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Abstract. In this paper we present a method of 
reducing speckle noise in applications for ultrasound 
image processing using low degree unbiased FIR filters. 
An important feature of the p-lag gain of unbiased FIR 
filters is that at some cross points it converges to the 
reduced degree gain. The results are evaluated in terms 
of the signal-to-noise ratio (SNR) and the root mean 
square error (RMSE) metrics. We show that ultrasound 
image enhancing with different degree FIR filters at 
special lags allows getting best results depending on 

applications. 
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Reducción del ruido speckle en 
imágenes de ultrasonido usando 
puntos de cruce en filtros FIR sin 

desplazamiento de orden bajo 

Resumen. En este artículo, presentamos un método 
para reducir el ruido speckle en el procesamiento de 
imágenes de ultrasonido usando los filtros FIR sin 
desplazamiento de orden bajo. Una característica 
importante de la ganancia de los filtros FIR sin 
desplazamiento con paso-p es que en algunos puntos 
de cruce de la ganancia converge a una ganancia de 
grado inferior. Los resultados son evaluados en 
términos de las métricas de la relación señal-a-ruido 
(SNR) y del error cuadrático medio (RMSE). Se muestra 
que la imagen de ultrasonido mejorada por los filtros 
FIR de paso-p con diferentes grados de aproximación 
permite obtener mejores resultados en función de las 
aplicaciones. 

Palabras clave. Filtros FIR, imagen de ultrasonido, 
puntos de cruce. 

1 Introduction 

The problem of saving a sharp edge with a 
simultaneous enhancing in images is typical for 
image processing. An overall panorama of 
nonlinear filtering following the median strategy 
has been given by [9] along with important 
modifications for a large class of nonlinear filters 
employing the order statistics. The algorithm 
issues for the filter design have been discussed in 
[5]. In [1], the finite impulse response (FIR) 
median hybrid filters (MHF) strategy has been 
proposed with applications to image processing. 
An important step ahead has been made in [4], 
where FIR MHF structures have been designed. 
In the sequel, MHF structures have been 
extensively investigated, developed, and used by 
many authors. 

Basically, hybrid FIR structures can be 
designed using different types of estimators. 
Among possible solutions, polynomial estimators 
occupy a special place, since the polynomial 
models often formalize a priori knowledge about 
different processes well. Relevant signals are 
typically represented with degree polynomials to 
fit a variety of practical needs. Examples of 
applications of polynomial structures can be found 
in signal processing [3], timescales and clock 
synchronization [11], image processing [2], etc. 

The polynomial estimators suitable for such 
structures can be obtained from the generic form 
of the p-step predictive unbiased FIR filter 
proposed by [12]. Such estimators usually 
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process data on finite horizons of N points which 
typically obtain a nice restoration. 

2 Polynomial Image Model 

A two-dimensional image is often represented as 

a kc × kr matrix M = {i,j}. To provide two 
dimensional filtering, the matrix can be written in 
the form of a row-ordered vector or a column-
ordered vector, respectively: 

The filtering procedure is then often applied 

twice, first to (1) and then to (2), or vice versa. To 
represent a two-dimensional electronic image with 
(1) and (2), one may also substitute each of the 
vectors with the discrete time-invariant 
deterministic signal x1n which in turn can be 
modeled on a horizon of some N points in the 
state space. If x1n projects ahead from n – N + 1 – 
p to n – p, then the p-lag smoothing FIR filtering 
estimate can be provided at a current point n with 
a lag p, p < 0, as shown in Fig. 1. Referring to Fig. 
1, a signal x1n can further be projected on a 
horizon of N points, from n – N + 1 – p to n, with 
the finite order Taylor series as follows 
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where x(q + 1)(n – N + 1 – p), q  [0, K – 1], can 
be called the signal (q + 1)-state at n – N + 1 – p, 
and the signal is thus characterized with K states, 

from 1 to K. Here,  is the sampling time. In such 

a model, the k-state, k  [1, K], is determined by 
the time derivative of the (k – 1)-state, starting 
with k = 2. Therefore, most generally, we have 
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3 Signal Model and Problem 
Formulation  

An electronic image x1n can be represented as a 
discrete time-invariant deterministic signal. 
Following [12], such a signal can be represented 
in a state space by the state and observation 
equations as follows, respectively: 

pNn
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nnn vy Cx , (6) 

where xn = [x1n x2n … xKn] is the K  1  vector of 
the states, yn is the measurement representing 
the electronic image, vn is the measurement 

noise, the 1  K   measurement matrix is C = [1 0 

… 0], and the K  K   triangular matrix A
i
 is 

specified by 
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Now, the noiseless model (5) projects ahead from 
n – N + 1 – p to n with the exponential Taylor 
polynomial represented as 
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Fig. 1. Smoothing FIR filtering on a horizon of N points with 

a lag p, p < 0 

 Tkkkkr rccr ,1,´,11,1́  x , (1) 

 Tkkkkc rcrc ,,1́1,1,1́  x . (2) 
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If we introduce hli(N, p) as the gain of the l-degree 
polynomial p-step dependent filter, then the 
estimate of the electronic image x1n can be 
obtained based on the averaging concept by 
convolution on the horizon of N points 
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where the positive step, p > 0, is supposed for 
predictive FIR filtering, p = 0 for FIR filtering, and p 

< 0 for smoothing FIR filtering. It has been shown 
in [12] that for the unbiased estimate the gain hli(N, 
p) must satisfy the following conditions: 
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It is known from the optimal filtering theory that 
the order of the optimal (and so unbiased) filter is 
the same as that of the system. It means that, for 
the K state model, the gain can be represented 
with the l-degree polynomial such that 
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where ajl(N, p) are the polynomial coefficients and 
the degree l must be chosen such that l = K – 1. 
The coefficients for the polynomial (12) have been 
found in [12] in the form of 
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where a short (l + 1)(l + 1) symmetric matrix D(N, 
p) is given by 
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where |D| is the determinant of (14) and M(j+1)1 is 
the minor of (14). In accordance with [12], the 
component of (14) can be determined using the 
Bernoulli polynomials Bn(x) as follows: 
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4 Noise Power Gains (NPG) of the Low 
Degree Polynomials 

In FIR filtering, an estimate is obtained via the 
discrete convolution applied to measurement. 
That can be done if we represent the state space 
model on an averaging interval of some N points. 
Referring to (12), the low-degree polynomial gains 
can thus be defined by 
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A model that is uniform over an averaging horizon 
of N points is the simplest one. The relevant 
signal is characterized with one state and the filter 
gain is represented by (9), with the 0-degree 
polynomial as 
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For linear models, the p-lag gain, existing from p 
to N – 1 + p, becomes ramp 
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having the coefficients (see Appendix A, for 
details) 
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For the quadratic and cubic models, the gain of 
the unbiased smoothing FIR filter becomes 
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and 

          3

33

2

2313033 ipaipaipapaph i  , (22) 

respectively, where the coefficients a02(p), a12(p), 
and a22(p) are defined in [12]; on the other hand, 
a03(p), a13(p), a23(p), and a33(p) are defined in [10], 
respectively. 

5 The Cross Points of the NPG 

Noise in FIR estimates is often evaluated in terms 
of the noise power gain (NPG) defined as follows: 
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Referring to equations (17), (18), (21), and (22), 
see [6]. To find the cross point between the 
uniform gain (17) and the ramp gain (18), we 
solve g0 = g1 such as defined in [6, 8,10]: 
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Similarly, the cross points of the ramp gain 
(18) and the quadratic gain (21) can be found. 
Namely, by the lags 
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Finally, the cross points of the gain (21) and 

the cubic gain (22) can be found as follows: 
 

6 Design and Application of the 
Unbiased FIR Median Hybrid (FMH) 
Structure 

In this section, we employ the above derived p-
dependent gains in order to design efficient hybrid 
structures suitable for nonlinear image 
processing. Every image is considered as an 
array of two signals, xr and xc as showed in (1) 
and (2), respectively, and processed as follows. 
First, we filter out noise in the row vector and then 
reconstruct the image. Next, the partly enhanced 
image is decomposed into the column vector, the 
filtering procedure is applied once again, and the 
fully enhanced image is reconstructed. For the 
sake of minimizing errors in the enhanced image, 

Fig. 2. Cross point between the low-degree polynomial 
gains for N = 31 

 735
10

1

2

1 2

31 


 N
N

p , (27) 

 735
10

1

2

1 2

36 


 N
N

p  (28) 

p11 

p36 

p22 

p31 

p21 p11 



Speckle Noise Reduction in Ultrasound Imaging Using the Key Points…291 

Computación y Sistemas Vol. 16 No.3, 2012 pp. 287-295 
ISSN 1405-5546 

all of the above designed low-degree polynomial 
gains have been examined in the FMH structure. 
Namely, we employ all p-dependent gains and the 
ramp gain (18)-(20). It is known that FMH 
structures can be designed to have k 
substructures and that a number of such 
substructures need to be optimized, which is a 
special topic. Leaving the optimization problem for 
further investigation, in this paper we mostly 
examine the basic FMH structure and 
demonstrate the effect of a number of sub-blocks. 

The block diagram of the basic FIR median 
hybrid (FMH) structure was developed in [4] to 
maximize the SNR in the row and column vectors. 
Here, the input signal yn is filtered with two FIR 
filters. The forward FIR filter (FIRFW) computes 
the points on the horizon to the left from the point 
n. In turn, the backward FIR filter (FIRBW) 
processes data on the same length horizon lying 
to the right from n. The estimates are hence 
formed as respectively. 
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The output signal )(ˆ pxn
 is obtained using the 

nonlinear operator called the “median”. In the 
median structure, the input yn and the outputs of 

the FIR filters, )(ˆ pxBW

n
 and )(ˆ pxFW

n
, play the role of 

entries. Following the median filter strategy, the 

output )(ˆ pxn
 becomes equal to the intermediate 

value stated by the operator 
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Note that the best filtering result can be obtained if 
one sets properly the smoother lag p or the 
prediction step p in the FIR filters. Since the basic 
structure shown in [4] is commonly unable to 
obtain nice image enhancing owing to the small 
number of entries, a more sophisticated FMH 

structure exploiting a different p would provide 
better performance. 

7 Simulations 

For further investigation, we chose a renal 

ultrasound image of 250  320 pixels showed in 
Fig. 3. The image was contaminated with both 
additive white Gaussian and speckle noise 
components as shown in Fig. 4 [6]. The 
simulation conditions were taken as follows: the 
horizon is  N = 31, the p-lag was allowed to be at 
the cross points of p11 = –15, p21 = –24, p22 = –6, 
p36 = –27, and p31 = –3 (see Fig. 1), and the noise 

variance was set as 
2
 = 0.2. To provide image 

enhancing, we employed median structures 
fitting. As it can be seen, provided N = 31, the 
best enhancing is achieved with the quadratic 
gain of degree l = 2 which is the reduced order 
cubic gain, l = 3, at the aforementioned cross 
points. For numerical evaluation, we apply two 
classical quantitative metrics: the Signal-to-Noise 
Ratio (SNR) and the Root-Mean-Square-Error 
(RMSE) metrics. The first and second metric are 
defined respectively as 
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The results are sketched in Figures 5-7; we 
evaluate the enhancements in terms of SNR and 
RMSE, as shown in Table 1, at each of the cross 
points (Fig. 1). On the other hand, in Figures 8 and 
9 we showed the enhancement of the ultrasound 
image for the predictive case (p = 1) and the 
filtering case (p = 0), respectively. In Tables 2 and 
3, we present the numerical evaluation in both 
cases.  
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Table 2. Quantitative evaluation with p = 1 [4] 

Degree SNR (dB) RMSE 

l = 1 5.6656 8.3171 

l = 2 4.8519 9.1340 

l = 3 4.1401 9.9140 

Table 3 Quantitative evaluation with p = 0 

Degree SNR (dB) RMSE 

l = 1 5.8408 8.1511 

l = 2 5.5761 8.4033 

l = 3 6.1162 7.8967 

 

Fig. 3. Original ultrasound image 

 

Fig. 4.  Noisy Ultrasound Image with 
2
 = 0.2 

 

Fig. 5.  Enhancing Ultrasound Image with l = 1 and p11 

  

Fig. 6. Enhancing Ultrasound Image with l = 2 and p21 

Table 1. Quantitative evaluation 

Degree p-lag SNR (dB) RMSE 

l = 1 P11 = – 15 5.1189 8.8575 

l = 2 
p21 = – 6 5.8962 8.0993 

p22 = – 24 4.3822 9.6915 

l = 3 
p31 = – 3 6.1162 7.8967 

p36 = – 27 4.0775 9.9857 
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8 Conclusions 

In this paper, we investigated the performance of 
the p-step unbiased smoothing FIR filter with low-
degree polynomials gains at the cross points. The 
results are illustrated in Figures 5-7 for smoothers 
having different degrees and lags. Figures 8 and 
9 show two particular cases of smoother with p=1 
and p=0, respectively. To compare errors, Tables 
1, 2 and 3 give the estimated values of the SNRs 
and RMSEs. The analysis shows that an increase 
in the smoother degree does not lead to better 
denoising and error reduction. On the other hand, 
better enhancing is achieved with the lags, 
allowing for reducing the smoother degree. That 
opens new horizons for optimization of hybrid FIR 
structures, which is currently under investigation. 

Appendix A 

To determine the response function of the ramp 
gain (l = 1), the matrix D coefficients are derived 
using (14), as follows: 

. 
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21
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Here the coefficients are calculated with equation 
(15) based on the recurrent relation of the 
Bernoulli polynomial introduced by Y. S. Shmaliy 
[11] as follows: 
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Then the determinant of matrix D was found 
by substituting (A2)-(A4) in (A1) respectively:  

   1
12

1
det 22  NND  (A5) 

 

Fig. 7.  Enhancing Ultrasound Image with l = 3, and p31 

 

Fig. 8. Enhancing Ultrasound Image with l = 1 and p = 1 

 

Fig. 9.  Enhancing Ultrasound Image with l = 1  
and p = 0 
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Moreover, the minor matrices are defined as 
follows: 

  211 , dpNM 
 

(A6) 

  121 , dpNM 
 

(A7) 

Finally, the 1-degree polynomial gain can be 
deduced by (12) as follows:  

     pNiapNapNh i ,,, 11011 
 

(A8) 

where the coefficients are derived by inserting 
(A5)-(A7) into (13). 
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