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Abstract. This paper proposes a tracking control 
method for a differential drive wheeled mobile 
robot with nonholonomic constraints with an 
inverse optimal neural controller. It is based on two 
techniques: first, an identifier using a discrete-time 
recurrent high-order neural network (RHONN) 
trained with an extended Kalman filter (EKF) 
algorithm is employed; second, an inverse optimal 
control is used to avoid solving the Hamilton Jacobi 
Bellman (HJB) equation. The desired trajectory of 
the robot is computed during the navigation 
process using a stereo camera sensor. 
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control. 

1 Introduction 

One of the greatest achievements in robotics use 
is in the manufacturing industry. Despite of 
successes, commercial robots suffer from a 
fundamental disadvantage, the lack of mobility. A 
fixed manipulator has a limited range of motion that 
depends on where it is bolted down. In contrast, a 
mobile robot would be able to travel throughout the 
manufacturing plants, flexibly applying its talents 
wherever it is most effective [1].  

Fixed manipulators are typically programmed to 
perform repetitive tasks with perhaps limited use of 
sensors, whereas mobile robots are typically less 
structured in their operation and likely to use more 
sensors [2].  

A mobile robot needs a locomotion mechanism 
that enables it to move throughout its environment. 
But there are a large variety of possible ways to 

move, and so the selection of a robot’s approach 
to locomotion is an important aspect of mobile 
robot design. In the laboratory, there are research 
robots that can walk, jump, run, slide, skate, swim, 
fly, and, of course, roll. Most of these locomotion 
mechanisms have been inspired from their 
biological counterparts. There is, however, one 
exception: the actively powered wheel is a human 
invention that achieves extremely high efficiency 
on flat ground [1]. 

Based on the success of image 
extraction/interpretation technology and advances 
in control theory, research has focused on the use 
of monocular camera-based vision systems for 
navigating a mobile robot [3-6]. A significant issue 
with monocular camera-based vision systems is 
the lack of depth information. 

A common type of steering used for mobile 
robots is differential drive steering illustrated in 
Fig. 1. Here the wheels on one side of the robot are 
controlled independently of the wheels on the other 
side. By coordinating the two different speeds, one 
can cause the robot to spin in place, move in a 
straight line, move in a circular path, or follow any 
prescribed trajectory [7]. 

The main difficulty of solving the tracking 
control problem for mobile robots is because the 
motion of the systems in question has more 
degrees of freedom than the number of inputs 
under nonholonomic constraints. As nonholonomic 
mobile robots have constraints imposed on 
motions that are not integrable, i.e., the constraints 
cannot be written as time derivatives of some 
function of the generalized coordinates, advanced 
techniques are needed for the tracking control.  
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A common problem with applying the standard 
control theory is that the required parameters are 
often either unknown at design time or are subject 
to change during operation. For example, the 
inertia of a robot as seen at the drive motor has 
many components. These might include the 
rotational inertia of the motor’s rotor, the inertia of 
gears and shafts, the rotational inertia of its tires, 
the robot’s empty weight, and its payload. Worse 
yet, there are elements between these 
components such as bearings, shafts, and belts 
that may have spring constants and friction 
loads [8]. 

1.1 Main Contribution 

The objectives of this paper are (1) to propose a 
controller based on inverse optimal control for 
mobile robots identified by a RHONN, which 
includes the robot dynamics and does not require 
to know the respective parameters; (2) to use 
visual data for the controller to determine the 
trajectory references in order to drive the mobile 
robot from its current pose toward a desired one; 
(3) to integrate visual servoing and an inverse 
optimal neural controller allowing mobile robots to 
perform autonomous navigation.  

1.2 Organization of the Paper 

The rest of the paper is organized as follows. 
Section 2 introduces the state model used to 
express the dynamics of a nonholonomic mobile 
robot. Section 3 gives an introduction to the inverse 
control problem. Then, in Section 4 the neural 
identification problem is described. In Section 5 the 
neural identification and neural control of mobile 
robots are presented. In Section 6 the visual 
feedback for the neural controller is given. The 
simulation results are presented in Section 7. 
Finally, conclusions are given in Section 8. 

2 Nonholonomic Mobile Robot 

In this work we consider a mobile robot with two 
actuated wheels as shown in Fig. 1. The wheel has 
been by far the most popular locomotion 
mechanism in mobile robotics. Wheel robots can 
be very efficient and balance is not a problem since 

these robots are designed so that all wheels are in 
ground contact at all times. 

The dynamics of an electrically driven 
nonholonomic mobile robot can be expressed in 
the following state-space model [9-11]: 

�̇�1 = 𝐽(𝜒1)𝜒2,

�̇�2 = 𝑀−1(−𝐶(�̇�1)𝜒2 − 𝐷𝜒2 − 𝜏𝑑 + 𝑁𝐾𝑇𝜒3),

�̇�3 = 𝐿𝑎
−1(𝑢 − 𝑅𝑎𝜒3 − 𝑁𝐾𝐸𝜒2),

 (1) 

where each subsystem is defined as 

𝜒1 = [𝜒11, 𝜒12, 𝜒13]
𝑇 ,

𝜒2 = [𝜒21, 𝜒22]
𝑇 ,

𝜒3 = [𝜒31, 𝜒32]
𝑇 ,

 

with 

𝐽(𝜒1) = 0.5𝑟 [
cos(𝜒13) cos(𝜒13)

sin(𝜒13) sin(𝜒13)

𝑅−1 −𝑅−1

] ,

𝑀 = [
𝑚11 𝑚12

𝑚12 𝑚11
] ,

𝐶(𝜒) = 0.5𝑅−1𝑟2𝑚𝑐𝑑 [
0 �̇�13

−�̇�13 0
] ,

𝐷 = [
𝑑11 0
0 𝑑22

] ,

𝑚11 = 0.25𝑅−2𝑟2(𝑚𝑅2 + 𝐼) + 𝐼𝑤 ,

𝑚12 = 0.25𝑅−2𝑟2(𝑚𝑅2 − 𝐼),
𝑚 = 𝑚𝑐 + 2𝑚𝑤,

𝐼 = 𝑚𝑐𝑑
2 + 2𝑚𝑤𝑅2 + 𝐼𝑐 + 2𝐼𝑚,

𝜏 = [𝜏1, 𝜏2]
𝑇 ,

𝜏𝑑 = [𝜏𝑑1, 𝜏𝑑2]
𝑇 ,

 

where 𝜒11 = 𝑥, 𝜒12 = 𝑦 are the coordinates of 𝑃0 

and 𝜒13 = 𝜃 is the heading angle of the mobile 

robot, 𝜒21 = 𝑣1, 𝜒22 = 𝑣2 represent the angular 
velocities of right and left wheels, respectively, and 
𝜒31 = 𝑖𝑎1, 𝜒32 = 𝑖𝑎2 represent motor currents of 

right and left wheels, respectively. 𝑅 is half of the 

width of the mobile robot and 𝑟 is the radius of the 
wheel, 𝑑 is the distance from the center of mass 𝑃𝑐 

of the mobile robot to the middle point 𝑃0 between 

the right and left driving wheels, 𝑚𝑐 and 𝑚𝑤 are the 
mass of the body and of the wheel with a motor, 
respectively. 𝐼𝑐, 𝐼𝑤, and 𝐼𝑚 are the moments of 
inertia of the body about the vertical axis through 
𝑃𝑐, of the wheel with a motor about the wheel axis, 
and of the wheel with a motor about the wheel 
diameter, respectively. The positive terms 𝑑𝑖𝑖, 𝑖 =
1,2, are the damping coefficients, 𝜏 𝜖 ℝ2 is the 
control torque applied to the wheels of the robot, 𝜏𝑑 

𝜖 ℝ2 is a vector of disturbances including 
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unmodeled dynamics. 𝐾𝑇 = 𝑑𝑖𝑎𝑔[𝑘𝑡1 , 𝑘𝑡2] is the 

motor torque constant, 𝑖𝑎 =[𝑖𝑎1
, 𝑖𝑎2

] is the motor 

current vector, 𝑢 𝜖 ℝ2 is the input voltage, 𝑅𝑎 =
𝑑𝑖𝑎𝑔[𝑟𝑎1

, 𝑟𝑎2
] is the resistance, 𝐿𝑎 = 𝑑𝑖𝑎𝑔[𝑙𝑎1

, 𝑙𝑎2
] is 

the inductance, 𝐾𝐸 = 𝑑𝑖𝑎𝑔[𝑘𝑒1
, 𝑘𝑒2

] is the back 

electromotive force coefficient, and 𝑁 =
𝑑𝑖𝑎𝑔[𝑛1, 𝑛2] is the gear ratio. Here, 𝑑𝑖𝑎𝑔[⋅] denotes 
the diagonal matrix. Model (1) is discretized using 
the Euler Methodology. 

3 Inverse Optimal Control 

The main goal of this section is a synthesis of an 
inverse optimal control. First, we briefly give details 
about optimal control methodology and their 
limitations. Let us consider a discrete-time affine-
in-the-input nonlinear system 

𝜒𝑘+1 = 𝑓(𝜒𝑘) + 𝑔(𝜒𝑘)𝑢𝑘 , 𝜒0 = 𝜒(0), (2) 

where 𝜒𝑘 ∈ ℝ𝑛 is the state of the system at time 

𝑘 ∈ ℕ, 𝑢 ∈ ℝ𝑚 𝑓:ℝ𝑛 → ℝ𝑛, 𝑔:ℝ𝑛 → ℝ𝑛×𝑚 are 
smooth and bounded mappings. We assume 
𝑓(0) = 0. ℕ denotes the set of nonnegative 
integers.  

The following meaningful cost functional is 
associated with the trajectory tracking problem for 
system (2): 

ℒ(𝑧𝑘) = ∑(𝑙(𝑧𝑛) + 𝑢𝑛
𝑇𝑅(𝑧𝑛)𝑢𝑛)

∞

𝑛=𝑘

. (3) 

where 𝑧𝑘 = 𝜒𝑘 − 𝜒𝛿,𝑘 with 𝜒𝛿,𝑘 as the desired 

trajectory for 𝜒𝑘; 𝑧𝑘 ∈ ℝ𝑛; ℒ(𝑧𝑘): ℝ
𝑛 → ℝ+; 

𝑙(𝑧𝑘): ℝ
𝑛 → ℝ+ is a positive semi-definite function 

and 𝑅(𝑧𝑘):ℝ
𝑛 → ℝ𝑚 × 𝑚 is a real symmetric 

positive definite weighting matrix. The entries of 
𝑅(𝑧𝑘) can be fixed or can be functions of the 
system state in order to vary the weighting on 
control efforts according to the state value [12].  

Considering the state feedback control design 
problem, we assume that the full state 𝜒𝑘 is 

available. Using the optimal value function ℒ∗(𝑧𝑘) 
for (3) as Lyapunov function 𝑉(𝑧𝑘), equation (3) 
can be rewritten as 

𝑉(𝑧𝑘) = 𝑙(𝑧𝑘) + 𝑢𝑘
𝑇𝑅(𝑧𝑘)𝑢𝑘

+ ∑ (𝑙(𝑧𝑛) + 𝑢𝑛
𝑇𝑅(𝑧𝑛)𝑢𝑛)

∞

𝑛=𝑘+1

= 𝑙(𝑧𝑘) + 𝑢𝑘
𝑇𝑅(𝑧𝑘)𝑢𝑘 + 𝑉(𝑧𝑘+1),

 

where the boundary condition 𝑉(0) = 0 is required 

so that 𝑉(𝑧𝑘) becomes a Lyapunov function.  

From the Bellman optimality principle [13, 14] it 
is known that, for the infinite horizon optimization 
case, the value function 𝑉(𝑧𝑘) becomes time 
invariant and satisfies the discrete-time (DT) 
Bellman equation [13, 15, 16]  

𝑉(𝑧𝑘) = min
𝑢𝑘

{𝑙(𝑧𝑘) + 𝑢𝑘
𝑇𝑅(𝑧𝑘)𝑢𝑘 + 𝑉(𝑧𝑘+1)}, 

where 𝑉(𝑧𝑘+1) depends on both 𝑧𝑘 and 𝑢𝑘 by 
means of 𝑧𝑘+1 in (2). Note that the DT Bellman 
equation is solved backward in time [15]. In order 
to establish the conditions that the optimal control 
law must satisfy, we define the discrete-time 
Hamiltonian 𝐻(𝑧𝑘 , 𝑢𝑘) as 

𝐻(𝑧𝑘 , 𝑢𝑘) = 𝑙(𝑧𝑘) + 𝑢𝑘
𝑇𝑅(𝑧𝑘)𝑢𝑘 + 𝑉(𝑧𝑘+1)

− 𝑉(𝑧𝑘). 
(4) 

A necessary condition that the optimal control 

law should satisfy is 
𝜕𝐻(𝑧𝑘,𝑢𝑘)

𝜕𝑢𝑘
= 0, then 

 

Fig. 1. Mobile robot with two actuated wheels 
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0 = 2𝑅(𝑧𝑘)𝑢𝑘 +
𝜕𝑉(𝑧𝑘+1)

𝜕𝑢𝑘

= 2𝑅(𝑧𝑘)𝑢𝑘 +
𝜕𝑧𝑘+1

𝜕𝑢𝑘

𝜕𝑉(𝑧𝑘+1)

𝜕𝑧𝑘+1

= 2𝑅(𝑧𝑘)𝑢𝑘 + 𝑔𝑇(𝜒𝑘)
𝜕𝑉(𝑧𝑘+1)

𝜕𝑧𝑘+1
.

 

Therefore, the optimal control law to achieve 
trajectory tracking is formulated as 

𝑢𝑘
∗ = −

1

2
𝑅−1(𝑧𝑘)𝑔𝑇(𝜒𝑘)

𝜕𝑉(𝑧𝑘+1)

𝜕𝑧𝑘+1
, 

with the boundary condition 𝑉(0) = 0. For solving 
the trajectory tracking inverse optimal control 
problem, it is necessary to solve the following HJB 
equation: 

𝑙(𝑧𝑘) + 𝑉(𝑧𝑘+1) − 𝑉(𝑧𝑘) +
1

4

𝜕𝑉𝑇(𝑧𝑘+1)

𝜕𝑧𝑘+1
𝑔(𝜒𝑘). (5) 

Solving the HJB partial differential equation (5) 
is not straightforward; this is one of the main 
disadvantages of discrete-time optimal control for 
nonlinear systems. To overcome this problem, we 
propose to solve the inverse optimal 
control problem. 

Definition 1. Consider the tracking error as 𝑧𝑘 =
𝜒𝑘 − 𝜒𝛿,𝑘, with 𝜒𝛿,𝑘 being the desired trajectory for 

𝜒𝑘. Let us define the control law as 

𝑢𝑘
∗ = −

1

2
𝑅−1(𝑧𝑘)𝑔𝑇(𝜒𝑘)

𝜕𝑉(𝑧𝑘+1)

𝜕𝑧𝑘+1
, (6) 

which will be inverse optimal (globally) stabilizing 

along the desired trajectory 𝜒𝛿,𝑘 if 

(i) it achieves (global) asymptotic stability of 

𝜒𝑘 = 0 for system (2) along reference 𝜒𝛿,𝑘; 

(ii) 𝑉(𝑧𝑘) is a (radially unbounded) positive 
definite function such that inequality 

   𝑉: = 𝑉(𝑧𝑘+1) − 𝑉(𝑧𝑘) + 𝑢𝑘
∗𝑇𝑅(𝑧𝑘)𝑢𝑘

∗ ≤ 0 

is satisfied. 

Selecting 𝑙(𝑧𝑘): = −𝑉, then 𝑉(𝑧𝑘) is a solution 
for (5) and cost functional (3) is minimized. 

As established in Definition 1, the inverse 
optimal control law for trajectory tracking is based 
in knowledge of 𝑉(𝑧𝑘).Then, a CLF 𝑉(𝑧𝑘) is 
proposed such that (i) and (ii) are guaranteed. 
Hence, instead of solving (5) for 𝑉(𝑧𝑘), a quadratic 

candidate CLF 𝑉(𝑧𝑘) for (6) is proposed with 
the form 

𝑉(𝑧𝑘) =
1

2
𝑧𝑘

𝑇𝑃𝑧𝑘  𝑃 = 𝑃𝑇 > 0 (7) 

in order to ensure stability of the tracking error 𝑧𝑘, 
where 

𝑧𝑘 = 𝜒𝑘 − 𝜒𝛿,𝑘 = [

𝜒1,𝑘 − 𝜒1𝛿,𝑘

⋮
𝜒𝑛,𝑘 − 𝜒𝑛𝛿,𝑘

]. 

The control law (6) with (7), which is referred to 
as the inverse optimal control law, optimizes the 
meaningful cost functional of the form in (3). 
Consequently, by considering 𝑉(𝑧𝑘) as in (7), the 
control law in (6) takes the following form: 

𝑢𝑘
∗ = −

1

4
𝑅−1(𝑧𝑘)𝑔𝑇(𝜒𝑘)

𝜕𝑧𝑘+1
𝑇 𝑃𝑧𝑘+1

𝜕𝑧𝑘+1

= −
1

4
𝑅−1(𝑧𝑘)𝑔𝑇(𝜒𝑘)𝑃𝑧𝑘+1

= −
1

2
(𝑅(𝑧𝑘)𝑔𝑇(𝜒𝑘)𝑃𝑔(𝑧𝑘))−1

× 𝑔𝑇(𝜒𝑘)𝑃(𝑓(𝜒𝑘) − 𝜒𝛿,𝑘+1).

 (8) 

It is worth pointing out that 𝑃 and 𝑅(𝑧𝑘) are 
positive definite and symmetric matrices; thus, the 
existence of the inverse in (6) is ensured. 

4 Neural Identification 

To identify the system in (2), we use a discrete-time 
recurrent high-order neural network (RHONN) 
defined as 

𝑥𝑖,𝑘+1 = 𝑤𝑖
⊤𝜑𝑖(𝜒𝑘 , 𝑢𝑘),   𝑖 = 1,⋯ , 𝑛, (9) 

where 𝑥𝑖 is the state of the 𝑖-th neuron, 𝐿𝑖 is the 
respective number of high-order connections, 
{𝐼1, 𝐼2, ⋯ , 𝐼𝐿𝑖

} is a collection of non-ordered subsets 

of {1,2,⋯ , 𝑛 + 𝑚}, 𝑛 is the state dimension, 𝑚 is the 

number of external inputs, 𝑤𝑖 is the respective on-
line adapted weight vector, and 𝜑𝑖(𝑥𝑘 , 𝑢𝑘) is 
given by 
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𝜑𝑖(𝑥𝑘 , 𝑢𝑘) = [

𝜑𝑖1
𝜑𝑖2

⋮
𝜑𝑖𝐿𝑖

] =

[
 
 
 
 
 
 Π 𝜉𝑖𝑗

𝑑𝑖𝑗
(1)

𝑗∈𝐼1

Π 𝜉𝑖𝑗

𝑑𝑖𝑗
(2)

𝑗∈𝐼2

⋮

Π 𝜉𝑖𝑗

𝑑𝑖𝑗
(𝐿𝑖)

𝑗∈𝐼𝐿𝑖 ]
 
 
 
 
 
 

, (10) 

with 𝑑𝑖𝑗
(𝑘) being nonnegative integers and 𝜉𝑖 

defined as follows: 

𝜉𝑖 =

[
 
 
 
 
 
 

𝜉𝑖1

⋮
𝜉𝑖1

𝜉𝑖𝑛+1

⋮
𝜉𝑖𝑛+𝑚]

 
 
 
 
 
 

=

[
 
 
 
 
 
𝑆(𝑥1)

⋮
𝑆(𝑥𝑛)

𝑢1

⋮
𝑢𝑚 ]

 
 
 
 
 

, (11) 

where 𝑢 = [𝑢1, 𝑢2, … , 𝑢𝑚]⊤ is the input vector to the 
neural network and 𝑆(•) is defined by 

𝑆(𝛶) =
1

1 + exp(−𝛽𝛶)
,  𝛽 > 0, (12) 

where 𝛶 is any real value variable. 
Using the structure of system in (2), we propose 

the following discrete-time RHONN series-parallel 
representation [17]: 

𝑥𝑖,𝑘+1 = 𝑤𝑖
∗⊤𝜑𝑖(𝑥𝑘 , 𝑢𝑘) + 𝜖𝜑𝑖

,   𝑖 = 1,⋯ , 𝑛, (13) 

where  𝜖𝑧𝑖
 is a bounded approximation error which 

can be reduced by increasing the number of the 
adjustable weights [17].  

Assume that there exists an ideal weight vector 

𝑤𝑖
∗ such that ‖𝜖𝑧𝑖

‖ can be minimized on a compact 

set Ω ⊂𝑧𝑖
ℜ𝐿𝑖 The ideal weight vector 𝑤𝑖

∗ is an 

artificial quantity required for analytical purpose 
[17]. In general, it is assumed that this vector exists 
and is constant but unknown. Let us define its 
estimate as 𝑤𝑖 and the estimation error as 

�̃�𝑖,𝑘 = 𝑤𝑖,𝑘 − 𝑤𝑖
∗. (14) 

The RHONN is trained with an Extended 
Kalman Filter (EKF) algorithm in (17). Then, the 
dynamics of the identification error in (19) can be 
expressed as 

𝑒𝑖,𝑘+1 = �̃�𝑖,𝑘𝜑𝑖(𝜒𝑘 , 𝑢𝑘) + 𝜖𝑧𝑖
. (15) 

On the other hand, the dynamics of (14) is 

�̃�𝑖,𝑘+1 = �̃�𝑖,𝑘 − 𝜂𝑖𝐾𝑖,𝑘𝑒𝑘 . (16) 

It is possible to identify (2) by (9) due to the 
theorem that follows. 

Theorem 1 [18]. The RHONN in (9) trained with 
the EKF-based algorithm in (17) to identify the non-
linear plant in (2) ensures that the identification 
error in (19) is semiglobally uniformly ultimately 
bounded (SGUUB); moreover, the RHONN 
weights remain bounded. 

4.1 The EKF Training Algorithm 

The best well-known training approach for 
recurrent neural networks (RNN) is the back 
propagation through time learning [19]. However, it 
is a first order gradient descent method and hence 
its learning speed can be very slow [20]. Recently, 
Extended Kalman Filter (EKF) based algorithms 
have been introduced to train neural networks [21, 
22]. With an EKF based algorithm, the learning 
convergence is improved [20]. The EKF training of 
neural networks, both feedforward and recurrent 
ones, has proven to be reliable and practical for 
many applications over the past ten years [22]. 

It is known that Kalman filtering (KF) estimates 
the state of a linear system with additive state and 
output white noises [23, 24]. For KF-based neural 
network training, the network weights become the 
states to be estimated. In this case, the error 
between the neural network output and the 
measured plant output can be considered as 
additive white noise. Due to the fact that the neural 
network mapping is nonlinear, an EKF-type is 
required (see [22] and references therein). 

The training goal is to find the optimal weight 
values which minimize the prediction error. The 
EKF-based training algorithm is described in [23] 
as 

𝐾𝑖,𝑘 = 𝑃𝑖,𝑘𝐻𝑖,𝑘𝑀𝑖,𝑘,

𝑤𝑖,𝑘+1 = 𝑤𝑖,𝑘 + 𝜂𝑖𝐾𝑖,𝑘𝑒𝑖,𝑘 ,

𝑃𝑖,𝑘+1 = 𝑃𝑖,𝑘 − 𝐾𝑖,𝑘𝐻𝑖,𝑘
⊤ 𝑃𝑖,𝑘 + 𝑄𝑖,𝑘,

 (17) 

with 

𝑀𝑖,𝑘 = [𝑅𝑖,𝑘 + 𝐻𝑖,𝑘
⊤ 𝑃𝑖,𝑘𝐻𝑖,𝑘]

−1
,                  

𝑒𝑖,𝑘 = 𝜒𝑖,𝑘 − 𝑥𝑖,𝑘 ,                                        
 (18) 

(19) 
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where 𝑒𝑖,𝑘 is the identification error, 𝑃𝑖,𝑘 ∈ ℜ
𝐿𝑖×𝐿𝑖

 is 

the state estimation prediction error covariance 

matrix, 𝑤𝑖 ∈ ℜ
𝐿𝑖

 is the weight (state) vector, 𝐿𝑖 is 

the total number of neural network weights, 𝜒𝑖 ∈ ℜ 

is the 𝑖-th plant state component, 𝑥𝑖 ∈ ℜ is the 𝑖-th 

neural state component, 𝜂𝑖 is a design parameter, 

𝐾𝑖 ∈ ℜ
𝐿𝑖×𝑚

 is the Kalman gain matrix, 𝑄𝑖 ∈ ℜ
𝐿𝑖×𝐿𝑖

 

is the state noise associated covariance matrix, 𝑅𝑖 

∈ ℜ𝑚×𝑚 is the measurement noise associated 

covariance matrix, 𝐻𝑖 ∈ ℜ
𝐿𝑖×𝑚

 is a matrix for 
which each entry (𝐻

𝑖𝑗
) is the derivative of one of 

the neural network output (𝑥𝑖) with respect to one 

neural network weight (𝑤
𝑖𝑗
) as follows: 

𝐻
𝑖𝑗,𝑘

= [
𝜕𝑥𝑖,𝑘

𝜕𝑤
𝑖𝑗,𝑘

]

𝑤𝑖,𝑘=�̂�𝑖,𝑘+1

,

𝑖 = 1, . . . , 𝑛 and  𝑗 = 1, . . . , 𝐿𝑖 .

 (20) 

Usually, 𝑃𝑖 , 𝑄𝑖, and 𝑅𝑖 are initialized as diagonal 
matrices, with entries 𝑃𝑖(0), 𝑄𝑖(0), and 𝑅𝑖(0), 
respectively. It is important to note that 𝐻𝑖,𝑘, 𝐾𝑖,𝑘, 

and 𝑃𝑖,𝑘 for the EKF are bounded [24]. 

Proposition 1. The tracking of a desired trajectory 
𝑥𝛿 defined in terms of the plant state 𝜒 formulated 
as in (2) can be established as the following 
inequality [26]: 

∥ 𝑥𝛿 − 𝜒 ∥≤∥ 𝑥 − 𝜒 ∥ +∥ 𝑥𝛿 − 𝑥 ∥, (21) 

where ∥•∥ stands for the Euclidean norm, 𝑥𝛿 − 𝜒 is 

the system output tracking error; 𝑥 − 𝜒 is the output 

identification error; and 𝑥𝛿 − 𝑥 is the RHONN 
output tracking error. 

We establish the requirements for the tracking 
solution as follows. 

Requirement 1. 

lim
𝑡→∞

∥ 𝑥 − 𝜒 ∥≤ 𝜁 (22) 

with 𝜁 being a small positive constant. 

Requirement 2. 

lim
𝑡→∞

∥ 𝑥𝛿 − 𝑥 ∥= 0. (23) 

An on-line neural identifier based on (13) 
ensures (22), while (23) is guaranteed by a 
discrete-time inverse optimal control. It is possible 

to establish Proposition 1 due to the separation 
principle for discrete-time nonlinear systems [27]. 

5 Neural Identification and Control of 
Nonholonomic Mobile Robots 

In this section we describe the neural identification 
and the neural control of a nonholonomic mobile 
robot. 

5.1 Neural Identification Design 

The physical parameters for the mobile robot 
simulations are selected as 

𝑅 = 0.75𝑚 𝐼𝑚 = 0.0025𝑘𝑔𝑚2 
𝑑 = 0.3𝑚 𝑅𝑎 = 𝑑𝑖𝑎𝑔[2.5,2.5]𝛺 
𝑟 = 0.15𝑚 𝐿𝑎 = 𝑑𝑖𝑎𝑔[0.048,0.048]𝐻 
𝑚𝑐 = 30𝑘𝑔 

𝐾𝐸 = 𝑑𝑖𝑎𝑔[0.02,0.02]𝑉/
𝑟𝑎𝑑

𝑠
 

𝑚𝑤 = 1𝑘𝑔 𝑁 = 𝑑𝑖𝑎𝑔[62.55,62.55] 
𝐼𝑐 = 15.625𝑘𝑔𝑚2 

𝐾𝑇 = 𝑑𝑖𝑎𝑔[0.2613,0.2613]
𝑁𝑚

𝐴
 

𝐼𝑤 = 0.005𝑘𝑔𝑚2 𝑑𝑚1 = 𝑑𝑚2 = 0.5𝑁. 

To this end, we apply the neural identifier, 
developed in Section 4, to obtain a discrete-time 
neural model for the electrically driven 
nonholonomic mobile robot in (1), with 𝑛 = 7 
trained with the EKF in (17) as follows: 

𝑥1,𝑘+1 = 𝑤11,𝑘𝑆(𝜒11,𝑘) + 𝑤12,𝑘𝑆(𝜒12,𝑘) +

𝑤′111
𝜒3 + 𝑤′112

𝜒4,

𝑥2,𝑘+1 = 𝑤21,𝑘𝑆(𝜒11,𝑘) + 𝑤22,𝑘𝑆(𝜒12,𝑘) +

𝑤′121
𝜒3 + 𝑤′122

𝜒4,

𝑥3,𝑘+1 = 𝑤31,𝑘𝑆(𝜒11,𝑘) + 𝑤32,𝑘𝑆(𝜒12,𝑘) +

𝑤′131
𝜒3 + 𝑤′132

𝜒4,

𝑥4,𝑘+1 = 𝑤41,𝑘𝑆(𝜒11,𝑘) + 𝑤42,𝑘𝑆(𝜒12,𝑘) +

𝑤43,𝑘𝑆(𝜒21,𝑘) + 𝑤44,𝑘𝑆(𝜒31,𝑘) + 𝑤′2𝜒6,

𝑥5,𝑘+1 = 𝑤51,𝑘𝑆(𝜒11,𝑘) + 𝑤52,𝑘𝑆(𝜒12,𝑘) +

𝑤53,𝑘𝑆(𝜒22,𝑘) + 𝑤54,𝑘𝑆(𝜒32,𝑘) + 𝑤′2𝜒7,

𝑥6,𝑘+1 = 𝑤61,𝑘𝑆(𝜒11,𝑘) + 𝑤62,𝑘𝑆(𝜒12,𝑘) +

𝑤63,𝑘𝑆(𝜒21,𝑘) + 𝑤64,𝑘𝑆(𝜒31,𝑘) + 𝑤′3𝑢11,

𝑥7,𝑘+1 = 𝑤71,𝑘𝑆(𝜒11,𝑘) + 𝑤72,𝑘𝑆(𝜒12,𝑘) +

𝑤73,𝑘𝑆(𝜒22,𝑘) + 𝑤74,𝑘𝑆(𝜒32,𝑘) + 𝑤′3𝑢12.

 

(24) 

where 𝑥1 and 𝑥2 identify the 𝑥 and 𝑦 coordinates, 
respectively; 𝑥3 identifies the robot angle; 𝑥4 and 
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𝑥5 identify the angular velocities of the right and left 

wheels, respectively; finally, 𝑥6 and 𝑥7 identify the 
motor currents, respectively. The NN training is 
performed on-line, and all of its states are 
initialized in a random way. The RHONN 
parameters are heuristically selected as 

𝑃1,(0) = 1 ⋅ 108 𝑅1,(0) = 1 ⋅ 104 𝑄1,(0) = 5 ⋅ 105 

𝑃2,(0) = 1 ⋅ 102 𝑅2,(0) = 5 ⋅ 104 𝑄2,(0) = 5 ⋅ 105 

𝑃3,(0) = 1 ⋅ 108 𝑅3,(0) = 1 ⋅ 104 𝑄3,(0) = 5 ⋅ 105 

𝑃4,(0) = 1 ⋅ 102 𝑅4,(0) = 1 ⋅ 101 𝑄4,(0) = 1 ⋅ 101 

𝑃5,(0) = 1 ⋅ 102 𝑅5,(0) = 1 ⋅ 101 𝑄5,(0) = 1 ⋅ 101 

𝑃6,(0) = 1 ⋅ 102 𝑅6,(0) = 1 ⋅ 103 𝑄6,(0) = 1 ⋅ 103 

𝑃7,(0) = 1 ⋅ 102 𝑅7,(0) = 1 ⋅ 103 𝑄7,(0) = 1 ⋅ 103. 

It is important to consider that for the EKF-
learning algorithm the covariances are used as 
design parameters [22, 28]. The neural network 
structure in (24) is determined heuristically in order 
to minimize the state estimation error. The results 
are presented in what follows. 

5.2 Control Synthesis 

In order to facilitate the controller synthesis, we 
rewrite the neural network in (24) in a block 
structure form as 

𝑥1,𝑘+1 = [

𝑥1,𝑘+1

𝑥2,𝑘+1

𝑥3,𝑘+1

] = 𝑤1,𝑘𝜑1(𝜒1,𝑘) + 𝑤′1,𝑘𝜒2,𝑘 ,

𝑥2,𝑘+1 = [
𝑥4,𝑘+1

𝑥5,𝑘+1
] = 𝑤2,𝑘𝜑2(𝜒1,𝑘 , 𝜒2,𝑘)

+𝑤′2,𝑘𝜒3,𝑘 ,

𝑥3,𝑘+1 = [
𝑥6,𝑘+1

𝑥7,𝑘+1
] = 𝑤3,𝑘𝜑3(𝜒1,𝑘 , 𝜒2,𝑘 , 𝜒3,𝑘)

+𝑤′3,𝑘𝑢𝑘 .

 (25) 

with 𝜒1,𝑘 ,  𝜒2,𝑘,  𝜒3,𝑘,  𝜑1,  𝜑2,  𝜑3,  𝑤1,𝑘 ,  𝑤2,𝑘,  𝑤3,𝑘,

𝑤′1,𝑘 , 𝑤′2,𝑘, and 𝑤′3,𝑘 of appropriated dimension 

according to (25). 

For trajectory tracking of the first block in (25), 
let us define the tracking error as 

𝑧1,𝑘 = 𝑥1,𝑘 − 𝜒1𝛿,𝑘, 

where 𝜒1𝛿,𝑘 is the desired trajectory. Then using 

(25) and introducing the desired dynamics for 𝑧1,𝑘 

result in 

𝑧1,𝑘+1 = 𝑤1,𝑘𝜑1(𝜒1,𝑘) + 𝑤′1,𝑘𝜒2,𝑘 − 𝜒1𝛿,𝑘+1

= 𝑤1,𝑘𝜑1(𝑧1,𝑘) + 𝐾1𝑧2,𝑘 ,
 (26) 

where 𝐾1 = 𝑑𝑖𝑎𝑔{𝑘11
, 𝑘21

, 𝑘31
} with 

|𝑘11
|, |𝑘21

|, |𝑘31
| < 1. The desired value 𝜒2𝛿,𝑘 for the 

pseudo-control input 𝜒2,𝑘 is calculated from (26) as 

𝜒2𝛿,𝑘 = (𝑤′1,𝑘)−1(−𝑤1,𝑘𝜑1(𝜒1,𝑘) + 𝜒1𝛿,𝑘+1

𝑤1,𝑘𝜑1(𝑧1,𝑘) + 𝐾1𝑧1,𝑘).
 (27) 

Note that the calculated value of the state 𝜒2𝛿,𝑘 

in (27) is not the true value of such state; instead, 

it represents the desired behavior for 𝑥𝑘,2. To avoid 

misunderstandings, the desired value for 𝑥2,𝑘 is 

referred to as 𝑥2𝛿,𝑘 in (27): 

𝑧_2 = 𝑥_(2, 𝑘) − 𝜒_(2𝛿, 𝑘). 

Then using (25) and introducing the desired 

dynamics for 𝑧2,𝑘 result in 

𝑧2,𝑘+1 = 𝑤2,𝑘𝜑2(𝜒1,𝑘 , 𝜒2,𝑘) + 𝑤′2,𝑘𝜒3,𝑘 − 𝜒2𝛿,𝑘+1

= 𝑤2,𝑘𝜑2(𝑧1,𝑘 , 𝑧2,𝑘) + 𝐾2𝑧3,𝑘 ,
 (28) 

where 𝐾2 = 𝑑𝑖𝑎𝑔{𝑘12
, 𝑘22

} with |𝑘12
|, |𝑘22

| < 1. The 

desired value 𝜒3𝛿,𝑘 for the pseudo-control input 𝜒3,𝑘 

is calculated from (28) as 

𝜒3𝛿,𝑘 = (𝑤′2,𝑘)
−1(−𝑤2,𝑘𝜑2(𝜒1,𝑘 , 𝜒2,𝑘) + 𝜒2𝛿,𝑘+1

𝑤2,𝑘𝜑2(𝑧1,𝑘 , 𝑧2,𝑘) + 𝐾2𝑧2,𝑘).
 (29) 

At the third step, we introduce a new variable 
as  𝑧3 = 𝑥3,𝑘 − 𝜒3𝛿,𝑘. 

Taking one step ahead, we have 

𝑧3,𝑘+1 = 𝑤3,𝑘𝜑3(𝜒1,𝑘 , 𝜒2,𝑘, 𝜒3,𝑘) + 𝑤′3,𝑘𝑢𝑘

− 𝜒3𝛿,𝑘+1 
(30) 

= 𝑤3,𝑘𝜑2(𝑧1,𝑘 , 𝑧2,𝑘, 𝑧3,𝑘) + 𝐾3𝑢𝑘 . (31) 

Then, the system in (25) can be presented with 

the new variables 𝑧 = [𝑧1
𝑇 , 𝑧2

𝑇𝑧3
𝑇]𝑇 as 

𝑧1,𝑘+1 = 𝑤1,𝑘𝜑2(𝑧1,𝑘) + 𝐾1𝑧1,𝑘

𝑧2,𝑘+1 = 𝑤2,𝑘𝜑2(𝑧1,𝑘 , 𝑧2,𝑘) + 𝐾2𝑧2,𝑘

𝑧3,𝑘+1 = 𝑤3,𝑘𝜑2(𝑧1,𝑘 , 𝑧2,𝑘 , 𝑧3,𝑘) + 𝐾3𝑢𝑘 ,

 (32) 

where 𝑢𝑘 is defined as 

𝑢𝑘 = −
1

2
(𝑅(𝑧𝑘) + 𝑔𝑇(𝑥𝑘)𝑃𝑔(𝑧𝑘))−1

× 𝑔𝑇(𝑥𝑘)𝑃(𝑓(𝑧𝑘)).
 (33) 

where the controllers parameters are selected 
heuristically as 
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𝑃 = [
1 0
0 1

] 

and 

𝑤′1,𝑘 = [
cos(𝑥3) cos(𝑥3)

sin(𝑥3) sin(𝑥3)

𝑅−1 𝑅−1

], 

𝑤′2,𝑘 = [
1 0
0 1

]  𝑎𝑛𝑑 𝑤′3,𝑘 = [
1 0
0 1

]. 

6 Visual Feedback 

The use of visual feedback to control a robot is 
commonly termed as visual servoing or visual 
control [29, 30]. In this work the visual data is 
acquired from a stereo vision system that is 
mounted directly on the mobile robot, see Fig. 2. 

When the camera is mounted on the robot, its 
motion induces camera motion, see Fig. 3. 

The visual control objective is to minimize an 
error 𝑒(𝑡) defined as [31] 

𝑒(𝑡) = 𝑠(𝑡) − 𝑠∗, (34) 

where 𝑠(𝑡) denotes the features extracted from the 

current pose and 𝑠∗ denotes the features extracted 
from the desired pose. 

In this paper we consider a nonholonomic 
mobile robot moving on a plane as shown in Fig. 1. 

Its pose is defined as [𝑥 𝑦 𝜃]𝑇. Its kinematics model 
is that of a wheeled unicycle mobile robot: 

�̇� = 𝑣𝑟cos𝜃,
�̇� = 𝑣𝑟sin𝜃,

�̇� = 𝜔𝑟 ,

 (35) 

where 𝑣𝑟 and 𝜔𝑟 represent the translational and 
angular velocities, respectively. 

In order to estimate 𝑣𝑟 and 𝜔𝑟 by using visual 
data, several steps must be made, Fig. 4. First, the 
image is converted to HSV (Hue Saturation Value) 
color space [32]. Using this image we apply a 
mask, previously computed from a reference 
image, and then we obtain a segmented image. 
From the segmented image, we compute the 
boundaries using the Moore-neighbor tracing 
algorithm [33]; then to each boundary we compute 

the metric 𝑚 = 4𝜋 𝑎𝑟𝑒𝑎/𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2, if this is close 
to 1 then the boundary is more likely to be a circle. 

From the detected circles, we compute their 
centroid. Later, using the centroids of the circles 
from the desired image, the current image, and the 
corresponding depths, we estimate the robot’s 
pose. Finally, with the current and desired poses, 
we compute the velocities 𝑣𝑟 , 𝜔𝑟 to drive the robot 
from the current pose to the desired pose. 

6.1 Stereo Vision 

The principle of stereo vision with parallel optical 
axes is displayed in Fig. 5. The 3D point 𝑃 is 
projected onto the image plane of the left camera 
as 𝑝𝐿 = [𝑥𝑙 , 𝑦𝑙], similarly 𝑝𝑅 = [𝑥𝑅 , 𝑦𝑅] represents 

the projection of 𝑃 onto the image plane of the right 
camera.  

Since the image planes of the left and right 
cameras are located on the same plane, the 𝑦-
coordinates in these two images are the same 
(𝑦𝐿 = 𝑦𝑅), and the disparity is equal to the 

 

Fig. 2. Coordinate systems of the mobile robot  

and the stereo vision system 

 

Fig. 3. Robot moving from the initial pose  

to the desired pose 
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difference between the horizontal coordinates 
(𝑥𝑅 − 𝑥𝐿). 

Let 𝑃 = (𝑋, 𝑌, 𝑍) ∈ ℝ3 denote a 3D point in the 
world. The coordinates of 𝑃 on the left camera are 

𝑃𝐿 = [𝑋 + 𝑏/2, 𝑌, 𝑍]𝑇. (36) 

Similarly, the point 𝑃 on the right camera is 

𝑃𝑅 = [𝑋 − 𝑏/2, 𝑌, 𝑍]𝑇 . (37) 

Using the standard projective camera 
projection, we obtain 

𝑥𝐿 =
(𝑋+

𝑏

2
)𝑓

𝑍
, (38) 

𝑥𝑅 =
(𝑋−

𝑏

2
)𝑓

𝑍
, (39) 

Similarly, 

𝑦𝐿 =
𝑌𝑓

𝑍
,  (40) 

𝑦𝑅 =
𝑌𝑓

𝑍
. (41) 

The depth of the point 𝑃 can be recovered from 

the 𝑥-coordinate of the image points 𝑥𝐿 and 𝑥𝑅, 
subtracting (39) from (38) we obtain 

𝑍 =
𝑏𝑓

𝑥𝐿 − 𝑥𝑅

 (42) 

Similarly, we can also solve for X using (38), 
(39), and (81) and obtain 

𝑋 =
𝑏(𝑥𝐿 + 𝑥𝑅)

2(𝑥𝐿 − 𝑥𝑅)
. (43) 

The Y value can be recovered with (40) or (41), 
since they have the same value, and from (42) to 
get 

𝑌 =
𝑏𝑦

𝑥𝐿−𝑥𝑅
. (44) 

6.2 Pose Estimation 

The mobile robot moves on a 2D plane, thus we 
need only two coordinates to fully determine its 
pose (x,y,𝜃). Since the robot cannot move in the 𝑌 
direction (orthogonal to the plane), we can 
estimate its pose with respect to the planar target 
using only the 𝑍 and 𝑋 values of the point 𝑃. 

 

Fig. 4. Process for the computation of the translational 

𝑣𝑟 , 𝜔𝑟 and angular velocities from visual data 

 

Fig. 5. Image formation of stereo vision with parallel 
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Let 𝑄𝑖
∗ = (𝑍𝑖

∗, 𝑋𝑖
∗) and 𝑄𝑖 = (𝑍𝑖 , 𝑋𝑖) represent a 

2D Euclidean point of a feature point 𝑃𝑖 expressed 

in the frames ℱ∗ and ℱ, respectively. From 
Euclidean geometry, the relationship between the 
features is defined as 

𝑄𝑖
∗ = 𝑅𝑄𝑖 + 𝑡, (45) 

where 𝑅 ∈ ℝ2×2 is the 2D rotation matrix and 𝑡 =
(𝑡𝑥, 𝑡𝑦) ∈ ℝ2 is the translation vector, Fig. 6. 

To estimate the pose of the robot given the 

points 𝑄𝑖 and 𝑄𝑖
∗ from the current and desired pose, 

we need to solve the following least-square 
problem: 

𝐸(𝜃, 𝑡) = ∑ |𝑛
𝑖=1 𝑅𝜃𝑋𝑖 + 𝑡 − 𝑋𝑖

∗|2. (46) 

This problem can be solved in a closed 
form  [34]. 

6.3 Kinematic Planer 

Once the pose of the robot has been estimated, the 
next step is the estimation of the robot velocities 
which minimize the error between the current pose 
of the robot and its desired pose. 

The path to track is defined as the line 𝐿𝑑 
passing through the center of the stereo rig parallel 
to the optical axes of the left and right cameras, 
Fig. 6. A line on the plane can be defined using the 
general equation of the line (𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0), 
therefore, the desired line is defined at the desired 
pose as 

𝐿𝑑 = [0 1 0]. (47) 

The signed distance from the current pose of 
the robot and the principal axis 𝐿𝑑 at the desired 
pose is defined as 

𝑑 = [𝑡𝑥 𝑡𝑦 1]𝑡 ⋅ 𝐿𝑑 . (48) 

The angular velocity of the robot must turn the 
robot toward the line 𝐿𝑑 with 

𝛽𝑑 = −𝐾𝑑𝑑,   𝐾𝑑  >  0, (49) 

and adjust the orientation of the robot (heading 
angle) with 

𝛽𝑜 = 𝐾𝑜(𝜃
∗ − 𝜃),   𝐾𝑜  >  0. (50) 

Then, the combined kinematic control law [8] 
used to generate the robot’s angular velocity for 
path following is defined as 

𝜔𝑟 = 𝛽𝑑 + 𝛽𝑜. (51) 

The value of 𝑣𝑟 is set to a constant value (e.g., 
0.2 m/s), but when the robot is close to the desired 
pose, the velocity is computed with 

𝑣𝑟 = 𝜅𝑣√𝑡𝑥
2 + 𝑡𝑦

2. (52) 

7 Simulation Results 

In this section we present the simulation results of 
our proposed discrete-time inverse optimal neural 
controller with stereo vision feedback. Simulations 
have been performed using Matlab-Simulink. 

In the simulation, the robot moves under the 
action of the proposed controller, the controller 
uses as references the linear and angular 
velocities computed from the stereo vision 
algorithm. In the simulation, the initial pose of the 
robot is [0 0 0]𝑇, and the desired pose is [3.8 −
0.8 0]𝑇.  

 

Fig. 6. Pose estimation problem 

R,t

Desired

Current
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The sampling time of the simulation was T= 
0.01s. The simulation results are presented as 
follows. In Fig. 7 we show the linear and angular 
velocities used as references by the proposed 
controller, these velocities are computed by the 
stereo vision algorithm using the current and 
desired images of the target object. 

Fig. 8 shows the tracking performance for 𝑥-

axis, 𝑦-axis, and 𝜃 angle.  

Fig. 9 shows the trajectory tracking results. 

Fig. 10 presents the tracking errors. 

Fig. 11 shows the applied control signal for the 
left and right wheels. 

Fig. 12 presents the current tracking for the left 
and right wheels.  

Fig. 13 shows the angular velocity tracking for 
the left and right wheels, respectively.  

Finally, Fig. 14 portraits the robot moving from 
the initial pose to the desired pose. 

In order to compare the proposed control 
scheme with the works already published [36], 
Table 1 is included, which is described as follows: 
the controllers used in this comparison are (1) 
Neural Backstepping Controller (NBC) [36], (2) 
High-Order Sliding Mode Controller (HOSM) [36], 

 
 

Fig. 7. Linear (top) and angular (bottom) velocities 

generated by the stereo vision algorithm 
 

 

Fig. 8. x-axis tracking (top), y-axis tracking (middle), and 

𝜃 tracking (bottom), reference signal in solid line and 

plant signal in dashed line 

 

 

Fig. 9. Trajectory tracking result for simulation 

(reference signal in solid line and plant signal in dashed 
line) 

 

 

Fig. 10. Tracking errors, x-axis (top), y-axis (middle), and 

𝜃 angle (bottom) 
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and (3) Inverse Optimal Neural Controller (IONC) 
proposed in this paper. 

 

Table 1. Comparison between Inverse Optimal Neural 

Controller (IONC) with respect to Neural Backstepping 
Controller (NBC) and High-Order Sliding Mode 
Controller (HOSM) 

Method Mean Value Standard Deviation 

NBC -0.0149 0.0894 

HOSM -0.0223 0.0967 

IONC 0.0034 0.0398 

8 Conclusions 

In this work we presented a neural identification 
and a neural controller for a nonholonomic mobile 
robot. The proposed controller allows the robot to 
accomplish a trajectory tracking problem of a 
nonlinear system. 

The controller is inverse optimal in the sense 
that it minimizes a meaningful cost functional. The 
mobile robot dynamics at the actuator level as well 
as its kinematics and dynamics uncertainties are 
considered in the construction of the controller by 

 

Fig. 11. Applied control signal for the left and right 

wheels, respectively 

 

Fig. 12. Current tracking for simulation in the left and 

right wheels, respectively (tracking signal in solid line 
and plant signal in dashed line) 

 

 

Fig. 13. Angular velocity tracking for simulation in left 

and right wheels, respectively (tracking signal in solid 
line and plant signal in dashed line) 

 
Fig. 14. Robot moving from the initial pose to the desired 

pose 
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means of neural identification. The references for 
the controller are provided by a visual sensor. 

The obtained results show the effectiveness of 
the proposed controller. 
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