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Abstract 
Security protocols aim to allow two or more principals to establish a secure communication over a hostile 
network, such as the Internet. The design of security protocols is particularly error-prone, because it is difficult to 
anticipate what an intruder may achieve interacting through a number of protocol runs, claiming to be an honest 
participant. Thus, the verification of security protocols has attracted a lot of interest in the formal methods 
community and as a result lots of verification techniques/tools, as well as good practices for protocol design, have 
appeared in the two last decades. In this paper, we describe the state of the art in automated tools that support 
security protocol development. This mainly involves tools for protocol verification and, to a lesser extent, for 
protocol synthesis and protocol diagnosis and repair. Also, we give an overview of the most significant principles 
for the design of security protocols and of the major problems that still need to be addressed in order to ease the 
development of security protocols.  
Keywords: Formal methods, security protocols, protocol synthesis, protocol diagnosis and repair. 
 
Resumen 
Los Protocolos de Seguridad tienen como objetivo permitir que dos o más agentes puedan establecer una 
comunicación de manera segura en una red a pesar de ambientes hostiles, tales como Internet. El diseño de estos 
protocolos es particularmente propenso a errores, por eso, es difícil anticipar lo que un intruso puede lograr 
cuando, pretendiendo ser un participante honesto, interactúa con una cantidad considerable de corridas del 
protocolo. Así, la verificación de protocolos de seguridad ha atraído un gran interés en la comunidad de los 
métodos formales, dando como resultado la aparición, en las dos últimas décadas, de una gran cantidad de 
técnicas/herramientas, además de buenas prácticas para mejorar su diseño. En este artículo, describimos el estado 
del arte de las herramientas automatizadas que soportan el desarrollo de protocolos de seguridad. Principalmente, 
incluímos herramientas para su verificación, y en menor grado, trabajos sobre su síntesis; además de métodos en 
el diagnóstico y reparación de protocolos incorrectos. También, damos un resumen de los principios más 
importantes para mejorar el diseño de esta clase de protocolos y los principales problemas que todavía necesitan 
ser resueltos para facilitar su desarrollo. 
Palabras claves: Métodos formales, protocolos de seguridad, síntesis de protocolos, diagnóstico y reparación de 
protocolos 

 
1 Introduction 
 
Computer security is presently a strong requirement. Crimes such as user impersonation or unauthorized access to 
information have already resulted in countless losses. The goal of security protocols is to allow the exchange of 
sensitive data over insecure networks, such as the Internet. A security protocol is a protocol that aims to achieve a 
security related goals, such as key-agreement, entity-authentication, information integrity, confidentiality and non-
repudiation. 

Cryptographic primitives are the basic building-blocks of security protocols. They include one-way hash 
functions and encryption functions. Mainly hash functions aim to provide integrity or non-repudiation and 
encryption, whether symmetric or not, confidentiality or authentication. Though very reliable, cryptographic 
primitives cannot address the security requirements of a security protocol. This is both, because they need to be 
applied in combination rather than in isolation and because the design of a security protocol is especially error-prone. 
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Indeed, protocol flaws can be subtle and hard to find. The well-known Needham and Schroeder Public Key (NSPK) 
protocol was found to be flawed 17 years after its publication [Lowe 1996]. 

Not surprisingly, there is a number of methods/tools that support the formal development of security protocols, 
particularly in the verification phase. Verification methods/tools belong to one of three approaches: belief logics, e.g. 
BAN [Burrows, et al., 1989] and BGNY [Brackin 1996]; state-exploration, e.g. NRL [Lowe 1996], AVISPA 
[AVISPA 2005], Athena [Song, et al., 2001]; and theorem-proving, e.g. Paulson's inductive approach [Paulson 1998] 
and Coral [Steel et al. 2003]. Of all existing tools, AVISPA and Athena are the most powerful. They are both capable 
of automatically determining whether a protocol fails to satisfy a security requirement, in which case they output a 
counterexample. A counterexample is an interleaving of one or more protocol runs violating a given security 
requirement. We call it an attack for short. 

More often than not, research reports on attacks to protocols that were not known to be flawed. This has led the 
research community both to postulate good practices for protocol design and to explore techniques complementary to 
protocol verification. The most prominent example of a set of good practices for protocol design are Abadi and 
Needham's [Abadi and Needham 1996]. These principles capture common features among protocols that Abadi and 
Needham found hard to analyze. If these features are avoided, they concluded, protocols tend to become more 
readable and, more importantly, correct. The most prominent examples of application of formal methods to aspects 
other than protocol verification are synthesis [Perrig and Song 2000], diagnosis and repair [López-Pimentel, et al., 
2007b]. 

This paper aims to describe state-of-the-art tools that support the development of security protocols. This 
involves mainly tools for protocol verification and, to a lesser extent, for protocol synthesis and protocol diagnosis 
and repair. Also we give an overview of the most significant principles for the design of security protocols and of the 
major problems that still need to be addressed in order to ease the development of security protocols. 

The remainder of the paper is organized as follows. First, Section 2, we give an overview of the most important 
security protocol libraries. The number of faulty protocols in these libraries evidences the need for further support in 
protocol security development. Then, Section 3, we describe state-of-the-art tools for verifying security protocols. 
Next, Section 4, we summarize seminal guidelines for protocol design. Then, Section 5, we briefly describe 
significant existing approaches to protocol synthesis and computer-aided protocol design. We also give an outline of 
existing approaches to diagnosis and repair of faulty security protocols. Next, Section 6, we briefly describe ongoing 
research, aimed at strengthening and enhancing security protocol verification. Finally, conclusions drawn from this 
survey are discussed. 
 
2  Security Protocol Analysis  
 
Software development is a structure which describes how to approach the tasks involved in software production. The 
waterfall model is the best-known model for software development and consists of the following phases: 
requirements analysis, specification, design, construction, integration, testing or verification, and maintenance. 

When software is safety critical, the use of rigorous, mathematical models to software development becomes 
recommendable but sometimes mandatory. By using mathematical models, software problems are identified at 
earlier stages, prior to construction. There exists two approaches to the verification of security protocols, one is based 
on the complexity and the probability of breaking the cryptographic primitives of a protocol, and the other on what 
can be learned from interacting with several principals engaged in an arbitrary number of protocol runs. These two 
approaches differ mainly in how they model cryptographic primitives. 
 
The computational complexity approach  claims that cryptographic primitives are simply functions on strings of 
bits. For example, as explained in [Abadi and Rogaway 2002], a symmetric encryption scheme might be defined as a 
triple of algorithms . Algorithm ),,(= DEKΠ K  is a key generator which after making random choices 
generates a string k  (the key). E  is an encryption algorithm which flips random coins r to map strings  (the key) 
and  (the plain-text) into a string  (the cypher-text). Algorithm D is a decryption algorithm that maps 

k
m ),( rmkE
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strings  (the key) and c  (the cypher-text) into a string , from which it recuperates m , after presenting r. It 

is expected that  for appropriate ,  and 

k )(cDk

mmrED kk =))( m,( k r . 
The adversary is essentially modeled as a Turing machine which has access to an oracle. The oracle aims to find 

a string  that is able to decrypt a given cypher-text . To do this task, the oracle usually has some clues 
that facilitate its task. Clues involve knowledge of some components of m , knowledge of other messages encrypted 
under the same key, etc. Roughly, a protocol is considered good if the oracle cannot find , or while consuming the 
computational power at hand the probability of finding   is slow-growing under a determined threshold. Although 
providing strong security guarantees, proofs under this approach are in general harder and more difficult to automate. 

'k ),( rmk

'k

E

'k

 
The formal methods approach  adopts the perfect cryptography assumption. This assumption states that the only 
way to decrypt a cypher-text is by applying the appropriate key. Crucially, there is no way to recover the message 
M  or the key K  from just the message that results from the encryption of M  under K , denoted by { }

K
M . This 

is in contrast to the computational complexity approach. 
The adversary is modeled as an omnipresent agent that controls the network but cannot make cryptanalysis. In 

general, the adversary can intercept messages, analyze them, and decrypt them if he possesses the corresponding 
decryption key. He can also inject new messages to the network and send them under any agent name. Dolev and 
Yao, [Dolev and Yao 1983], formalized a model of the adversary, so-called the spy, with these abilities. In addition 
to the Dolev and Yao model, some authors assume that the spy knows all public keys, his own shared key and private 
key, and all shared and private keys of a collection of compromised agents. Another authors also consider that the 
spy knows a set of lost session keys.1 

Connections between the formal view and the computational view are currently subject of investigation. In their 
seminal paper, Abadi and Rogaway [Abadi and Rogaway 2002] have established a relation between syntactic 
equivalence of message terms, where encryption is treated as a formal operator, and secure encryption, where 
encryption is defined in terms of computational indistinguishability. The result of Abadi and Rogaway is applicable 
for symmetric encryption in the presence of a passive attacker. Later on Baudet et al. [Baudet, et al., 2005] 
introduced a reasoning framework for proving soundness of implementations of equational theories, which are used 
to specify cryptographic primitives. More recently, Kremer and Mazare [Kremer and Mazaré 2007] have extended 
Baudet et al.'s work to consider an adaptive user, rather than a purely passive one. 

Our research lies in the formal methods approach. So, in the next section, we survey the most significant 
verification tools. Before going further, though, we briefly describe the formal approach to software verification and 
give an example faulty security protocol. 
 
2.1  Formal Software Verification 
In the application of formal methods to software verification, both the system and its specification are first expressed 
as formulas of some (but not necessarily the same) logic. Then, mathematical reasoning is used to prove that the 
system and the specification are related somehow, for example by logical implication. A state-of-the-art verification 
tool is capable of yielding either of two outputs: i) OK, indicating that the system is error-free, at least with respect to 
the coverage analysis of the corresponding tool; and ii) a counterexample, indicating how a system execution violates 
the specification. 

In the context of security protocol verification, the system is the security protocol under analysis, the 
specification a protocol security requirement and the counterexample actually is an attack. Authentication and 
secrecy are the most common examples of protocol security requirements. These properties have no universal 
interpretation and are formalized according to the context. Roughly, user authentication amounts to attempting to 
verify the identity of a protocol participant and secrecy to ensuring that certain message parts sent over the network 
remain readable only to their intended recipients.  
                                                            
1A session key is a key used for encrypting one message or a group of messages in a communication session. 
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Most security protocols are documented in two main libraries: Clark and Jacob's2 and AVISPA's3. The Clark 
and Jacob library (Table 1) comprehends 50 protocols, 26 of which are known to be faulty and the rest of them are 
not. The AVISPA library (Tables 2 and 3) comprehends 70 protocols, 17 of which are faulty and the rest of them are 
not. For every protocol that is faulty, these libraries include an extended version of it for which no attack is known.  
Each row displays the security services pursued by each protocol (Authentication, Auth; Secrecy, Sec; Key 
distribution, Kdis; and Key establishment, Kest), whether or not  the protocol includes a Server, S, and the main 
cryptographic primitives (shared key, SK; or/and public key, PK) used by the protocol..  

 
2.2  A Faulty Security Protocol 
To give the reader a flavor as to the difficulties of designing sound security protocols, let us consider the NSPK 
Protocol, which aims to provide strong authentication of the initiator and the responder. Given in the so-called Alice 
and Bob notation, the specification of NPSK is as follows: 
 

1.   A B  : { } +
BKa AN ,  

2. B    : A { } +
AKba NN ,  

3. A   B  : { } +
BKbN  

 
where   A B  : M means agent  sends message A M  to agent B , which B  is meant to receive; “,” denotes 
message concatenation;  the public key of principal +

PK P ; and { }
K

M denotes the message M encrypted under 

the key K . 
Roughly speaking, A  initiates a session with B  by sending it him a nonce (a random number, newly 

generated) , indicating the start of a new session. After decrypting the message received at step 1, called message 

1 for short, 
aN

B  sends  back both the nonce that  apparently sent it, and a new nonce A aN A B  has generated, 

. Upon decryption of message 2,  checks that nonce corresponds to the nonce it generated to identify this 

run of the protocol and then sends 
bN A aN

B  back the nonce  (c.f. message 3). bN

                                                            
2The Clark and Jacob library is available at http://www.lsv.ens-cachan.fr/spore/index.html 
3The AVISPA library is available at http://www.avispa-project.org/ 
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Table 1. The Clark and Jacob library 

Name  SK PK  S Auth Sec Kdis Kest Protocol’s steps
 Andrew Secure RPC  * * * *   4 
 BAN modified Andrew Secure RPC  * * * *   4 
 BAN concrete Andrew Secure RPC  * * * *   4 
 Lowe modified BAN concrete Andrew S.RPC * * * *   4 
 Bull's Authentication Protocol  * * * * *   6 
 CAM  *   1 
 CCITT X.509 (1)  * *   1 
 CCITT X.509 (1c)  * *   1 
 CCITT X.509 (3)  * *   3 
 BAN modified CCITT X.509 (3)  * *   3 
 Denning-Sacco SK  * * * * *   3 
 Lowe modified Denning -Sacco shared key  * * * * *   5 
 Denning-Sacco ASK  * * * * *   5 
 Diffie Helman  * * *   4 
 GJM  * *   6 
 Gong  * * * *   5 
 Kao Chow Auth-V.1  * * * * *   4 
 Kao Chow Auth-V.2  * * * * *   4 
 Kao Chow Auth-V.3  * * * * *   4 
 Kerberos V5  * * * * *   6 
 KSL  * * * * *   8 
 Lowe modified KSL  * * * * *   8 
 Neumann Stubblebine  * * * * *   7 
 Neumann Stub.modified * * * * *   7 
 NSPK  * *   7 
 Lowe's fixed NSPK  * *   7 
 Needham Schroeder SK * * * * *   5 
 Amended Needham S.SK * * * * *   7 
 Otway Rees  * * * * *   4 
 O-Rees BAN version  * * * * *   3 
 Schnorr's Protocol  * *   3 
 Shamir-Rivest-Adleman * *   3 
 SK3  * * * * *   11 
 SmartRight view-only * *   3 
 SPLICE/AS  * * * *   6 
 SPLICE/AS Modified  * * * *   6 
 C-J modified SPLICE/AS  * * * *   6 
 TMN  * * * * * *   4 
 WMF protocol  * * * * *   2 
 Lowe modified WMF  * * * * *   4 
 Woo and Lam Mutual  * * * * *   7 
 Woo and Lam Pi  * * *   5 
 Woo and Lam Pi 1  * * *   5 
 Woo and Lam Pi 2  * * *   5 
 Woo and Lam Pi 3  * * *   5 
 Woo and Lam Pi f  * * *   5 
 Yahalom  * * * * *   4 
 BAN modified Yahalom * * * * *   4 
 Lowe's modified Yahalom  * * * * *   5 
 Paulson's strengthened version of Yahalom  * * * * *   4 
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Table 2. The AVISPA library 

Name SK PK S Auth Sec Kdis Kest Protocol's steps 
AAA Mobile IP * * * * 9 
CTP-non_predictive-fix * * * 6 
SIP * * 16 
H.530 * * 6 
H.530 fix * * 6 
QoS-NSLP * * * 4 
Geopriv * * * * 5 
Geopriv-self-signatures * * * * 6 
Geopriv-two_pseudonyms * * * * * 5 
Geopriv-pervasive * * * * 5 
Geopriv-password * * * * 6 
SIMPLE * * * 4 
LIPKEY-SPKM-known-initiator * * * 3 
LIPKEY-SPKM-unknown-initiator * * * 3 
CHAPv2 * * 4 
APOP * * * 3 
CRAM-MD5 * * 3 
DHCP-delayed-auth * * 2 
TSIG * * * 2 
EAP_AKA * * * * * 5 
EAP_Archie * * * * * 6 
EAP_IKEv2 * * * * * 7 
EAP_SIM * * * * * 7 
EAP_TLS * * * * * 7 
EAP_TTLS_CHAP * * * * * 7 
PEAP * * * * * * 8 
S/KEY * * * 4 
EKE * * * * 5 
EKE2 * * * * 3 
SPEKE * * 5 
SRP * * 4 
IKEv2-DS * * * * 4 
IKEv2-DSx * * * * 6 
IKEv2-MAC * * * * 4 
IKEv2-MACx * * * * 6 
IKEv2-CHILD * * * * 2 
IKEv2-EAP-Archie * * * * * 8 
RADIUS-RFC2865 * * * 5 
8021x_Radius * * * * 10 
HIP * * 4 
PBK * * 4 
PBK-fix * * 4 
PBK-fix-weak-auth * * 4 
Kerbers-basic * * * * * 6 
Kerbers-Ticket-Cache * * * * * 6 
Kerberos-Cross-Realm * * * * * 8 
Kerberos-Forwardable * * * * * 8 
Kerberos-PKINIT * * * * * * 6 
Kerberos-preauth * * * * * 6 
TESLA * * 2 
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Table 3. The AVISPA library 

Name SK PK S Auth Sec Kdis Kest Protocol's steps
SSH-transport * * * * 6 
TSP * * 2 
TLS * * * 8 
ASW * * 4 
FairZG * * * 5 
SET-purchase * * * 6 
SET-purchase-hpg * * * 6 
UMTS_AKA * * * * * 2 
ISO1 * * 1 
ISO2 * * * 2 
ISO3 * * 2 
ISO4 * * 3 
2pRSA * * 3 
LPD-MSR * * * * 3 
LPD-IMSR * * * * 3 
SHARE * * * * 4 
NSPK * * * 3 
NSPK fix * * * 3 
NSPK-KS-fix * * * 3 
NSPKxor * * * 3 
NSPK-KS * * * 3 

 
The NSPK protocol seems right at first glance:  seems to know that it is running the protocol apparently with A

B , because only B  could have decrypted message 1 and then have sent nonce encrypted under ’s key in 
message 2. However, this protocol is faulty. Lowe found that an intruder could impersonate one agent by 
concurrently holding a session with another agent [Lowe 1995]. Lowe’s attack is shown in Figure 1.  

aN A

 

 
Fig. 1. An attack on the NSPK protocol 

 
From Figure 1, one can see that one instance of message 2 is being used in two independent runs. We infer that 

while B  knows that  has recently participated in a run of the protocol; it cannot tell whether  is running it 
apparently with it. 

A A
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Notice that identifying the protocol flaw; that is, what makes it possible to elaborate the attack, is not trivial, 
never mind patching the protocol. To patch NSPK, Lowe suggested adding the responder name (in this case B ) to 
message 2 so that the initiator (in this case A ) could know the identity of that message’s originator, yielding: 
 

1.   A B  : { } +
BK

ANa,  

2. B   A  : { } +
AK

NbNaB ,,  

3. A   B  : { } +
BK

Nb  

  
This new version of NSPK has been proved to satisfy authentication. Thus, the design of security protocols is 

error-prone, requiring the use of rigorous methods for software development.  
In the following section, we shall describe the most important tools/methods to formal security protocol 

verification. For each method, we highlight coverage and most significant contributions. We use this information to 
come out with a comparison. 
 
3  Security Protocol Verification  
 
There are three main verification approaches: belief logic, state exploration, and theorem proving. We look at each 
approach, one on each of the following sections. 
 
3.1  Belief logics 
Belief logic was the first attempt to automate the verification of security protocols. BAN [Burrows, et al., 1989] is 
the most significant and prominent belief logic. BAN aims to formalize what an agent may infer from the messages it 
has received. BAN allows short, abstract proofs but it is not able to identify a wide variety protocol flaws. This is 
because BAN does not consider an intruder on the network. Its main characteristic is its simplicity; its main 
disadvantage is that it assumes that agents are all honest. When the search for a BAN proof fails, it is not obvious 
how to use the deduction tree to generate a counterexample. To address its weaknesses, BAN has been extended 
resulting in new logics, e.g. BGNY [Brackin 1996]. These new methods though have proven to be very limited to 
deal with the general problem of protocol verification and are far beyond from BAN’s simplicity. 
 
3.2  State Exploration  
In the state exploration approach, a protocol is characterized as the set of all its possible traces. Given an input 
security protocol, the verification method explores as many execution paths of the protocol as possible, checking at 
each state reached if some conditions hold. The search space generated from analyzing a cryptographic protocol may 
be infinite, because principals may engage in a number of protocol runs, simultaneously play different roles 
(initiator, responder, etc.) and because the adversary is capable of building an infinite number of messages. Yet, most 
state exploration tools use theoretical results to avoid exploring the entire state space. An example result is Syverson 
et al.’s [Syverson, et al., 2000], who proved that whenever there is an attack, there is an attack in which 
compromised principals do not send arbitrary messages, only messages in valid protocol form. Another example 
result is Rusinowitch and Turuani’s [Rusinowitch and Turuani 2001], who showed that whenever there is an attack, 
there is an attack of polynomial size (for a bounded number of sessions). State exploration methods are powerful and 
automatic. When a property does not hold, they can easily exploit the traces that have been generated in order to 
build a counterexample.  

In what follows, we survey the most important state exploration tools. We start with a brief discussion of the 
work of Dolve and Yao. Then we carry on sudying more advanced tools based on model checking and strand spaces. 
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3.2.1  Early Attempts at Protocol Verification 
Dolev and Yao's method The first attempt at using state exploration for verifying security protocols was due to 
Dolev and Yao [Dolev and Yao 1983], in 1983. Dolev and Yao's approach is however extremely limited, because it 
considers only the verification of secrecy and accounts for a few cryptographic primitives. Dolev and Yao's main 
contribution is a formal model of the intruder, which has been used largely albeit after suffering minor extensions. 
After Dolev and Yao’s work, the verification of security protocols was by large ignored. It was not until 1996, more 
than a decade later, that Meadows, Lowe and others revived the problem.  
 
3.2.2  Model checking 
Lowe's method Gavin Lowe, the man who broke the NSPK protocol [Lowe 1995], has approached the verification 
of security protocols using Hoare's calculus of Communicating Sequential Processes (CSP). To verify a security 
protocol, Lowe first writes a CSP model of every entity in the (communicating) system: the agents taking part in the 
protocol, the communicating network and the Dolev-Yao spy. Then, he uses the standard CSP theory of traces to 
conduct the protocol analysis.  

In 1996, Lowe showed that a modified version of the NSPK protocol is secure at least for a small number of 
participants [Lowe 1996]. In his experiments, he used Failures Divergences Refinement (FDR), a model checker to 
verify CSP programs. The task of producing a CSP description of the protocol to verify is very time consuming and 
requires a high level of skill. To get around this situation, Lowe developed Casper [Lowe 1998]. Casper translates 
the Alice and Bob description of a security protocol into a CSP model, suitable for FDR. While Lowe’s results were 
encouraging, it was clear then that special-purpose tools were required for the verification of large security protocols 
to be possible.  
 
Basin's method In 1999, Basin [Basin 1999] presented an approach to protocol analysis that combines 
complementary aspects of model checking and Paulson's formalism (see Section 3.3). In an attempt to deal with the 
state explosion problem, Basin’s approach used lazy data types to model the (possibly infinite) state-space of the 
protocol. Crucially, lazy constructors build data types without evaluating their arguments, thus allowing for the 
representation and computation of infinite data. 

Motivated by, and closely following to, the work of Paulson, Basin used a trace-based interleaving semantics 
for modeling security protocols. Protocols are then formalized as infinite trees. The branches of each of these trees 
are traces. Adding a tree child node corresponds to a trace extension which captures the execution of a step of the 
protocol or an action taken by a Dolev-Yao spy. Hence, the run of a protocol defines an infinite tree and a security 
property is a property of nodes in the tree. Violations of security properties are found by a kind of infinite-state 
model checking, which is performed by searching the tree in a lazy fashion. Notice that if there is an attack, it will be 
present in a trace located at some tree node. However, finding this node may not be easy: not only may the tree be 
infinitely deep, but it may also yield an exponentially large branching factor. 

With a large branching factor, standard search algorithms would hardly succeed in finding attacks that lie at 
shallow depths. To get around this problem, Basin used two simple heuristics, one for pruning the search tree and the 
other for reordering the way in which the tree is searched. The first heuristic consists of pruning traces that contain 
spurious events, such as the reception of a message that does not obey the rules of the protocol. The second heuristic 
consists of assigning the highest priority to events involving the start of another execution of the protocol or the 
execution of an action by the spy. 
 
Basin et al.'s OFMC Later on, in 2003, Basin et al. introduced the On-The-Fly Model-Checker (OFMC) [Basin, et 
al., 2003], a tool that combines lazy data types with a set of symbolic techniques, that, in a demand-driven way, 
model the actions of a Dolev-Yao intruder. OFMC’s methods significantly reduce the search space without 
excluding attacks. OFMC was validated on a large number of experiments. It rediscovered the attacks documented in 
the Clark and Jacob library and found new attacks. Iwas also able to discover attacks to a wider variety of protocols. 
OFMC’s results are reported in the AVISPA library [Basin, et al., 2004]; they show it is capable of determining 
whether or not a protocol is valid (usually in a few milliseconds) and, in the case of unsatisfiability, of producing a 
counter-example. One downside of OFMC is that it cannot verify group security protocols. 
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The formal model that OFMC tool uses for protocol analysis is based on two specification languages: one is a 
high-level protocol specification language (HLPSL) and the other a low-level one (the Intermediate Format IF). 
These languages were developed in the context of the AVISPA project.4 AVISPA is a toolbox, which includes 
several backends, the most prominent of which are OFMC and CL-Atse.  
 
Y. Chevalier and L. Vigneron. Chevalier et al. developed the Constraint-Logic-Based Attack Searcher (CL-Atse), 
2002 [Chevalier and Vigneron 2002]. It is an OCaml-based implementation of the deduction rules developped in the 
AVISPA European project. CL-Atse combines rewrite-based first order theorem proving with constrain logic in 
order to handle properties such as associability/commutativiy of operators for representing sets of messages. A 
protocol is written in the Avispa's itermediate format and it is executed over a finite (user decided) number of 
iterations, or entirely if no loop is involved. CL-Atse performs two kind of optimisations : First, the protocol 
specification is simplified to accelerate the search for attacks. Second, various optimisations in the deduction rules 
try to reduce, and often eliminate, redundancies and uselessness in the protocol execution. 
 
Bozga et al. In 2003, Bozga et al. introduced HERMES [Bozga 2003], a tool specialized to verify secrecy properties. 
Roughly, HERMES takes a protocol and two sets, one contains messages which are to remain secret, called S, and 
the other hypotheses about secret keys, called H. Then, HERMES calculates all reachable states for a set of secrets S’ 
(e.g.  nonces and session keys) and a set of protected messages H’ (e.g. cypher-texts).  The protocol guarantees 
secrecy for secrets S, if all messages in S’ are protected under H’ and both, S is a subset of S’ and H’ is a subset of H. 
HERMES has a frontend (EVA) where users can specify protocols in a friendly way. It has been successfully tested 
on the Clark and Jacob library. One downside of HERMES is that it cannot prove security properties other than 
secrecy. 
 
3.2.3  Strand Spaces approach 
Fabrega et al.'s method Model checking tools aim at identifying if there exists a state in the execution of a protocol 
that violates a given security requirement. They do not aim to establish that a protocol really is correct. Motivated by 
this limitation, Fabrega, Herzog and Guttman invented the strand space model, in 1998 [Thayer-Fabrega, et al., 
1998]. A strand is a sequence of events that an agent may execute in a protocol. A strand space is a set of strands 
reflecting the activity of principals, whether honest or not, involved in te run of a protocol 

The strand space model is graph-based. An event is represented by a node in the graph. If the event corresponds 
to the sending of a message M, the node is labeled +M. Otherwise it corresponds to M’s reception and then is labeled 
-M. Every node belongs to a unique strand. A strand contains one or more nodes; it specifies the behavior of one 

agent. An inter-strand edge, denoted by , captures agent communication, meaning: at  (node 1) a 

message is sent, which is then received at  (node 2). 

21 nn →

2n
1n

A bundle is a finite acyclic subgraph, consisting of a number of strands all hooked together. It is such that for 
every node, , annotated with a 2n M− , there is a unique node, , in a different strand such that . 
Protocol correctness depends essentially on the freshness of a few data items such as nonces or session keys. These 
elements must not be in the possession of the spy. Typically, for a protocol to be correct, there must be one such a 
bundle consisting of one strand for each of the legitimate parties, all agreeing on the participants, nonces and session 
keys. Notice that a spy strand may also be entangled in a bundle, even if the protocol is correct, but that should not 
prevent the legitimate parties from agreeing on the data values or from maintaining the secrecy of the chosen values. 

1n 21 nn →

For proving authentication of type non-injective agreement with B  acting as a responder and A  as an initiator 
(according to Lowe's hierarchy of authentication [Lowe 1997]), it is necessary to establish that whenever a bundle 

                                                            
4The AVISPA project (Automated Validation of Internet Security Protocols and Applications) supports the simple integration of four different 
back-end search engines: the On the Fly Model Checker (OFMC), [Basin, et al., 2003]; the Constraint-Logic-Based Attack Searcher (CL-AtSe), 
[Chevalier and Vigneron 2002]; the SAT-based Model-Checker (SATMC), [Armando and Compagna 2004]; and the Tree Automata based on 
Automatic Approximations for the Analysis of Security Protocols (TA4SP), [Heam, et al., 2004]. 
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contains a responder strand using certain data items, x , then such a bundle must also contain an initiator strand 
using x . Now, proving authentication of type agreement amounts to showing that such a bundle contains an unique 
initiator strand using x . 

The strand space model was not designed to report a counterexample. Nor was it automated, at least initially. 
However, the strand space provided a simple, graphic way of expressing protocol information flow. The model has 
been found appealing because protocol runs can be expressed in parallel. 
 
Dawn Song's method In 2001, Song, Berezin and Perrig used techniques from both model checking and theorem 
proving in order to extend the strand space model so that it is both automatic and able to prove correctness of many 
security protocols with an arbitrary number of concurrent runs. The implemention of these methods yielded Athena, 
a checker that efficiently analyzes infinite sets of protocol runs. Athena includes optimizations to improve efficiency, 
including the use of a pruning procedure based on novel theorems and an automatic evaluator of well-formed 
formulas.  

Athena comes with a dedicated logic for describing security protocols and their intended properties. This logic 
is based on strands and bundles. To verify the protocol, Athena transforms the security properties into an initial 
sequent, capturing an initial state. It then applies a small set of inference rules with certain decision procedures to the 
states, building a proof tree, until it either completes the proof or refutes the sequent. In the latter case Athena reports 
that the protocol is incorrect, and the state of the refuted sequent represents a counterexample. 

Athena has been tested on the Clark and Jacob library.  An important downside of Athena is that the verification 
procedure is not guaranteed to terminate. Termination can be forced by limiting the number of concurrent protocol 
runs or the size of the message terms.  
 
3.3  Theorem proving based approaches  
Theorem proving based approaches attempt to produce a formal proof, given a description of the protocol, a set of 
logical axioms, and a set of inference rules. These approaches have two branches: one is based on Higher-Order 
Logic (HOL) and the other based on First-Order Logic (FOL). Although, the former approach can inductively 
simulate an infinite number of agents running in an infinite number of sessions, it requires considerable interaction 
with the theorem proving framework. The latter approach is more automatic and more viable for generating 
counterexamples. 
 
3.3.1  Methods Based on Higher-Order Logic 
Paulson's method The inductive approach to the verification of security protocols was invented by Paulson in 1998 
[Paulson 1998]. This method combines some characteristics from state exploration and belief logics. From the first 
approach, it borrows a concrete notion of events; from the second one, the idea of deriving guarantees from each 
message. It has been widely used for verifying protocols, but it requires a high level of skill to use. A user must guide 
the proof process, selecting the logical rules or tactics to be applied. To compound the problem, the inductive 
approach involves cumbersome and onerous proofs. The analysis is supported by the generic, interactive higher-
order logic theorem prover Isabelle [Paulson 1994]. 

A protocol is inductively defined as a set of (all possible) traces. A trace is a list of (communication) events. An 
event refers to either sending a message, or receiving one. Protocol descriptions include attacks and accidental losses 
of critical information, so-called an Oops event. The model involves four sorts of theories: message, event, shared 
and public. The message theory involves three main operators. Each operator is defined on possibly infinite sets of 
messages and is used to model properties of a protocol and reason about its runs. It also includes sorts of agents and 
sorts of messages. The event theory models the sending and receiving communication events, the knowledge of 
agents and a freshness operator. The theories shared and public formalize shared-key and public-key cryptography 
respectively. A protocol is defined by a collection of inference rules, each of which has zero or more hypotheses and 
one conclusion. The inference rules state the various forms in which a protocol trace can be possibly extended with 
new events. Proofs proceed by induction on the inference rules defining the protocol, taking into account the 
capabilities of a Dolev-Yao intruder. 
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Isabelle has been used to verify a number of protocols, including VISA’s SET protocol. It was (as far as we 
know) the first to prove a group (recursive) protocol, namely Otway-Bull. This proof however was later on argued to 
be faulty, as it ignores a protocol failure5 in the use of XOR [Ryan and Schneider 1998]. One downside of Paulson's 
approach is that there is no automated support for finding attacks on faulty protocols. Another downside is that 
verifying protocols requires interactive theorem proving, which demands considerable effort. 
 
3.3.2  Methods Based on First-Order Logic 
Meadows's method One of the first attempts at using automated theorem proving to security protocol analysis was 
due to Meadows. In 1996, she presented the NRL Protocol Analyzer (NPA) [Meadows 1996], a special-purpose tool, 
written in Prolog. Notably, NPA could be used to verify if a protocol was up to satisfy principal authentication or key 
distribution. Meadows’s work extended Dolev and Yao's in two main respects. First, the spy attempts more than just 
finding out a secret. The spy may try, for example, to convince an agent that a message has certain properties that it 
does not. Second, NPA’s method was a general, term-rewriting proof procedure, instead of an ad-hoc one (c.f. Dolev 
and Yao’s approach).  

NPA aims to prove that a collection of user-specified protocol states are unreachable. Using this strategy, it 
found two previously unknown attacks, one on Simmons's Selective Broadcast Protocol and the other on Burns-
Mitchell's Resource Sharing Protocol. NPA also identified hidden assumptions in two protocols: the Neuman-
Stubblebine re-authentication protocol and the Aziz-Diffie wireless communication protocol. NPA however is highly 
interactive, much in the same way a theorem prover is, relying on the user to guide the search for a proof. It is not 
guaranteed to terminate and has no means of converting a protocol description into a set of term-rewriting rules. 
 
Blanchet’s method  Blanchet (2001), [Blanchet 2001], developed also a Prolog-based tool for verifying secrecy 
properties of security protocols. Blanchet uses Prolog rules to represent both the actions of the attacker and the rules 
of the protocol, which are modeled as messages known to the attacker. Messages and channels are represented as 
Prolog terms. Proving the secrecy of a message M amounts to disproving the fact attacker(M), denoting that M is in 
the Spy possession. This verification task is beyond the Prolog solving strategy and so Blanchet provided a special-
purpose solving algorithm that performs well in practice. Blanchet performs two abstractions to avoid bounding the 
number of protocol runs. The first abstraction ignores the number of times a message has appeared, recording only 
that it has been used. The second abstraction distinguishes when it is safe to use a unique term for the nonce 
associated with a pair of participants, regardless the number of runs in which they are involved. Blanchet’s tool has 
been able to prove secrecy of a number of protocols, including Skeme. However, the tool representation of a protocol 
is approximate. On the one hand, the protocol representation is safe, in the sense that if there is an attack on the 
protocol that violates secrecy, the tool will find it. Yet, on the other hand it makes the tool yield false attacks; indeed, 
Blanchet’s tool could not prove that Lowe’s version of the NSPK is secure. While it does not bound the number of 
parallel protocol runs, the tool assumes a bounded number of participants.  
 
Weidenbach's method Weidenbach's approach [Weidenbach 1999] aims to combine the benefits of the inductive 
method and finite state analysis. To this end, Weidenbach uses a fragment of first-order logic that is expressive 
enough to have infinite, inductive models, but that is still subject to automated theorem proving. Weidenbach’s 
approach is as follows. First, the security protocol and its requirement are both translated into first-order monadic 
Horn formulae.6 Then, these formulae are input to SPASS, a first-order logic automated theorem prover based on 
saturation. Finally, if SPASS terminates, the protocol is free of flaws. Otherwise, it is faulty. In the latter case of 
proof failure, SPASS’s output can often be used to build an attack, though this process has not been automated.  

Using SPASS, Weidenbach analyzed the Neumann-Stubblebine protocol (1993) and found new flaws in it, 
suggesting possible solutions. Weidenbachs’ approach has four main downsides. First, the spy is weaker than Dolev-

                                                            
5 A protocol failure is a protocol flaw where the designer overlooks crucial properties of a crypt-algorithm and as a result the protocol security 
function is contrary to what is expected. 
6A clause is Horn if it contains at most one positive literal. A monadic Horn theory is a set of Horn clauses where all occurring predicates are 
monadic (that is, they take only one argument). 
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Yao’s. Second, the approach considers that there are only two agents and, thus, a verification proof requires proving 
meta-theorems that relax this limitation. Third, it is not as expressive as Paulson's. Fourth, it does not automatically 
generate counter-examples. 
 
Ernie Cohen's method In 2002, Cohen [Cohen 2000] introduced a first-order logiic method, capable of finding 
verification proofs similar to those proven in Isabelle, only that faster and almost without user guidance.  In Cohen’s 
method, a protocol is modeled as a transition system. The state of a protocol run is then given by the set of transitions 
that have been executed together with the set of associate messages that have been exchanged. Transitions may 
generate a fresh value (used as either a nonce or a key). Provided that some preconditions hold, a transition fires 
resulting in the sending of a new message. Transitions are also used to model the actions of the spy. The state of a 
protocol run can be further restricted by user-supplied axioms.  

Cohen implemented his method on TAPS7 and then used it to analyze more than 70 protocols [Cohen 2003], 
most of which were borrowed from the Clark and Jacob Library. For a verification proof to go through, TAPS uses 
the protocol description to generate a number of protocol invariants, which are then used to establish security 
properties, such as secrecy or authentication. Often, TAPS is able to generate one such protocol invariant 
automatically, but sometimes the user has to provide them. Cohen's approach surpasses Paulson's in that it requires 
considerably less user guidance. One main downside of Cohen’s method is that it does not generate counterexamples 
because it searches for proofs, not attacks. 
 
Graham Steel's method So far, we have described verification tools geared towards analyzing security protocols 
with a fixed number of participants. We now turn our attention into Coral [Steel et al. 2003], a theorem-prover based 
tool that aims to analyze group protocols, where an arbitrary number of parties may be involved in a single run 
[Meadows 2000].  

Coral, developed by Steel et al.,  is built on top of SPASS, a first-order theorem prover. Crucially, Coral uses 
proof by consistency, a technique designed for automating inductive proofs in first-order logic. Proof by consistency, 
also known both as inductionless induction and as implicit induction, has the property of being refutation complete 
[Comon and Nieuwenhuis 1998]. This completeness result guarantees that Coral will eventually find an attack, if any 
[Steel et al. 2002] 

Coral is closely related to Paulson's method, as it uses a first-order version of trhe inductive approach for 
protocol verification. A protocol is specified as an inductive datatype, which is used to capture the set of all possible 
protocol traces. Axioms specify the ways in which a trace may be extended, either by the sending of a message by an 
agent (following the protocol), or by the sending of a fake message by the spy. Steelk et al.’s model allows an 
indeterminate number of agents to get involved in one or more protocol runs, play any role and issue an arbitrary 
number of fresh nonces or keys. 

The protocol description, together with the actions of the Dolev-Yao spy, is specified in Horn Clauses. To 
discover an attack on a protocol, the security property to be verified, the goal, is first negated and then SPASS is 
made attempt to disprove it. Thus, in Coral one attempts to find a counterexample that breaks the security property, 
rather than proving a protocol correct. 

CORAL has found two new attacks on the Asokan-Ginzboorg protocol for establishing a group key in an ad-
hoc network of Bluetooth devices. One downside of Coral is that it may not terminate. It does not therefore compete 
against state exploration tools for attack discovery in two- or three-party protocols, since these latter tools are faster.  
 
4  Informal Design Guidelines in the Literature 
 
In an attempt to prevent designers from incurring in known, published mistakes, many authors have suggested 
principles to guide the design of security protocols. These principles are just a collection of good practices, 
recommendations that are neither necessary nor sufficient for protocol correctness. Most principles have been 

                                                            
7The Telcordia Authentication Protocol System. 
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welcome by the community, only a few have received great criticism as they are thought to unnecessarily ask for a 
number of requirements. 

A noteworthy work is that of Abadi and Needham’s [Abadi and Needham 1996], who suggested eleven design 
principles for strengthening the design of security protocols. Abadi and Needham addressed two big issues: i) the 
messages involved in a protocol, together with their content (principles 1, 3-10); and ii) the trust relations upon 
which the participants of the protocol depend (principles 2 and 11). Principles 3-9 recommend good practices in the 
meaning of a message such as agent names (principle 3), nonces (principles 6 and 7), timestamps (principle 8), 
session keys (principle 9) and cyphered messages (principles 4 and 5). Principle 10 emphasizes that the messages of 
a protocol should be distinguishable one another. Anderson and Needham [Anderson and Needham 1995] extended 
Abadi and Needham's work, suggesting principles to avoid protocol failures, when applying in particular digital 
signatures and public key cryptography (c.f. Abadi and Needham’s principles 4 and 5).  

After Abadi and Needham's work, it was identified that the crux to security is to protect messages (specially 
cypher-texts) from being vulnerable to a replay attack. A replay attack is a form of attack where a data transmission 
is repeated or delayed out of the current run of the protocol. To avoid replay attacks, Carlsen [Carlsen 1994] gave a 
full list of information that should be attached to cypher-texts (he called this list full information): protocol identifier, 
step identifier, message subcomponents identifier, primitive type of data items and protocol run identifier. Protocol 
designers, however, find cumbersome including all this full information. 

In a similar vein, Aura [Aura 1997] postulated four recommendations to avoid replay attacks: i) use a different 
cryptographic algorithm for each cyphered message in a protocol; ii) attach a hash function (including full 
information similar to Carlsen) to authenticator protocol messages; iii) produce unique session keys using hash 
functions; and iv) do not use any trust assumption about principals. While using a hash function does not affect the 
performance of a protocol, the use of a different cryptographic algorithm for each cyphered message is uncommon in 
the literature and it is not a design task. 

Malladi et al. [Malladi, et al., 2002] have also suggested a recommendation to avoid replay attacks. The 
recommendation is similar to Aura’s: associate with every protocol run a session-id generated by all protocol 
participants. They took a step further, proving that this condition guarantees that no replay attack can be elaborated, 
but did not provide a mechanism for how the participants are to agree upon the session-id. This is actually one of the 
main difficult problems in key-agreement protocols is to establish a secret between the participants. 
 
5  Additional Support in the Development of Security Protocols 
 
So far, we have described tools that support formal verification and collections of guidelines for security protocol 
design. In this section we present complementary approaches for protocol development, which include protocol 
repair and protocol synthesis. 
 
5.1  Protocol repair   
Lopez et al.’s tool for protocol repair Motivated by the number of faulty protocols repoted in the literature, Lopez 
et al. proposed methods for patching faulty security protocols. In [López-Pimentel, et al., 2007a] they proposed a 
method for patching security protocols vulnerable to a replay attack, where the flaw is to do with the omission of 
agent names. Later on, they developed Shrimp, [López-Pimentel, et al., 2007b] a tool which relies on existing state-
of-the-art tools, capable of repairing a wider variety of protocols.  Shrimp analyzes the protocol and an attack to this 
protocol in order to pinpoint faulty steps in the protocol and then suggests appropriate changes to fix them. This 
yields an improved version of the protocol that should be analyzed and possibly repaired again until no further flaws 
can be detected. 

To approach protocol diagnostic and repair, Lopez et al. introduced a collection of rules, they called patch 
methods, each of which is able to deal with a class of faults. To identify and patch a protocol flaw, each rule makes 
use of Abadi and Needham’s design principles, which Lopez et al. have translated into formal requirements. Shrimp 
deals with the full class of replay attacks, with respect to the taxonomy proposed by Syverson [Syverson 1994] (the 
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only exception being the type flaw subclass, see Section 6.3.) Shrimp has been successfully tested on a number of 
faulty protocols, obtaining a repair rate of 90%. 
 
R. Choo' tool on protocol repair R. Choo [Choo 2006] has also looked at the problem of automated protocol repair. 
He uses a model checker to perform state-space analysis on an indistinguishability-based model of a protocol, that 
uses asynchronous product automata. If the protocol is faulty, Choo's approach automatically repairs it. A fair 
comparison between Choo's approach and  Shrimp is not possible since Choo’s method is not elaborated within an 
archival publication. 
 
5.2  Design and Protocol's Synthesis 
Gong and Syverson's tool on fail-stop protocol Gong and Syverson [Gong and Syverson 1995] have developed a 
methodology to facilitate the design and analysis of security protocols. They proposed to restrict protocol design to 
well-defined practices. In particular, Gong and Syverson suggest to start with a fail-stop protocol, which should then 
be verified. A protocol is fail-stop if: i) the content of each message contains full information, as introduced by 
Carlsen; ii) each message contains the identies of the sender and the receiver; iii) each message is encrypted under 
the key shared between the sender and the intended recipient; iv) every honest agent follows the rules of the protocol; 
and v) an agent halts on any protocol run in which a message does not arrive within a specified time period. Gong 
and Syverson have come out with methods that produce protocols that are fail-stop and whenever a protocol is not, 
the method suggests changes to turn it into one that is. They have argued that, if fail-stop, a protocol is guaranteed to 
satisfy secrecy. To validate this claim, they have used BAN in the verification of fail-stop protocols. In this respect, 
Gong and Syverson’s methodology suffers from  the same limitations as the BAN logic.  
 
Perrig and Song on synthesis of Protocols Perrig and Song [Perrig and Song 2000] have developed a system, 
called APG, for the synthesis of security protocols. The synthesis process, though automated, is generate and test: 
APG generates (extends) a protocol, step by step, taking into account a collection of security requirements. After 
generating a new collection of extended protocols, APG applies Athena to analyze the protocols, discarding those 
that do not satisfy such requirements. If no protocol satisfies the requirements, APG adds a new step to the protocols 
and then the resulting protocols are analyzed again. This cycle is repeated as many times as necessary until the 
requirements are met, if ever. APG is limited to generate only 3-party protocols (two principals and one server). The 
main downside of this approach is the combinatorial explosion: the search space is of order  according to the 
authors. 

1210

 
6  Ongoing research 
 
Ongoing research is mainly concerned with the so-called intruder deduction problem and with extending protocol 
analysis without limiting the number of participants or the number of protocol runs. The intruder deduction problem 
is stated as follows: given a state of one or more protocol runs, determine whether the intruder is able either to 
construct a message of the form that some honest agent is expecting to receive or to obtain a message that is intended 
to be secret, e.g. a key shared by two honest agents [Basin, et al., 2005]. In what follows, we summarize recent 
results on these topics. 
 
6.1  Equational Message Theories and Message Typing 
The intruder deduction problem is at the core of formally analyzing security protocols. Currently, research is 
concerned with extending the intruder deduction problem to consider algebraic properties of message operators and 
its relation to detecting type flaw attacks.   
 
Algebraic Theories At first, most verification tools work under the following assumptions: i) the Spy is of type 
Dolev-Yao, ii) crypt-algorithms are perfect, and iii) terms are freely generated. Under the latter assumption, so-called 
free algebra assumption, two terms are equal if and only if they are syntactically equal. This assumption is 
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inadequate in general as it abstracts away real features of concrete messages. For example, message concatenation, at 
the bit level, is associative; cryptographic primitives such as Diffie-Hellman exponentiation and bitwise XOR, are 
both associative and commutative. Considering equational properties of message operators in the intruder deduction 
problem is commonly referred to as to algebraic intruder theories. We summarize some interesting results below. 

Common-Lundh and Shmatikov [Comon and Shmatikov2003] discovered decision results for faulty protocols 
in the presence of equational theories, like the bitwise XOR. Chevalier and Rusinowitch [Chevalier and Rusinowitch 
2005] invented a general decision procedure for deciding security of protocols in the presence of disjoint sets of 
operators, provided that solvability of special ordered intruder constraints can be decided in each theory; this 
procedure, however, has not yet been mechanized. Basin et al. [Basin, et al., 2005] developed a framework which 
handles algebraic properties of cryptographic operators, both by using modular rewriting, and by introducing two 
bounding parameters, one for the depth of message terms and the other for the number of operations that the intruder 
can use to carry out message analysis; this framework is expected to be part of the OFMC distribution. Lafourcade et 
al. [Lafourcade, et al., 2007] have proved decidability of the intruder deduction problem for commutative group 
operators, such as XOR; they have developed a polynomial time decision procedure for the restricted case where the 
number of parallel protocol sessions is bounded. 
 
Type Flaw Attacks A type flaw attack is an attack where a principal accepts a message component of one type as a 
message of another. It relies on a principal's inability to separate two messages of different steps [Meadows 2003]. 
Type flaw attacks are closely related to the intruder deduction problem because the intruder must be able to construct 
a message of the form that some honest agent is expecting to receive.  

Heather et al. [Heather, et al., 2003] have shown that tagging every protocol message, and each element thereof, 
with a string indicating its intended type prevents all type flaw attacks. However, as noticed by Malladi and Alves-
Foss [Malladi and Alves-Foss 2003], message tagging makes it easier to elaborate a password guessing attack. This 
is because each tag provides the adversary a means for identifying a hit, since the tag, which is a meaningful string, 
might become readable after a decryption attempt. Later on, Meadows [Meadows 2003] argued that even when 
messages are tagged type flaw attacks can still arise, since there is always a chance that two messages can be 
confused. She developed a method that enables the intruder to identify a strategy, if any, to raise the probability of 
two messages are confused above a preset threshold.  
 
6.2  Group Protocols 
Ongoing research is also concerned with enabling tools to perform verification of group protocols, in a way that the 
number of participants is not fixed in advance. Most tools were designed to verify two- or three-party security 
protocols, precluding the general modeling of group protocols. Moreover, they were designed to verify protocols 
with limited requirements. By contrast, a group protocol is designed to address several requirements, including: 
efficiency (e.g., the crypt-algorithm used, the number of messages exchanged); a wider variety of security guarantees 
(e.g., implicit key agreement, exchange fairness); the explicit type of channel (private, public); a specified logical 
group topology (e.g., ring); an explicit communication technology (e.g., wired, wireless); the scheme used in key 
generation (centralised, distributed); the level of involvement of the server, if any (e.g., online or offline); the 
communication paradigm (e.g., RPC, connection-oriented); and trust hierarchy. Thus, a protocol may be correct in 
some scenarios but not in others. Similarly, an attack may be valid in some scenarios but not in others. This makes it 
very difficult to attempt to extend current technology on protocol verification in a straightforward manner, prompting 
the need for starting from scratch. We will have to wait for a general setting to verify these kinds of protocols. 
 
7  Conclusions 
 
The design of security protocols is error-prone; flaws in security protocols have gone unnoticed for several years. 
Because of that, the formal methods community has put special interest in the rigorous verification of security 
protocols. We have described a number of approaches for the analysis of cryptographic protocols. We started with 
belief logics, where an honest environment is assumed. Then, we analyzed state-exploration approaches, which 
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include a model of an antagonist intruder. We have seen that state-exploration tools are fast and automatic, but due to 
the state explosion problem they make strong assumtpions and thus some protocol flaws can be overlooked. Next, we 
studied theorem-proving based frameworks, of which the inductive approach is the most powerful, as it 
accommodates arbitrary numbers of agents running in a number of parallel sessions. However, the inductive 
approach has not yet been fully automated. 

In an attempt to benefit from finite state exploration and the inductive approach, Steel et al. [Steel et al. 2003], 
Cohen [Cohen 2000], Basin [Basin 1999] and Weidenbach [Weidenbach 1999], among others have suggested 
approaches which are as expressive as the inductive approach but are still amenable to automation. Athena and 
AVISPA are in general  considered the state of the art. Athena uses the strand space model, which is widely used to 
study what guarantees can be obtained through message dependencies. AVISPA is fast and has a number of switches 
that enable it to discover even type flaw attacks. Coral deserves more attention since it can find attacks on group 
security protocols automatically; this feature goes well beyond standard tools for protocol analysis. 

When a protocol has been found to be faulty, the designer of the security protocol must fix the protocol 
manually. This task is onerous and difficult because the designer has to find the specific flaw causing the problem in 
the protocol and patch it considering several possibilities. In addition, even experimented designers must take care 
because they could introduce more vulnerabilities while patching a protocol. This has motivated the need for 
automated protocol repair. Shrimp is an automated tool that given the specification of a protocol and one of its 
counterexamples can detect the root of the protocol flaw and then suggest candidate patches. Protocol synthesis is 
another avenue for the development of sound security protocols. The most prominent tool for protocol synthesis is 
APG. 

Ongoing research in the literature is about extending the verification of security protocols in order to capture 
cryptographic primitives, like Diffie-Hellman, XOR, exponentiation, etc. These extensions are very important 
because new protocols such as key agreement protocols, group protocols, etc., could be verified automatically. 
Ongoing research is also about dealing with the verification of security protocols vulnerable to a wider variety of 
attacks, including type flaws. 
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