals are compared and some score (say, s) 
is assigned to the best one. The process is 
repeated till the best in the population achieves the 
highest score. The individuals are then selected 
according to the probability using the following 
equation: 

Pi =  
Si

∑ Si
n
i=1

 . (5) 

3.2 Truncation Selection 

This selection scheme assigns equal selection 
probabilities to the µ best individuals selected in a 
population of size λ and is equivalent to (µ,λ)- 
selection used in evolution strategies [12, 15, 16]. 
The selection probabilities are given as 

pi =  {
1 µ, 1 ≤ i ≤ µ ⁄

 0 , µ < 𝑖 ≤ 𝜆 
.  (6) 

3.3 Disruptive Selection 

This scheme introduces the concept of normalized-
by-mean fitness function. The idea is to give more 
chances to better and worse solutions in 
comparison to moderate solutions so that the 
population diversity can be improved [11, 17, 18]. 
The selection probability is calculated as follows: 

pi =
fiti

∑ fitj
N
j=1

,  (7) 

where fiti is the fitness value of the ith solution and 

𝑃𝑖 is the selection probability of the ith solution. The 
fitness function is given by 

𝑓𝑖𝑡𝑖 = |𝑓𝑖  – 𝑓 ̅|, (8) 

where 𝒇𝒊 is a specific objective function, 𝒇 ̅ is the 
average of the objective values for the individuals 
in the population.  

3.4 Linear Dynamic Scaling  

In order to improve the performance of the 
proportional selection, it is combined with a scaling 
technique called linear dynamic scaling [12]. The 
dynamic scaling is introduced to favor better 
individuals resulting in improved population fitness 
over generations. The selection probability is 
given by 

𝑃𝑖 =
𝑓𝑖  − 𝑐

𝑆𝑓  −  𝜆. 𝑐
, (9) 

where 𝑆𝑓 = ∑ 𝑓𝑗
𝜆
𝑗=1  , c > 0, and λ is the number of 

solutions in the population. 

3.5 Linear Ranking 

In this scheme, the ranks are assigned to the 
individuals based on their fitness values. The 
individual having the worst fitness is assigned rank 
1 and the best fitness is assigned rank N. The 
method uses a linear function to calculate selection 
probabilities according to the rank of individuals 
[12, 16]: 

𝑝𝑖 =
1

𝑁
 (𝜂− + (𝜂+  − 𝜂−) 

𝑖 − 1

𝑁 − 1
) , 𝑖 𝜖 {1, … , 𝑁}. (10) 

To satisfy the constraints, two conditions must 
be fulfilled: 

 𝜼+ = 𝟐 − 𝜼− and 𝜼−  ≥ 𝟎. 

3.6 Sigma Truncation 

In order to improve the fitness of a population, low 
fitness individuals are discarded using the 
standard deviation of fitness values before scaling 
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them. This scheme ensures the selection of good 
fitness individuals [19, 20]. The fitness values of 
individuals are calculated as 

𝑓𝑖𝑡′ = 𝑓𝑖𝑡 − (𝑓𝑖𝑡̅̅ ̅̅ − 𝑐𝜎), (11) 

where 𝒇𝒊𝒕̅̅ ̅̅  is the average fitness value of the 
population, σ is the standard deviation of the 
fitness values, c is a small constant having values 
from 1 to 3. 

3.7 Exponential Ranking 

In this scheme, ranks are assigned to the 
individuals similar to linear ranking. The difference 

lies in exponential weighing of ranked individuals 
to compute probabilities as follows [12, 16]: 

𝑝𝑖 =
𝑐 − 1

𝑐𝑁 − 1
 𝑐𝑁−𝑖  , 𝑖 ∈  {1, … , 𝑁}, (12) 

where c<1, an indicative of the selection probability 
of the best individual. 

4 Experimental Results and 
Discussions 

4.1 Test Problems 

Six benchmark functions were used for simulation 
to evaluate the  performance  of  various  selection 

Table 1. Results of algorithms (varying parameters)  

[Colony size=100, Limit=100, Max Cycles=100, Runs=10] 

  ABC TABC  TRABC DABC 

 D 10 50 100 10 50 100 10 50 100 10 50 100 

f1 
Mean 7.86E-04 18197.9 119349 1.26E-02 15293.3 101725 3.23E-04 11503.3 101015 0.0390 6139.17 49425.8 

SD 4.79E-04 5773.81 11340.1 1.13E-02 3129.45 11241.6 2.14E-04 2799 5199.34 0.0184 2877.18 14375.5 

f2 
Mean 77.67 2.37E+09 4.83E+10 308.28 2.41E+09 3.97E+10 61.64 1.09E+09 3.44E+10 722.16 1.14E+09 1.98E+10 

SD 41.85 1.62E+09 7.54E+09 278.05 8.10E+08 6.79E+09 50.20 7.45E+08 5.97E+09 381.39 9.01E+08 5.07E+09 

f3 
Mean  1.89 257.31 943.99 2.057 228.82 864.08 1.598 214.035 801.84 2.329 146.91 596.78 

SD 0.94 26.58 42.13 0.831 24.41 26.08 0.907 23.45 46.22 1.149 35.60 90.38 

f4 
Mean 0.1446 177.71 1068.53 0.1715 153.75 901.85 0.139 98.75 936.073 0.2242 65.108 575.22 

SD 0.0640 41.95 101.08 0.0605 41.73 125.67 0.070 32.8 101.12 0.0773 15.979 141.43 

f5 
Mean 0.7058 17.05 19.71 0.7835 15.60 19.185 0.229 15.7 19.14 0.2550 6.753 16.243 

SD 0.4060 1.00 0.121 0.5037 0.644 0.231 0.072 0.818 0.095 0.374 2.325 2.195 

f6 
Mean -3881.45 -12678.8 -18256.9 -3948.01 -12809.1 -18606.5 -3892.84 -12632.1 -18548.1 -3988.83 -14476.8 -23211.3 

SD 93.39 341.11 779.43 84.84 462.49 897.98 147.18 436.095 635.19 72.67 767.98 1393.06 

  LDABC LRABC STABC ERABC 

 D 10 50 100 10 50 100 10 50 100 10 50 100 

f1 Mean 1.08E-04 29135.9 146802 7.91E-02 27470.9 139846 7.55E-04 4907.19 51886.7 5.57E-03 11149 89782.1 

 SD 1.07E-04 4280.13 7117.67 4.61E-02 5451.15 7891.2 3.32E-04 304.61 16109.3 3.79E-03 4065.45 7305.54 

f2 Mean 689.50 6.06E+09 5.46E+10 779.85 6.11E+09 5.77E+10 108.27 2.68E+08 1.64E+10 174.54 1.53E+09 3.298E+10 

 SD 285.78 2.27E+09 8.34E+09 660.82 1.68E+09 7.75E+09 71.12 1.3E+08 3.11E+09 77.083 9.34E+08 6.069E+09 

f3 Mean  1.477 308.83 1014.3 3.85 302.34 1007.81 0.945 142.656 693.134 2.232 203.157 772.51 

 SD 1.142 20.001 60.858 1.19 19.09 37.66 0.735 29.66 61.55 0.848 22.893 35.863 

f4 Mean 0.0977 273.024 1255.24 0.238 252.194 1217.57 0.101 28.204 551.79 0.125 110.507 818.615 

 SD 0.0378 30.143 119.355 0.087 45.30 92.28 0.046 13.77 134.22 0.058 20.925 111.986 

f5 Mean 0.462 17.521 19.670 1.536 17.537 19.693 0.107 11.614 17.83 0.505 14.684 18.705 

 SD 0.342 0.728 0.1256 0.436 0.439 0.146 0.070 2.258 0.686 0.399 0.837 0.461 

f6 Mean -3832.67 -12651.7 -19983.4 -3839.7 -11398.6 -16375.4 -3970.52 -13403.1 -20470.4 -3929.34 -13026.4 -20521.8 

 SD 104.237 591.847 1193.19 91.427 558.706 1020.43 132.09 435.806 1356.8 41.297 533.769 1102.73 
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schemes in the ABC. These functions are the 
following ones: 

i) Sphere function: 

𝑓1(𝑥) = ∑ 𝑥𝑖
2𝑛

𝑖=1 , −100 ≤ 𝑥𝑖 ≤ 100. (13) 

ii) Rosenbrock function: 

𝑓2(𝑥) = ∑ 100(𝑥𝑖+1−𝑥𝑖
2)2 + (𝑥𝑖 − 1)2𝑛−1

𝑖=1 ,  
   −100 ≤ 𝑥𝑖 ≤ 100. 

(14) 

iii) Rastrigin function: 

𝑓3(𝑥) = ∑(𝑥𝑖
2 − 10cos (2𝜋𝑥𝑖

𝑛

𝑖=1

) + 10), 

−5.12 ≤ 𝑥𝑖 ≤ 5.12. 

(15) 

iv) Griewank function: 

𝑓4(𝑥) =
1

4000
(∑ 𝑥𝑖

2𝑛
𝑖=1 ) −

(∏ cos (
𝑥𝑖

√𝑖
 )𝑛

𝑖=1 ) + 1, 

−600 ≤ 𝑥𝑖 ≤ 600. 

(16) 

v) Ackley function: 

Table 2. Results of algorithms (varying maximum cycles) 

[Colony Size=100, Limit=100, Parameters=100, Runs=10] 

  ABC TABC  TRABC DABC 

 MCN 10 50 100 10 50 100 10 50 100 10 50 100 

f1 

Mean 250930 185124 126051 246890 172770 102611 247661 168817 104904 242465 128258 55980.9 

SD 12205.3 10471.2 11303.3 12918.1 11439.3 13032.3 11757.9 12539 10243.5 15606.1 13879.3 16367.7 

f2 

Mean 1.326E+11 8.38E+10 5.048E+10 1.267E+11 7.55E+10 4.098E+10 1.299E+11 7.54E+10 4.136E+10 1.169E+11 5.554E+10 2.509E+10 

SD 8.10E+09 1.21E+10 5.83E+09 1.66E+10 9.46E+09 4.86E+09 9.94E+09 5.687E+09 5.282E+09 1.426E+10 9.23E+09 8.797E+09 

f3 

Mean  1548.44 1216.53 913.72 1488.28 1163.74 859.263 1521.33 1112.25 840.877 1482.5 989.64 652.166 

SD 42.45 50.53 56.87 47.078 42.094 33.698 48.496 48.559 33.003 85.277 91.003 72.199 

f4 

Mean 2283.56 1575.77 1098.64 2200.89 1507.49 989.412 2211.95 1518.74 912.409 2159.39 1225.44 529.602 

SD 98.56 93.51 139.31 78.463 98.668 105.66 154.68 130.747 115.838 106.184 238.072 147.206 

f5 

Mean 20.823 20.341 19.766 20.773 20.077 19.249 20.819 20.079 19.256 20.609 19.444 14.618 

SD 0.0619 0.123 0.132 0.0654 0.123 0.182 0.064 0.162 0.167 0.198 0.321 1.694 

f6 

Mean -7653.57 -14867.4 -18138.6 -6461.31 -13550.5 -18258.9 -6617.82 -14444.5 -18974.3 -7255.93 -17191 -23046.7 

SD 615.089 1269.98 501.176 671.23 676.86 709.486 762.275 727.245 730.611 621.579 1025.85 1469.03 

  LDABC LRABC STABC ERABC 

 MCN 10 50 100 10 50 100 10 50 100 10 50 100 

f1 

Mean 249375 197323 141879 249782 188344 132937 227712 120885 52807 240551 156249 89304.2 

SD 13949.8 11242.1 10079 11540.8 11004.1 10138.4 20660.9 23585.2 17806.5 10449.7 12120.8 8856.27 

f2 

Mean 1.28E+11 9.54E+10 6.22E+10 1.298E+11 9.042E+10 5.509E+10 1.206E+11 5.37E+10 1.789E+10 1.248E+11 6.903E+10 3.070E+10 

SD 7.52E+09 8.32E+09 4.21E+09 1.003E+10 8.421E+09 3.828E+09 9.359E+09 1.40E+10 7.726E+09 9.910E+09 8.229E+09 7.233E+09 

f3 

Mean  1530.99 1286.12 1007.75 1540.29 1265 972.159 1429.55 1011.67 637.973 1462.19 1051.77 768.871 

SD 36.66 33.04 49.335 40.013 31.583 40.345 55.543 91.026 67.286 42.485 62.256 46.358 

f4 

Mean 2273.92 1739.34 1280.77 2285.28 1711.15 1226.76 1993.09 1134.25 455.893 2184.82 1335.31 846.794 

SD 103.46 103.40 49.93 147.962 106.724 78.204 233.127 221.491 191.044 142.632 104.762 66.028 

f5 

Mean 20.525 20.347 19.682 20.799 20.299 19.694 20.699 19.659 17.892 20.712 19.93 18.717 

SD 0.049 0.078 0.130 0.097 0.111 0.108 0.088 0.361 0.564 0.057 0.145 0.273 

f6 

Mean -8787.72 -15683.6 -20328.1 -6482.74 -11687.1 -16510.4 -8690.88 -15543.2 -20975.7 -7339.52 -15108.5 -20400.8 

SD 1043.64 1894.68 1685.1 953.017 579.232 394.528 1051.32 967.116 1121.47 708.848 679.761 1198.11 
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𝑓5(𝑥) = 20 + 𝑒 − 20𝑒
( √

1

𝑛
∑ 𝑥𝑖

2𝑛
𝑖=1

−0.2
)

−

𝑒
(

1

𝑛
∑ cos (2𝜋𝑥𝑖)𝑛

𝑖=1 )
, 

−32 ≤ 𝑥𝑖 ≤ 32. 

(17) 

vi) Schwefel function: 

𝑓6(𝑥) =  ∑ −𝑥𝑖  𝑠𝑖𝑛

𝑛

𝑖=1

(√|𝑥𝑖|),  

                     −500 ≤ 𝑥𝑖 ≤ 500. 

(18) 

4.2 Experimental Settings 

The algorithms for various selection schemes are 
implemented using MATLAB R2012a on an Intel 
(R) Core (TM) i3 CPU 3.06 GHZ with 4 GB RAM. 
In the following tables, ABC represents the original 
proportional scheme. TABC means the tournament 
selection, TRABC represents the truncation 
selection, DABC is the disruptive selection, LDABC 

Table 3. Results of algorithms (varying colony size)  

[Limit=100, Parameters=100, Max Cycles=100, Runs=10] 

  ABC TABC  TRABC DABC 

 colony 10 50 100 10 50 100 10 50 100 10 50 100 

f1 

Mean 155803 120075 121949 153139 114532 104069 111492 111246 98360.8 128334 64734 61148 

SD 12251.9 16413.2 8622.49 15228 15009.8 9983.29 40111.8 11485.9 9452.93 18080.1 21111.3 18442.1 

f2 

Mean 7.396E+10 5.61E+10 4.611E+10 6.305E+10 4.362E+10 4.281E+10 5.765E+10 3.778E+10 3.501E+10 6.086E+10 2.674E+10 2.423E+10 

SD 1.595E+10 7.42E+09 1.229E+10 1.575E+10 1.107E+10 6.642E+09 2.378E+10 6.267E+09 7.195E+09 1.294E+10 8.313E+09 7.376E+09 

f3 

Mean  1096.59 977.255 932.744 984.253 887.64 847.167 967.669 846.695 821.185 905.62 636.894 595.537 

SD 45.81 62.85 47.755 46.754 53.319 52.681 77.5 47.25 58.120 73.099 87.505 86.610 

f4 

Mean 1408.62 1137.28 969.686 1318.7 1066.59 939.254 1132.43 925.896 892.631 1169.85 616.013 481.919 

SD 142.166 104.152 120.243 134.866 128.681 102.622 235.766 108.521 140.515 153.54 178.318 172.974 

f5 

Mean 20.029 19.783 19.622 19.721 19.269 19.160 19.688 19.325 19.229 19.604 17.439 14.885 

SD 0.119 0.207 0.152 0.218 0.294 0.215 0.615 0.250 0.223 0.348 1.018 2.381 

f6 

Mean -15851.9 -18777.1 -18969 -15924.3 -17914.9 -18322 -16751.9 -18753.7 -19305.4 -17554.3 -20919.8 -22832.8 

SD 1732.79 1105.3 933.175 666.684 811.496 637.356 1872.09 568.458 955.061 1810.79 1160.48 1101.72 

  LDABC LRABC STABC ERABC 

 colony 10 50 100 10 50 100 10 50 100 10 50 100 

f1 

Mean 163777 148261 139431 163620 145658 140055 122765 77051.8 47392.9 159043 124064 87743.4 

SD 14833.9 12756.4 15247.9 12274.2 11780.2 11438 18427.8 14461.4 18164 11245.1 10493.2 8257.7 

f2 

Mean 8.805E+10 6.68E+10 6.065E+10 7.084E+10 5.91E+10 6.007E+10 5.26E+10 2.268E+10 1.234E+10 8.021E+10 4.966E+10 3.311E+10 

SD 1.155E+10 5.34E+09 9.48E+09 1.678e+10 6.547E+09 7.358E+09 1.39E+10 8.829E+09 8.756E+09 9.124E+09 8.241E+09 3.718E+09 

f3 

Mean  1117.99 1065.95 1026.66 1091.21 1024.36 986.227 865.64 667.954 600.535 1071.2 914.14 766.214 

SD 50.79 32.505 35.87 84.147 33.897 45.925 92.444 72.493 116.839 86.789 66.309 47.801 

f4 

Mean 1515.63 1382.41 1306.19 1575 1284.57 1221.79 1011.66 581.717 545.466 1491.3 1134.4 795.049 

SD 111.498 103.275 92.921 101.208 85.695 110.568 142.21 181.086 163.445 178.409 100.799 110.972 

f5 

Mean 20.088 19.751 19.77 20.021 19.780 19.812 19.47 18.684 17.72 20.117 19.425 18.75 

SD 0.102 0.216 0.114 0.154 0.138 0.078 0.343 0.440 1.034 0.129 0.203 0.285 

f6 

Mean -16861.1 -19109.2 -19325.2 -15016.1 -16195.2 -16759 -17222.7 -19346.7 -20759 -14485 -17676.1 -20221 

SD 2151.08 959.05 836.13 1088.17 863.413 635.595 622.396 1316.32 1132.32 892.029 754.008 485.715 
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is the linear dynamic scaling, LRABC means the 
linear ranking, STABC represents the sigma 
truncation, and ERABC is the exponential ranking 
scheme.  

The experiments were performed on the six 
benchmark functions given above. In all the 
experiments, the limit was put to 100, and the 
values present the results of 10 runs (except Table 
5 where runs=100). Alongside with comparing the 
mean values and standard deviations of the 

function values, the values of selection intensity, 
success rate, reproduction rate, and loss of 
diversity were also calculated.  

4.3 Effect of Dimensions 

We performed simulations on modified ABC 
algorithms to analyze the effect of varying 
dimensions of the problem. The colony size, 
maximum cycles, and limit were fixed as 100. The 

Table 4. Results of algorithms (varying initialization range)  

(FR: Full Range, LHR: Left Half Range, RHR: Right Half Range)  
[Colony size=100, Limit=100, Parameters=100, Max Cycles=100, Runs=10] 

  ABC TABC  TRABC DABC 

 Range FR LHR RHR FR LHR RHR FR LHR RHR FR LHR RHR 

f1 

Mean 121689 153620 150495 107252 142749 140865 103796 139065 135255 61719.5 84576.3 89298.2 

SD 10883.5 14247.6 12512.8 15826.4 9520.49 6115.17 12214.2 19030.2 8912.89 14714.7 13296.3 24164.7 

f2 

Mean 4.75E+10 5.79E+10 5.83E+10 3.81E+10 5.47E+10 5.79E+10 3.81E+10 5.39E+10 5.00E+10 2.39E+10 3.86E+10 3.12E+10 

SD 8.18E+09 1.02E+10 7.58E+09 4.587E+09 5.532E+09 5.079E+09 4.662E+09 9.373E+09 8.797E+09 1.001E+10 1.223E+10 9.103E+09 

f3 

Mean  909.938 1002.02 963.617 847.579 912.07 934.039 842.424 909.494 913.36 607.236 647.623 743.819 

SD 52.910 27.789 61.354 39.451 37.340 56.306 24.046 47.093 39.436 54.797 87.810 63.378 

f4 

Mean 1080.47 1399.01 1393.61 964.143 1217.68 1257.09 922.779 1171.9 1236.74 533.073 836.681 857.867 

SD 101.607 88.326 115.701 76.564 83.187 107.068 70.082 67.728 135.894 194.406 140.974 196.065 

f5 

Mean 19.692 20.022 20.028 19.076 19.626 19.645 19.090 19.686 19.646 14.543 17.628 18.204 

SD 0.122 0.0959 0.0952 0.242 0.154 0.164 0.233 0.214 0.146 2.885 1.326 0.537 

f6 

Mean -18449.8 -18813.3 -20328.6 -18857.7 -15702.1 -21248.1 -18586.6 -20587.6 -20976.1 -24007.4 -20263.3 -24533.9 

SD 946.304 1376.26 1042.54 608.96 590.622 909.506 658.871 1208.27 846.723 1286.78 1160.12 945.887 

  LDABC LRABC STABC ERABC 

 Range FR LHR RHR FR LHR RHR FR LHR RHR FR LHR RHR 

f1 Mean 146802 171035 173591 134539 166072 164595 56154.3 92882.7 85664 87489.8 120376 119350 

 SD 7117.67 7075.02 11976.6 8120.69 13929.8 14076.1 12525.1 13795 17405.2 10384.3 16138.6 6182.65 

f2 Mean 5.46E+10 7.67E+10 7.37E+10 5.680E+10 6.855E+10 7.297E+10 1.920E+10 2.137E+10 2.482E+10 3.271E+10 4.46E+10 4.241E+10 

 SD 8.34E+09 4.93E+09 8.28E+09 6.75E+09 9.118E+09 6.504E+09 6.733E+09 9.248E+09 9.829E+09 4.734E+09 7.743E+09 4.052E+09 

f3 Mean  1014.3 1088.44 1071.89 987.873 1061.34 1052.4 656.849 745.054 737.336 783.299 855.078 805.276 

 SD 60.858 31.30 36.65 40.923 48.759 58.716 68.01 72.310 48.533 33.132 52.021 47.068 

f4 Mean 1255.24 1552.89 1527.36 1179.54 1518.76 1543.07 480.133 863.346 883.199 785.88 1073.36 1043.12 

 SD 119.355 60.67 68.09 93.621 91.467 113.547 175.216 118.049 147.164 67.001 74.112 127.377 

f5 Mean 19.670 20.05 20.052 19.681 19.982 19.894 17.765 19.232 19.123 18.873 19.460 19.482 

 SD 0.1256 0.077 0.108 0.120 0.069 0.16 0.725 0.185 0.428 0.280 0.149 0.119 

f6 Mean -19187.6 -26122.8 -19933.3 -15948.8 -13200.3 -19031.3 -20469.4 -19687.1 -23429.8 -20405.7 -17743.7 -22227.7 

 SD 1174.77 1123.43 1162.49 655.972 708.532 887.43 958.378 1190.62 1566.3 723.357 761.21 847.707 
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performance of all ABC algorithms deteriorated as 
the dimension of the problem was increased (10, 
50, 100).  

The results in Table 1 show that STABC 
generated better results for Rastrigin and Ackley 
functions followed by LDABC for Sphere and 
Griewank functions in less dimensions, i.e., 10. 
Again, STABC produced excellent results with an 
increase in dimensions up to 50. However, DABC 
had superior performance for 100 dimensions. 
From Fig. 1(a), we can see that the increase in 
dimensions makes the convergence of DABC 
method better for Sphere function and also for 
Rastrigin function as given in Fig. 1(b).  

4.4 Effect of Cycles 

We analyzed the performance of the ABC 
algorithms by varying the maximum number of 
cycles. The experiment was repeated for the six 
benchmark functions as given in Table 2.  

The obtained values prove better results for the 
sigma truncation scheme on Sphere, Rosenbrock, 
Rastrigin, and Griewank functions. Figs. 2(a) and 
2(b) prove better results of STABC on Rosenbrock 
function and of DABC on Ackley function. For a 
less number of cycles, i.e. 10, LDABC shows the 
best performance.  

4.5 Effect of Colony Size 

In the next experiment, we determined what size of 
population is suitable to generate better results. 
The experiment was conducted for all six test 
problems. Table 3 presents better results in case 
of STABC on Rosenbrock, Griewank functions, 
and in case of DABC on Rastrigin, Ackley, 
Schwefel functions for varying colony sizes.  

For a small colony size of 10, the results of 
TRABC are good on Sphere function. The 
performance of DABC got improved with an 
increase in the colony size as given in Figs. 3(a) 
and 3(b).  

4.6 Effect of Region Scaling 

We also investigated the effect of initializing the 
solutions in various sub-regions of the search 
space. There was a possibility of variation in the 
performance of the algorithms during initialization 
in the left half and the right half of the search space. 
The results of the experiments using different 
selection schemes are reported in Table 4. The aim 
is to determine the sensitivity of the algorithms in 
finding global optima under varying initialization 
ranges. All the ABC algorithms were found to be 
less sensitive to initial solutions in finding global 
optima as shown in Figs. 4(a) and 4(b). 

Table 5. Results of algorithms  

(SI: Selection Intensity, SR: Success Rate, RR: Reproduction Rate, Pd: Loss of Diversity)  
[Colony size=100, Limit=100, Parameters=10, Max Cycles=100, Runs=100]. 

 ABC TABC TRABC DABC 

 SI SR RR Pd SI SR RR Pd SI SR RR Pd SI SR RR Pd 

f1 0.058 100 1.062 0.989 0.005 100 1.062 0.989 0.029 100 1.142 0.988 0.018 100 1.066 0.989 

f2 0.012 0 1.166 0.988 0.010 0 1.090 0.989 0.022 0 1.0 0.99 0.004 0 1.090 0.989 

f3 0.009 81 1.052 0.989 0.008 38 1.066 0.989 0.008 92 1.0 0.99 0.014 27 1.0 0.99 

f4 0.006 100 1.045 0.989 0.005 100 1.034 0.989 0.002 100 1.0 0.99 0.057 100 1.052 0.989 

f5 0.015 100 1.041 0.989 0.005 100 1.052 0.989 0.005 100 1.052 0.989 0.011 100 1.0 0.99 

f6 0.008 0 1.0 0.99 0.009 0 1.0 0.99 0.015 0 1.032 0.989 0.014 0 1.0 0.99 

 LDABC LRABC STABC ERABC 

 SI SR RR Pd SI SR RR Pd SI SR RR Pd SI SR RR Pd 

f1 0.012 100 1.166 0.988 0.014 100 1.0 0.99 0.002 100 1.0 0.99 0.013 100 1.0 0.99 

f2 0.023 0 1.090 0.989 0.053 0 1.077 0.989 0.023 0 1.5 0.985 0.019 0 1.0 0.99 

f3 0.029 74 1.043 0.989 0.018 11 1.045 0.989 0.001 100 1.0 0.99 0.007 19 1.066 0.989 

f4 0.028 100 1.0 0.99 0.073 100 1.031 0.989 0.016 100 1.042 0.989 0.006 100 1.0 0.99 

f5 0.024 100 1.0 0.99 0.032 100 1.052 0.989 0.004 100 1.0 0.99 0.018 100 1.0 0.99 

f6 0.006 0 1.0 0.99 0.008 0 1.0 0.99 0.001 0 1.0 0.99 0.007 0 1.077 0.989 
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4.7 Statistical Analysis 

The proportional selection scheme used in the 
basic ABC lacks the driving force to attract better 
individuals which may result in premature 
convergence and a lack of population diversity. 
The tournament selection scheme randomly 
selects a number of N individuals and comparison 
is made based on their fitness values. The 
truncation selection scheme assigns equal 
selection probabilities to some selected best 
individuals in the population. The linear dynamic 
scaling scheme works by promoting better than 
average individuals at the cost of worse than 
average individuals. The linear ranking scheme is 
biased to favor the good fitness individuals in the 
population as the rank is assigned based on the 
fitness value. The exponential ranking scheme 
works in a similar manner to the linear ranking 
scheme except the use of the exponential function 
in computing selection probabilities. 

From Figs. 1, 2, and 3, we can state that the 
DABC and STABC algorithms prove their effective 
performance in comparison to other algorithms. 
The disruptive selection scheme favors both high 
fitness and low fitness solutions and tends to 
maintain population diversity. Hence, this scheme 
improves the worse fitness solutions in 
concurrence with the high fitness solutions. In the 
case of STABC, the individuals having the fitness 
value less than c standard deviations of the 
average value are discarded, while a large portion 
of the population having the fitness values within c 
standard deviations of the average value are 
favored for selection.  

Table 5 presents the analysis of the numerical 
results obtained with a slight change (i.e. 100 runs) 
in the experimental setting of subsection 4.2 using 
various selection schemes. Selection Intensity (SI) 
also called Selection Pressure measures the 
degree that drives the algorithm to improve the 
population fitness. It computes the difference 
between the population average fitness after and 
before selection. A high value of SI indicates high 
convergence rate, i.e. the algorithm is able to find 
optimal solutions early. Positive values of SI in 
Table 5 prove improvement in average fitness of 
the original ABC and the modified ABC algorithms 
due to selection for all test functions.  

Success Rate (SR) shows that algorithm is 
able to obtain a desired function value (i.e. <2) 
using the given experimental settings. From the 
table, we can see that the success rate of the 
TRABC and STABC algorithms gets improved for 
Rastrigin function, whereas it is comparable to the 
original ABC for the remaining test functions.  

Reproduction Rate (RR) is calculated to 
represent the ratio of the number of individuals with 
a certain fitness value after and before selection. A 
value of RR > 1 means better individuals are 
favored and bad individuals are discarded by a 
suitable selection scheme. Table 5 clearly shows 
that all selection schemes are able to replace bad 
individuals by better individuals. 

Loss of Diversity (Pd) presents the ratio of the 
individuals of a population that are not selected 
during the selection stage. It means that 
Reproduction Rate and Loss of Diversity are 

 

Fig. 4(a). Rastrigin 

 

Fig. 4(b). Griewank 
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related to each other. The value of Pd should be as 
low as possible, as a high value of Pd may increase 
the risk of premature convergence. The values in 
the table clearly confirm the results.  

5 Conclusions and Future Work 

In this paper, we compared the performance of the 
Artificial Bee Colony algorithm combined with 
different selection schemes on six numerical 
optimization functions. The simulations were 
performed by varying the values of different control 
parameters used in the ABC algorithm in addition 
to initialization ranges. On the basis of the results 
obtained, an analysis is made in terms of selection 
intensity, success rate, reproduction rate, and loss 
of diversity. 

With an increase in the number of dimensions, 
it becomes difficult to find optimal solutions in all 
selection schemes. As the number of cycles 
increases, the algorithms explore and exploit 
efficiently the search space to provide proper 
convergence and population diversity. An increase 
in the colony size also provides an opportunity to 
find global optima values. The algorithms are also 
less sensitive to initialization ranges in obtaining 
optimal solutions.  

Positive values of Selection Intensity in all 
schemes represent an increase in the population 
average fitness after selection. Success Rate is an 
indicative of obtaining a desired function value. All 
selection schemes favored good individuals by 
assigning the reproduction rate > 1. Similarly low 
values of loss of diversity support the avoidance of 
premature convergence. In general, the ABC 
algorithms combined with different selection 
schemes perform better on various parameters. In 
future work, the performance of the ABC can be 
improved by hybridizing it with a suitable selection 
scheme and an effective neighbor search 
technique. 
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