Computacién y Sistemas Vol. 6 No. 2 pp. 130 - 142
©2002, CIC-1IPN. ISSN 1405-5546 Impreso en México

Tabbed Hierarchy: A Design Pattern for the

Implementation of Object-Oriented User Interfaces*

Jerarquia Tabulada: Un Patrén de Disefio para la Implementacién de Interfaces de
Usuario Orientadas a Objetos

Amador Durin, Antonio Ruiz Cortés, Rafael Corchuelo y Octavio Martin Diaz
Departamento de Lenguajes y Sistemas Informaticos
ETS. de Ingenierfa Informatica, Universidad de Sevilla
Avda. Reina Mercedes s/n 41012 Sevilla, Espaiia
E-mail: {amador, aruiz, corchu, octavio}@lsi.us.es

Article received on February 12, 2002; accepted on November 05. 2002

130

Abstract

During the development of object-oriented user interfaces, it
is usually necessary to build dialogs for the edition of object
properties. More ofien than not, these dialogs have to layout
many user interface elements, especially when object classes
are part of inheritance hierarchies and have many proper-
ties. In such situations, tabbed dialogs are a good alterna-
tive to scrolling. The user interface design pattern presented
in this article uses class hierarchies for organizing user in-
terface elements in tabbed dialogs for the edition of object
properties. It also promotes reuse of code and user interface
resources and a coherent and easy—to—learn user interface
style. Results of the application of some refactorings and of
the introduced pattern in a case study are also presented.

Keywords: Design Patterns, User Interface Patterns, Refac-
toring, C++, MFC

Resumen

Durante el desarrollo de interfaces de usuario orientadas
a objetos, suele ser necesario construir didlogos para edi-
tar propiedades de objetos. A menudo, estos didlogos tiene
que visualizar muchos elementos de interfaz de usuario, es-
pecialmente cuando las clases de los objetos forman parte de
Jerarquias de herencia y tienen un gran miimero de propieda-
des. En estos casos, los didlogos tabulados son una buena
alternativa al desplazamiento. EI patrén de diseiio de inter-
Jaz de usuario presentado en este articulo usa las Jerarquias
de clases para organizar los elementos de interfaz de usua-
rio en didlogos tabulados para la edicién de propiedades de
objetos. También promueve la reutilizacion de codigo y de
recursos de interfaz de usuario y un estilo coherente y facil
de aprender. En este articulo también se presenta un caso de
estudio con los resultados de la aplicacién de varios refacto-
rings y del patrén descrito.

Palabras clave: Patrones de Disefio, Patrones de Interfaz de
Usuario, Refactoring, C++, MFC

"This work is partially funded by the CICYT projeet TIC 20001106
C02-01 (GEOZOCO).

1 Introduction

Sometimes in object-oriented information systems develop-
ments, it is necessary to build user interface (UI) dialogs for
the edition of objects of classes with many inherited prop-
erties. For example, instances of ClassToBeEdited; in the
class diagram in figure [need a dialog with at least 18 Ul
elements, also known as widgets or controls, in order to let
end users edit their properties. Such a dialog will probably
be too big to fit in a single screen and too complex for both
developers and users.

What is more, if another leaf class had to be added to
the hierarchy in figure 1, for example the ClassToBeEdited »
class, another very similar, big dialog would have to be built.
Although it depends on the Ul class library used, more often
than not reuse of code and UT resources would be very diffi-
cult, apart from cut and paste reuse. In a scenario like this,
two questions arise:

= How to solve the problem of too big dialogs for the edi-
tion of objects with many, possibly inherited, proper-
ties?

= How to reuse common code and common Ul resources
of very similar dialogs for such situations?

This abstract class
has 5 editable
properties

This abstract class
has 6 editable
properties

This abstract class
has 4 editable
properties

This concrete class
has 3 editable| A
properties

v |

Bla;sToBeEditedJ | ClassToBeEdited, |

Figure 1. Sample class hierarchy

A Durén, A. Ruiz Cortés, R. Corchuelo, O. M. Diaz : Tabbed Hierarchy: A Design Pattern for the Implementation of Object ...

In this article, we introduce the Tubbed Hierarchy design
pattern, a design pattern that tries to answer the former ques-
tions. This pattern drives the design of tabbed dialogs for the
edition of complex objects and it also helps to reuse code and
Ul resources.

We identified this design pattern during the development
of REM (Durén, 2000), an experimental requirements man-
agement CASE tool built with Microsoft Visual C++. Thatis
the reason why all the code examples in this article are writ-
ten using the Microsoft Foundation Library (MFC) classes
(Prosise, 1999; Kruglinski et al., 1998). Nevertheless, the
resulting code should be clear and easy to read for any aver-
age C++ or Java programmer. We have followed most usual
MFC naming conventions in our code. For example, all class
names start with an upper case C, all property names start
with a lower case M and an underscore, as an abbreviation
of (data) member, and all pointer attributes or variables start
their names with a lower case P.

The rest of the article is organized as follows. In section
2, we introduce some basic concepts about programming Ul
dialogs with the MFC, which are necessary in order to under-
stand the rest of the article. In section 3, some refuctorings
{(Fowler, 1999) are applied to the original MFC code in or-
der to make it easier to use and to promote encapsulation.
In section 4, the Tabbed Hierarchy pattern is described using
the format proposed in (Gamma et al., 1995). The related
work is compared in section 5 and, finally, in section 6, some
conclusions are presented. "

2 User Interface Dialogs in the MFC
library

The three main UI dialog classes in the MFC library are: CDi-
alog, for managing ordinary dialog boxes like the one in fig-
ure 2; CPropertyPage, for managing dialog boxes inside a
tabbed dialog, like the dialogs tabbed as Page 1, Page 2 and
Page 3 in figure 3; and CPropertySheet, for managing tabbed
dialog containers like the one in figure 3.

In the rest of the article and for the sake of clarity, we
will adopt MFC terminology and will use the term dialog
box for ordinary dialogs, property page for dialog boxes in-
side a tabbed dialog, and property sheets for tabbed dialogs
containing property pages. For referring to Ul elements like
buttons, text fields, lists, etc. we will use the term control.

2.1 Building dialogs with Visual C++

The process of building dialogs with Visual C++ is relatively
simple. At first, the developer sets the dialog appearance
with the dialog editor of Visual Studio, the integrated devel-
opment environment (IDE) of Visual C++. Then, the Visual
Studio integrated code generator, ClassWizard, generates a

new class, derived from CDialog or from CPropertyPage, as-
sociated with the new dialog resource.! Once the new class
has been generated, the developer can add public data at-
tributes to the new class and associate them with controls in
the dialog using the facilities provided by ClassWizard.

When the dialog is displayed, any change in a control
will also take effect in its associated attribute and vice versa.
The relationships between controls and attributes of the dia-
log class are made explicit in the virtual DoDataExchange
method by means of the so-called DDX (dialog data ex-
change) and DDV (dialog data validation) functions. A com-
prehensive discussion of this topic can be found in (Prosise,
1999) or (Kruglinski et al., 1998).

Figure 2. Typical dialog box

| Property Sheet (tabbed dialog)

| Windows 2000

Visual C++

Figure 3. Typical property sheets _

'n Microsoft Windows, Ul resources like dialogs, menus, icons, etc. arc
defined in so—called resource files. These external files have their own syn-
tax and can be used from-any programming language. Sec (Prosise, 1999;
Kruglinski et al., 1998)/for more details.

‘ 131

A. Duran, A. Ruiz Cortés, R. Corchuelo, O. M. Diaz : Tabbed Hierarchy: A Design Pattern for the Implementation of Object ...

2.2 Programming
with MFC

The usual way of programming object—oriented dialog boxes
in Visual C++ consists of the following sequence of steps
(see figure 4):

object—oriented dialogs

1. Create the dialog box object.

2. Initialize dialog box object attributes with properties
from the object to be edited, which we will call the sub-
Ject from now on.

3. Show the dialog box using the inherited DoModal
method.

4. Update the subject state if the user pressed the OK but-
ton or do nothing in any other case.

Property sheets are used in a similar way. The programmer
has to:

1. Create the property sheet object.
2. Create the property page objects.

3. Initialize attributes of property page objects with prop-
erties from the subject.

4. Add property page objects to the property sheet object.

5. Show the property sheet using also the inherited method
DoModal.

6. Update the subject state with attribute values from prop-
erty page objects if the user pressed the OK button of the
property sheet or do nothing in any other case.

The code in figure 5 shows a typical usage of a property
sheet. Notice that the CPropertySheet class is used directly;
there is no need for derivation.

3 Refactoring the MFC code

Refactoring is a technique to restructure code in a disci-
plined way which has become popular after the publication
of (Fowler, 1999). The concept of refactoring is defined in
(Fowler, 1999) as " change made to the internal Structure
of software to make it easier to understand and cheaper to
modify without changing its observable behavior". Tn other
words, refactorings clean up code in a controlled way, thus
minimizing the introduction of new bugs.

As pointed out by Gamma in the foreword in (Fowler,
1999), "design patterns provide targets for refactorings". So,
before presenting the Tabbed Hierarchy design pattern, some
pattern—driven refactorings of the original MFC code are
needed. These refactorings will increase encapsulation and
will ease the application of the TabbedHierarchy pattern.

132

In order to make this article as self—contained as possible,
a brief description of the main principles behind the refactor-
ings to be applied is provided as follows:

Extract Method
If you have a code Jragment that can be grouped to-
gether, turn the fragment into a method whose name ex-
plains the purpose of the method.

Preserve Whole Object
If you are getting several values Jrom an object and
passing these values as parameters in g method call,
send the whole object instead.

Remove Parameter
If a parameter is no longer used by the method body,
remove it.

Encapsulate Field
{f there is a public field (i.e. attribute, property), make
it private and provide accessors.

Pull Up Method
Ifyou have methods with identical results on subclasses,
move them to the superclass.

31 Encapsulating dialog boxes and property
pages

In the usual MFC code for programming object—oriented dia-
log boxes and property sheets (see figures 4 and 5), two main
blocks can be identified: dialog initialization (everything af-
ter dialog creation and before dialog activation) and subject
update (everything inside the body of the if statement). This
usual MFC code presents three main problems:

1. Every time the dialog is used, all the code for assign-
ments needed for dialog initialization have to be re-
peated.

2. All the updating messages sent to the subject have also
to be repeated every time the dialog is used.

3. Dialog attributes are public, which is not considered as a
good practice because it violates the encapsulation prin-
ciple.

With respect to the first problem, the initialization frag-
ment could be turned into a method applying the Extract
Method refactoring. Since this method would be invoked im-
mediately after dialog creation, its code could be allocated
into dialog constructor instead of in its own method. All pa-
rameters needed by the new constructor would be obtained
from the subject, so it could be passed as a parameter, fol-
lowing the Preserve Whole Object refactoring.

A. Duran, A. Ruiz Cortés, R. Corchuelo, O. M. Diaz : Tabbed Hierarchy: A Design Pattern for the Implementation of Object...

CMyDialogBoxDlg dlg; // (1) dialog object creation

dlg.m_x = subject.GetX{); // (2) dialog object initialization
dlg.m y = subject.GetY{); // (2) dialog object initialization
if (dlg.DoModal() == IDOK) { // (3) dialog box activation

subject.SetX(dlg.m x); // (4) subject update
subject.SetY(dlg.m vy); // (4) subject update

Figure 4. Usual MFC code for object—oriented dialog boxes

CPropertySheet sheet; // (1) property sheet creation

CMyPagel pagel; // (2) property page creation

page_l.m_x = subject.GetX(); // (3) property page initialization

CMyPage2 page2; // (2) property page creation

page 2.m_y = subject.GetY(); // (3) property page initialization

sheet.AddPage (&pagel); // (4) association of pages to the sheet

sheet .AddPage (&page2); // (4) association of pages to the sheet

if (sheet.DoModal({) == IDOK) { // (5) property sheet activation
subject.SetX(page_1.m x); // (6) subject update
subject.SetY(page 2.m y); // (6) subject update

}

Figure 5. Usual MFC code for object—oriented property sheets

CMyDialogBoxDlg dlg(&subject); // (1) dialog creation/initialization
if (dlg.DoModal () == IDOK) // (2) dialog activation
dlg.UpdateSubject () ; // (3) subject update

Figure 6. Refactored code for dialog box programming

CPropertySheet sheet; // (1) property sheet creation

CMyPagel pagel(&subject); // (2) property page creation/initialization
CMyPage2 page2{ &subject); // (2) property page creation/initialization

sheet .AddPage (&pagel); // (3) association of pages to sheet
sheet .AddPage (&page2 }; // (3) association of pages to sheet

if (sheet.DoModal() == IDOK) { // (4) property sheet activation

page_1.UpdateSubject(); // (5) subject update
page_2.UpdateSubject (}; // (5) subject update

Figure 7. Refactored code for property sheet programming

133

A. Duran, A. Ruiz Cortés, R. Corchuelo, O. M. Diaz : Tabbed Hierarchy: A Design Pattern for the Implementation of Object ...

In order to solve the second problem, the Extract Method
refactoring can also be applied. In this way, the subject up-
date code fragment is refactored into a new method, Update-
Subject, which would be responsible for sending the mes-
sages needed for updating the subject state. If the Extract
Method and the Preserve Whole Object refactorings were
strictly applied to this code fragment, the UpdateSubject
method would have to take the subject as a parameter. Since
this subject is the same object that was passed as a parame-
ter to the constructor, it seems to be a better choice to store
a pointer to the subject inside the dialog object, thus avoid-
ing the need for a parameter in UpdateSubject. This could be
considered as a variant of the Remove Parameter refactoring.

Applying the proposed refactorings, the resulting code
would be as shown in figures 6 and 7. As it can be seen,
dialog attributes need not be public anymore, so the Encap-
sulate Field refactoring can also be applied, thus solving the
third problem. Notice that no public accessors for attributes
were added since there was no need for accessing them from
outside the dialog class code.

3.2 Encapsulating property sheets

Refactorings applied in previous section have dramatically
simplified the code for dialog programming and have pro-
moted encapsulation, but in the case of property sheets some
potentially extractable fragments of code are still present
(steps 2, 3 and 5 in the listing in figure 7). These code frag-
ments must be repeated every time a property sheet is used,
so they should be allocated into their own method applying
the Extract Method refactoring once again.

Since extracted methods would have different code, we
need to create new subclasses of CPropertySheet. Sample
code. for these new subclasses is shown in figure 8, where
property pages have been turned into embedded objects.

_ Using thesc new classes of property sheet, the final code
would be as shown in figure 9. As it can be seen, the re-
sulting code is as simple as the code for dialog boxes and it
has the same programming interface, since the UpdateSub-
ject method has also been added to the new property sheet
classes. What is more, the client code does not depend any-
more on the specific property pages used inside the property
sheet code.

3.3 The UpdateSubject protocol

If many property sheets are going to be used like the previ-
ously shown, some common code could be allocated into an
abstract class applying the Pull Up Method refactoring. In
fact, the common code is a protocol for subject updating be-
tween a property sheet and its subordinate property pages.
The main steps of this protocol are:

1. The property sheet must propagate the UpdateSubject
message towards its property pages.

134

2. The property pages must implement the UpdateSubject
method with code for updating the subject.

The UML class diagram in figure 10 shows the basic struc-
ture. The CTHPropertySheet class (TH stands for ubbed
Hierarchy) inherits from the MFC class CPropertySheet and
declares a single public method, UpdateSubject. In this
method, the property sheet iterates over its inherited array of
property pages sending the UpdateSubject message to all of
them implementing the CTHPropertyPage interface (see fig-
ure 11). To test if a property page implements the CTHProp-
ertyPage interface, we use the C++ keyword dynamic_cast,
that returns a null pointer if the casting is not possible.

The CTHPropertyPage class is just an interface, what in
C++ means it only has pure virtual methods. Any derived
property page class must implement the only pure virtual
method declared, UpdateSubject, which is responsible for
updating subject state.

4 The Tabbed Hierarchy Design Pat-
tern

- Having introduced some basic concepts and refactorings

about dialog programming with the MFC, we will now
present the Tabbed Hierarchy (TH) design pattern. For the
pattern description, we will use a simplified version of the
template used in the pattern catalog in (Gamma ef al., 1995).

4.1 Intent

The intent of the TH design pattern is building reusable
tabbed dialogs (property sheets) for object—oriented Uls.

The basic concept behind the TH pattern is shown in fig-
ure 12, where the hierarchy of classes in figure 1 is shown
in a tabbed form. If a property sheet for the edition of ob-
Jects of a given leaf class is needed, build at least one prop-
erty page per class in the hierarchy, so common superclasses
will have common property pages which will be reused in
different property sheets. For example, property pages for
A, B and C classes would be reused in the property sheets
for ClassToBeEdited: and ClassToBeEdited., classes, as sug-
gested in figure 12.

4.2 Motivation

During the development of the requirements management
CASE tool REM (Duran, 2000), we identified the class hi-
erarchy shown in figure 13, with 3 levels of inheritance, 3
abstract classes and 21 leaf classes. We had to develop one
edition dialog for each leaf class. We chose property sheets
because they seemed to be a better choice than scrolling for
organizing dialogs with many controls. When we had to
make a decision about what controls were in each property

A. Durén, A. Ruiz Cortés, R. Corchuelo, O: M. Diaz : Tabbed Hierarchy:A Design Pattern for the Implementation of Object ...

class CMySheet : public¢ CPropertySheet {

private:

CMyPagel m_pagel; // (1) property page declaration

CMyPage2 m_page?2; -// (1) property page declaration

public:

CMySheet (CMyClass* pSubject)

: m_pagel(pSubject), // (2) property page initialization
m_page2(pSubject) // (2) property page initialization
AddPage (&m_pagel); // (3) association of pages to sheet
AddPage (&m_page2) ; // (3) association of pages to sheet

void UpdateSubject ()

m_pagel.Updatesubject (); // (4) subject update
m_page?2.UpdateSubject(); // (4) subject update

Figure 8. Sample code for refactored prdperty sheet class

CMySheet sheet (&subject }; // (1) property sheet creation/initialization
if (sheet.DoModal() == IDOK) // (2) property sheet activation
sheet .UpdateSubject () ; // (3) subject update

Figure 9. Usage of refactored property sheets

CPropertySheet
(from MFC)
#m_pages
+ AddPage(pPage : CPropertySheet*) : void CPropertyPage
+ GetPageCount() : int _ " (from MFC)
+ GetPage(int nPage) : CPropertyPage*
+ DoModal() : int
- - - <<interface>>
CTHPropertySheet - : CTHPropertyPage
+ UpdateSubject() : void SR + UpdateSubject - () : void = 0

Figure 10. Base classes for the UpdateSubject protocol

void CTHPfopertySheet : :UpdateSubject ()

for (int i = 0;-i < GetPageCount (); i+)" {
CTHPropetrtyPage* pPage = dynamic_cast< CTHPropertyPage* >(GetPage(i));
if (pPage != NULL) ‘ LT
pPage-sUpdateSubiect ();

wee siene o Figure 11, UpdateSubject méthod

135

A. Duran, A. Ruiz Cortés, R. Corchuelo, O. M. Diaz : Tabbed Hierarchy: A Design Pattern for the Implementation of Object

ClassToBeEdited,

1ssToBeEdited,

Figure 12. Tabbed hierarchies

Organization

ConstraintRequirement AssociationType

Stakeholder

- UseCase

SystemOperation

Meeting

FunctionalRequirement

—1 Actor

NonFunctionalRequirement

— TraceabilityMatrix

Figure 13. REM class hierarchy

informationRequirement

Figure 14. Property sheet for a REM information requirement

136

REMObject
{ I
Section/Appendix C-Requirement D-Requirement Conflict
P It Def
aragraph/Glossaryltem Objective ObjectType efect
ExternalGraphicFile . ChangeRequest
-—MormatlonRequirement ——{‘ValueType

A. Duran, A. Ruiz Cortés, R. Corchuelo, O. M. Diaz : Tabbed Hierarchy: A Design Pattern for the Implementation of Object ...

page, we chose to organize property pages imitating the class
hierarchy in figure 13.

For example, the property sheet for the edition of informa-
tion requirements can be seen in figure 14. Property pages
labeled as General, Traceability, History and Comments are
common for all REM objects. The Priority tab makes sense
only for customer requirements (C-Requirements in the hi-
erarchy in figure 13). Specific properties about information
requirements are inside the Detail property page, which is the
only property page specially developed for this class of ob-
jects. The other property pages are reused all along the class
hierarchy in figure 13.

4.3 Applicability

The TH pattern can be applied in order to build reusable
tabbed dialogs for the edition of objects of classes with many
common inherited properties.

4.4 Structure

In figure 15, the static structure of the TH pattern is shown.
Hot spots of the pattern (Pree, 1995) are highlighted follow-
ing the style used in (Lucena and Fontoura, 2001), and the
subject hierarchy has been limited to two levels for simplic-
ity (CAbstractSubject and CConcreteSubject classes respec-
tively). The dynamic structure of the pattern is shown in fig-
ure 16, using a UML object diagram.

4.5 Participants

= CTHPropertySheet: this class inherits from CProper-
tySheet and declares and implements the UpdateSubject
method. It is the base class for all new property sheets
using the TH pattern.

= CTHPropertyPage: this interface inherits from CProper-
tyPage and simply declares the UpdateSubject pure vir-
tual method. Any property page using the TH pattern
must inherit from this class and therefore implement the
UpdateSubject abstract method.

= CAbstractSubject: it is the root class of the hierarchy of
subjects.

» CConcreteSubject: any leaf class in the hierarchy of sub-
jects.

= CConcreteSubjectSheet: a concrete class inheriting
from CTHPropertySheet. It has as many object members
as property pages are needed, usually one page for every
class in the subject hierarchy, although it is also possible
to have more than one page per class, as in the motivation
example. It receives a pointer to the subject in its con-
structor and passes it to its embedded property pages. in
its initialization list.

» CAbstractSubjectPage: a property page class especially
designed for objects of the CAbstractSubject class. It sees
the subject as an instance of the CAbstractSubject class,
regardless of its dynamic class. It implements the Update-
Subject method and stores a private pointer to the subject
(m_pSubject).

= CConcreteSubjectPage: a property page class espe-
cially designed for objects of the CConcreteSubject
class. It lets the user edit the non-inherited properties of
CConcreteSubject class. It also implements the Update-
Subject method and stores another private pointer to the
subject.

4.6 Collaborations

= When the concrete property sheet is created, it receives a
pointer to the subject and passes it to its embedded prop-
erty pages. Property pages store the pointer to the subject
and query the subject state as needed for the initializa-
tion of their control—associated attributes (see top of fig-
ure 17).

= When the property sheet receives the UpdateSubject mes-
sage, it iterates over its property pages propagating the
message. Property pages update subject state inside their
UpdateSubject methods (see bottom of figure 17).

4.7 Consequences

This pattern has the benefits of organizing tabbed dialogs in
a homogeneous way for the user and promoting reuse. The
user perceives the commonality between property sheets, so
the learning time is shorter. When used with MFC, the only
drawback is that code automatically generated by the Visual
C++ IDE has to be refactored manually.

4.8 Implementation

Using templates should be considered in situations in which
many sibling subclasses exist at the bottom: level of the sub-
ject hierarchy and they differ only in the type of specific
property page. The code for a template property sheet is
shown in figure 18, where the formal parameters have been
underlined.

4.9 Sample code

Including a whole example would take too much space, so
we have taken two fragments directly from the code of our
requirements management CASE tool REM (see section 4.10
for more details about REM).

The fragment of code in figure 19 corresponds to the prop-
erty sheet class for use cases, a subclass of customer require-
ments that are in turn a subclass of REM objects (see figure

137

A. Duran, A. Ruiz Cortés, R. Corchuelo, O. M. Diaz : Tabbed Hierarchy: A Design Pattern for the Implementation of Object ...

CPropertySheet #m_pages ‘CPropertyPage “m.pSubject CAbstractSubject
(from MFC) . (from MFC)
CTHPropertySheet <<interface>> I CConcreteSubj 1
ject
+ UpdateSubject() : void CTHPropertyPage -
+ UpdateSubject() : void = 0 -m_pSubject

Figure 15. Tabbed hierarchy pattern static structure

sheet : CConcreteSubjectSheet

concretePage : CConcreteSubjectPage 1] -
m-pSubject subject : CConcreteSubject
abstractPage ; CAbstractSubjectPage ! ’
!
‘ m_pSubject

Figure 16. Tabbed hierarchy pattern dynamic structure

client sheet:CConcrete abstractPage:CAbstract concretePage:CConcrete subject:
SubjectSheet SubjectPage SubjectPage CConcreteSubject

[1 T T

<<create>>(subject) | | H |

<<create>>(subject) _ | I |

query state] L

f T gl

;:’ intialize | : |

| i |

<<create>>(subject) | ‘f :

X query state o

“ t g

! intialize U

l <] 1

| |

L [| | I

(L UpdateSubject() l : : :

dateSubj

UpdateSubject(P update state | L

I gl
. |

UpdateSubject() . : | update state -
| : gn
L | | |

L] | |
| |

I
|
|
|
|
|
I

Figure 17. Tabbed hierarchy pattern collaborations

138

A. Duran, A. Ruiz Cortés, R. Corchuelo, O. M. Diaz : Tabbed Hierarchy: A Design Pattern for the Implementation of Object ...

template <class LeafClass, class LeafPage>
class CTemplateSheet : public CTHPropertySheet {
private:

// declaration of common pages

LeafPage m_leafPage; // specific page

public:
CTemplateSheet (LeafClass* pSubject)
// initialization of common pages
m_leafPage(pSubject)

// addition of common pages
AddPage{ &m_leafPage) ;
}i
}i

Figure 18. Template version of CTHPropertySheet

class CUseCaseDlg : public CREMSheet {
public:
CUseCaseDlg(CUseCase* pSubject, UINT.nIDCaption = IDS_REM_USE_CASE)
: CREMSheet (nIDCaption), .
m_generalPage (pSubject },
m_detailPage (pSubject),
m_prePostPage(pSubject),
m_priorityPage (pSubject),
m_traceabilityPage (pSubject },
m_commentsPage { pSubject
{
AddPage (&m_generalPage)
AddPage (&m_detailPage) ;
AddpPage (&m_prePostPage):
)
)
)

7

AddPage (&m_priorityPage ;
AddPage (&m_traceabilityPage

AddPage{ &m commentsPage

7

H

}i

private:
CREMObjectPage m_generalPage; :
CUseCasePage m_detailPage;
CPrePostPage m_prePostPage;

CC_RequirementPage m_priorityPage;
CTraceabilityPage m_traceabilityPage;
CCommentsPage m_commentsPage;

Figure 19. Property sheet class for REM use case objects

void CInformationReguirementPage::UpdateSubject () {
m_pSubject->SetRelevantConcept (m_relevantConcept) ;
m_pSubject->SetAvgLifeTimevalue(m_avgLifeTimeValue) ;
m_pSubject->SetAvgLifeTimeTime (m_pAvgLifeTimeTime);
m_pSubject->SetMaxLifeTimeValue(m_maxLifeTimeValue);
m_pSubject->SetMaxLifeTimeTime (m_pMaxLifeTimeTime) ;
m_pSubject->SetAvgOcurrences (m_avgOcurrences) ;
m_pSubject->SetMaxOcurrences (m_maxOcurrences) ;

Figure 20. UpdateSubject code for REM information requirement objects

139

A. Duran, A. Ruiz Cortés, R. Corchuelo; O. M. Diaz : Tabbed Hierarchy: A Design Pattern for the Implementation of Object ...

13). As other property sheets classes in REM, this property
sheet class derives from CREMSheet, an abstract class de-
rived from CTHPropertySheet, which takes a string identifier
for dialog title as a parameter in its constructor.

As it can be seen, the code is quite simple. The property
sheet for use cases declares 6 property pages, but only 2,
CUseCasePage and CPrePostPage, are specific to the class.
All used property pages derive from CTHPropertyPage and
therefore implement the UpdateSubject method.

The fragment of code in figure 20 corresponds to the code
for the UpdateSubject method of the ClnformationRequire-
mentPage class, where some properties of information re-
quirements (also a subclass of customer requirements) are
updated.

4.10 Known uses

As we have already mentioned, we have used this pattern
in our requirements management CASE tool REM (Durén,
2000). During the development of REM, we identified 21
leaf classes in a hierarchy of 3 levels (see figure 13). The
number of property pages needed for the 21 leaf classes was
119, but only 33 had to be different after applying the TH
pattern. In other words, the reuse level of Ul resources was
of 72%.

Applying the template version of the pattern (see figure
18), we developed 3 template property sheets (one for each
abstract class), which were reused for 14 out of the 21 leaf
classes. Only 7 property sheets had to be written entirely.
The main reason for writing specific property sheets was that
some leaf classes needed more than one property page, so it
was not possible to write a generic property sheet. Anyway,
the reuse level of UI dialog code was almost as high as for
UI resources.

4.11 Related patterns

A simplified version of Chain of Responsibility (Gamma
et al., 1995) is used between the property sheet and its prop-
erty pages for the implementation of the UpdateSubject pro-
tocol.

The Navigating between Spaces interaction pattern (van
Welie and Troetteberg, 2000) suggests that "when the user
needs to access an amount of information which cannot be
put on the available space", the best solution is "showing the
information in several spaces and allow the user to navigate
between them". In the TH pattern, the several spaces are the
property pages and the user can navigate between them using
the tabs.

5 Related Work

General concepts about object—oriented user interfaces are
presented in (Collins, 1995). More specifically, we must

140

Appeatancs
i Fants

Applications
= Smart Browsing
Mail & Newsgraups
-~ |dentity
Mail Servers
+ Newsgroup Serv
Addressing
Messages
Windaw Settings
pies and Folde:
Formatting
Retum Feceipts.
isk. Space
+ Roaming Access
- Composer

Figure 21. Tree-based dialog

refer to the excellent catalog of interaction patterns (van
Welie and Troetteberg, 2000) presented in the 2000 edition of
the Patterns Languages of Programming (PLoP) conference.
The TH design pattern can be considered as a more concrete

- version of one of the interaction patterns described in (van

Welie and Troetteberg, 2000), namely Navigating between
Spaces, as we have already commented in section 4.11.

There is also an interesting work on Ul antipatterns?
known as The Interface Hall of Shame (IIS, 2000). In that
catalog of antipatterns, there is a section especially focused
on tabbed dialogs. Many of the reported problems of tabbed
dialogs have to do with using too many tabs or with an in-
consistent grouping of controls under different tabs. The TH
design pattern avoids most of those problems.

In both (van Welie and Troetteberg, 2000) and (IIS, 2000),
there is also a clear subpattern: "if the number of spaces
(tabs) is large, for example greater than 8, use a tree struc-
ture instead of tabbed dialogs". In figure 21, from Netscape
Navigator, an application of that subpattern can be seen. Dia-
log appearance changes when the user selects a different item
in the tree on the left, which is a better option than using more
than 30 tabs which would be needed in case of using a tabbed
structure.

Although it has not been the case during the development
of REM, it is clear that the TH design pattern is meant to be
used with not very deep class hierarchies, i.e. no more than 6
or 7 levels of inheritance, in order to keep the number of tabs
reasonable. Since such deep hierarchies are not found very
often in domain models, for example the one shown in figure
13, the TH pattern can be applied in most developments. If
the number of tabs had to be larger, the solution proposed in
(van Welie and Troetteberg, 2000) and (IIS, 2000) of using

2 Antipatterns describe solutions to problems that generate negative con-
sequences, their causes, symptoms, and refactored solutions (Brown et al.,
1998).

A. Duran, A. Ruiz Cortés, R. Corchuelo, O. M. Diaz : Tabbed Hierarchy: A Design Pattern for the Implementation of Object ...

a tree for dialog selection could be adopted, but the pattern
structure should then be changed.

6 Conclusions

In this article, the Tabbed Hierarchy user interface design
pattern has been presented. This pattern drives the design and
implementation of tabbed dialogs for object—oriented user in-
terfaces, achieving a high level of reuse. It has been applied
during the development of REM, an experimental require-
ments management tool recently presented at the research
tool demo session of the IEEE Joint International Require-
ments Engineering Conference held in Essen (Germany) on
September 2002, with excellent results in UI homogeneity
and in code and UI resources reuse. The reader can check
the application of the presented pattern downloading REM
fromhttp://klendathu.lsi.us.es/REM

In spite of the fact that the code presented in this article is
obviously MFC—oriented, an adaptation to the Swing library,
a package in the Java Foundation Classes (JFC) suite, is not
complex (Eckstein et al., 1998). Although there is no a direct
mapping, only a few changes have to be applied using a JOp-
tionDialog with an embedded JTabbedPane as a substitute of
CPropertySheet, and JPanel instead of CPropertyPage.

References

Booch, G., Rumbaugh, J., and Jacobson, L., The Unified
Modeling Language User Guide, Addison—Wesley, 1999.

Brown, W. J., Malveau, R. C., McCormick ITI, H. W., and
Mowbray, T. J., Antipatterns: Refactoring Software, Archi-
tectures, and Projects in Crisis, Wiley, 1998.

Collins, D., Designing Object-Oriented User Interfaces,
Benjamin/Cummings, 1995.

Durin, A., "A Methodological Framework for Require-
ments Engineering of Information Systems" (in Spanish),
PhD thesis, University of Seville, 2000.

Duran, A., Ruiz-Cortés, A., Corchuelo, R., and Toro,
M., "The Tabbed Hierarchy Desing Pattern”, in ¥ Workshop
Iberoamericano de Ingenieria de Requisitos y Desarrollo de
Ambientes de Software, La Habana, Cuba, April, 2002, pp.
417-416.

Eckstein, R., Loy, M., and Wood, D., Java Swing, O’Reilly,
1998.

Fowler, M., Refactoring: Improving the Design of Existing
Code, Addison—Wesley, 1999.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J., De-
sign Patterns: Elements of Reusable Object-Oriented Sofi-
ware, Addison—Wesley, 1995.

Isys Information Architecths, "Interface Hall
of Shame", 2000. It can be downloaded from
http://www.larchitect.com/mshame.htm.

Kruglinski, D. J., Wingo, S., and Shepherd, G., Program-
ming Visual C++, Microsoft Press, fifth edition, 1999.

Lucena, C. J. P. and Fontoura, M., "Extending UML to
Improve the Representation of Design Patterns", in Journal
of Object-Oriented Programming, 13(11),2001.

Pree, W., Design Patterns for Object—Oriented Software De-
velopment, Addison—Wesley, 1995.

Prosise, J., Programming Windows with MFC, Microsoft
Press, second edition, 1999.

van Welie, M. and Troetteberg, H., "Interaction Patterns
in User Interfaces", in Proceedings of the 7th Pattern Lan-
guages of Programming Conference, 2000.

141

A. Duran

,A. Ruiz Cortés, R. Corchuelo, O. M. Diaz : Tabbed Hierarchy: A Design Pattern for the Implementation of Object ...

142

Amador Durdn, was born in 1970, in Seville, Spain. He received his MS degree in Computer Science in 1993 and
his Ph.D. in Computer Science in 2000, both Jrom the University of Seville. He is an assistant professor at the
Department of Computer Languages and Systems of the University of Seville since 1994. His current research
interests are Requirements Engineering, Software Development Process Modeling, Conceptual Modeling, Sofiware
Engineering for Web Applications and Software Engineering Patterns at any level of abstraction.

Antonio Ruiz Cortés, is a Doctor of Computer Science, and he is with the Department of Computer Languages and
Systems of the University of Seville. Before Joining the University, he worked for companies such as Informdtica el
Corte Inglés, which is a leading Spanish corporation with branches all over the world, and DEINSA, which is a
local corporation that has specialised in building environmental information systems. His current research interests

include non—functional requirements, software architecture, component—oriented software engineering, and multi—
organizational web—based systems.)

Rafael Corchuelo, is a reader in Computer Engineering, and he has been with the University of Seville since 1994.
He is the head of the Research Group on Distributed Systeins of this University, and he has set up several cooperation
and exchange programmes with several European universities and research centers. His research activities focus
on distributed systems. Currently, he is a member of the editorial board of Springer—Verlag s Journal of Universal

Computer Science, and serves as a reviewer Sfor ACM's Computing Reviews and Wiley’s Concurrency and
Computation.

Octavio Martin Diaz, is a lecturer professor of. software engineering and a member.of the Department of Computer
Languages and Systems of the University of Seville since 1998. . He received his MS degree.in Computer Science
Srom the University of Seville in 1994. He has worked as a software consultant for his. County Council where he
participated in projects on large database applications. He is currently very interested in software architecture and
his research is related to architectural analysis and transformation.

